Plain Bearings or Sliding Bearings

A "bearing" is a contacting surface through which a load is applied. When there is relative motion between the surfaces, you have a sliding bearing, and you need to deal with friction and wear. This calls for some kind of lubrication.

We are going to cover how to design a system of materials, geometry, and lubrication to provide a low-friction, durable, plain bearing.

Configuration Types:

1. Journal / Sleeve Partial (freight cars) Full (360°)

2. Thrust

Lubrication Types: (Sec. 8.4)

- Hydrodynamic Total bearing carried on "thick" film of lubrication. Depends on relative motion between surfaces.
 Hydrostatic = Pressure fed; doesn't need relative motion.
- Elastohydrodynamic Rolling contact, like gear tooth contact & rolling element bearings Hamrock talks about Hard (metals & ceramics) and Soft (rubber & polymers)
- 3. Boundary / Mixed Film Extensive direct surface contact
- 4. Solid film Usually high temperature: Graphite or molydisulfide

Some of these modes are shown in a Stribeck curve:

η N / P

"High" loads, "low" speeds, and low viscosities will not permit hydrodynamic operation.

VISCOSITY

A shaft and collar with material in the gap, at equilibrium.

SI:
$$\frac{Newton \cdot Sec}{m^2} = Pascal \cdot Sec$$

1 reyn = 6890 PaS (same as Pascal to PSI conversion)

Units are usually microreyns and milliPaS. Previous metric unit was Poise or centipoises, cP, where 1 cP = 1 mPaS

1 µreyn = 6.89 cP

VISCOMETER

Viscosity is commonly measured with a Saybolt Universal Viscometer [SUV]: It measures the time for 60ml (~1/4 cup) of lubricant at constant temperature to run through a tube 17.6 mm \emptyset (0.7") x 12.25 mm (0.5") long. This is

"Kinematic Viscosity" = $\frac{\text{Absolute Viscosity}}{\text{Mass Density}} = \boldsymbol{h}_k$

Units are length² / time

Usually cm^2 / second = Stoke, St

Or mm^2 / second = Centistoke, cSt

To get Absolute Viscosity from SUV time (= Saybolt Universal Seconds, SUS)

$$h[mreyns] = 0.145(0.22S - \frac{180}{S})r$$
 0.145 = 1000 / 6896

Where S = Seconds (SUS from SUV)

 ρ = Mass density in grams/cm³

= specific gravity (ratio of its density to density of water = 1 gm/cm^3)

Example: Petroleum Oil at 60°F, ρ = 0.89 gm/cm³

- Generally, viscosity decreases with increasing temperature. See Fig. 8.16 on page 347.
 - Note that viscosity of gases increases with temperature.
- Newtonian fluids have linear velocity gradients.
 - Some non-Newtonian fluids are tomato paste, chocolate, peanut butter, and shampoo.
- Liquid viscosity increases slightly with pressure
 - o Eqn. 8.32

$$\boldsymbol{h} = \boldsymbol{h}_0 e^{\boldsymbol{x} p}$$

• Since from Table 8.5, $x \approx 1 \times 10^{-8}$, at 100 psi = 689,500 Pa,

$$e^{(1\times10^{-8})(0.689\times10^{6})} = 1.007$$

so the viscosity only goes up 0.7%.

Petroff's Equations are ONLY for an <u>unloaded</u> journal bearing, so **DO NOT** use these equations for actual, side-loaded journal bearings.

Real Journal with Eccentricity

Bearing characteristics are a function of the dimensionless Sommerfeld number, B_{j} , also known as the Bearing Number, or Bearing Characteristic Number.

$$B_{j} = \frac{\eta_{0}\omega_{b}r_{b}w_{t}}{\pi W_{r}} \left(\frac{r_{b}}{c}\right)^{2}$$
Eqn. 12.84
also $= \frac{\eta_{0}N_{a}}{P} \left(\frac{r_{b}}{c}\right)^{2}$

Where h_0 is in reyns, N_a is in revs/sec, and P is in psi.

HYDRODYNAMIC THEORY

Hydrodynamic theory was driven by railroad car bearing research by Beauchamp Tower in 1883, Reynolds in 1886, and Sommerfeld in 1904.

Hydrodynamics requires:

- 1. Relative motion of surfaces
- 2. "Wedging action" given by shaft eccentricity (NOT like Petroff)
- 3. Suitable fluid

It is basically like waterskiing.

In the 1950's, two guys at Westinghouse [Raimondi & Boyd] used a computer to solve Reynold's equations for a series of bearing parameters versus the Sommerfeld number.

Raimondi & Boyd Charts (Full Journal)

- All are versus Sommerfeld number
- All have journal $\frac{Diameter}{Length} = \frac{2r_b}{w_t}$ as parameter (I_j)

Here is a summary of the charts:

1	Fig. 12.20	Minimum film thickness variable	$h_{ m min}/c$				
2	Fig. 12.21	Angle of minimum film thickness	F				
3	Fig. 12.22	Coefficient of friction variable	$r_b \mathbf{m}/c$				
4	Fig. 12.23 *	Volumetric flow rate variable	$2\mathbf{p}q/(r_b c w_t \mathbf{w}_b)$ *				
5	Fig. 12.24	Side-leakage flow ratio	q _s /q				
6	Fig. 12.25 *	Maximum film pressure	$W_r/(2r_bw_tp_{\rm max})$ *				
7	Fig. 12.26	Angles of max. and terminating pressures	$\boldsymbol{j}_{\max}, \boldsymbol{j}_{0}$				

* Note that Hamrock has left out the " / " in the vertical axis labels for these two charts.

- 1. Viscosity, h_0
- 2. Radial Load, W_r
- 3. Speed, w_b
- 4. Bearing Dimensions, $\langle r_b, c, w_t \rangle$

Adjust these to tune these

Dependent Variables:
1. Coefficient of friction, μ
2. Temperature rise, Δt_m (Eq. 12.90)
3. Oil flow, q

4. Minimum film thickness, h_{min}

◀

Heat Management

Temperature rise in journal bearings, Eqn. 12.90

SI:

$$\Delta t_m = \frac{8.3W_r^*(r_b/c)\mathbf{m}}{Q(1-0.5q_s/q)} \circ C \qquad W_r^* = \frac{W_r}{2r_bw_t} \quad MPa$$

English

$$\Delta t_m = \frac{0.103 W_r^{**}(r_b/c) \mathbf{m}}{Q(1 - 0.5 q_s/q)} \circ F \qquad W_r^{**} = \frac{W_r}{2r_b w_t} \ psi$$

Notice that $(r_b/c)\mathbf{m} \& q_s/q$ are directly readable off of charts.

NOTE: The Sommerfeld number is most correctly calculated using the mean bearing temperature, which is <u>the inlet lubricant temperature plus half of the temperature rise</u>. This is important because of the strong sensitivity of the viscosity to temperature.

Power Loss = Torque x Angular Velocity

Power = ($\mu W_r r_b$) w_b in Watts, when W_r is in newtons and r_b in meters.

Note again that this is different from the Petroff equation for power (Eqn. 12.80) because this is for a real journal with a real side load and therefore not running concentrically!

Clearance Management

- Design is very sensitive to clearance
- Clearances are often very small
- They are hard to control accurately
- Wear will increase clearance
- See Fig. 12.27

Materials

- Bronze and Babbitt (tin alloy), good to 300°F
- Plastics
 - Most good to 200°F
 - PTFE (Teflon) good to 500°F
- Carbon graphite, good to 750°F
- Favorable characteristics:
 - Embeddability (Safely holds contaminates)
 - Corrosion resistance
 - Resistance to seizing (See Table 8.7)

EXAMPLE: Full Journal Bearing

Given:Journal diameterD = 32 mmJournal diameter $L = 32 \text{ mm} = w_t$ Journal length $W_r = 1800 \text{ N}$ Side LoadN = 1150 RPMSpeed $C = 4 \times 10^{-5} \text{ m}$ Radial ClearanceOil = SAE 30 @ 40°C Inlet Temperature

Find:

- Minimum oil film thickness
- Total oil flow
- Max film pressure
- Temperature rise

Fig. 8.17a:
$$h_0 = 0.075 \text{ N sec/m}^2$$

 $r_b = 0.016 \text{ m}$
 $r_b/c = 16/0.04 = 400$
 $N_a = 1150/60 = 19.2 \text{ rev/sec}$
 $w_b = 2\pi N_a = 120.4 \text{ Rad/sec}$

$$B_{j} = \frac{\eta_{0}\omega_{b}r_{b}w_{t}}{\pi W_{r}} \left(\frac{r_{b}}{c}\right)^{2} = \frac{(0.075)(120.4)(0.016)(0.032)}{\pi (1800)} (400)^{2}$$

 $B_j = 0.131$ (dimensionless) $I_j = D/L = 1.0$

	Figure		
1	12.20	$h_{\min}/c = 0.4$	$h_{\min} = (0.4)(4 \times 10^{-5}) = 1.6 \times 10^{-5} m = 0.00063 in.$
2	12.23	$\mathbf{Q}=2\mathbf{p}q/(r_bcw_t\mathbf{w}_b)=4.4$	$q = \frac{4.4(.016)(4 \times 10^{-5})(.032)(120.4)}{2\mathbf{p}} = 1.73 \times 10^{-6} m^3 / s = 0.106 in^3 / s$
3	12.25	$P_{\rm max} = W_r / (2r_b w_t p_{\rm max}) = 0.42$	$p_{\text{max}} = \frac{1800}{(0.42)(2)(.016)(.032)} = 4.185 \ MPa = 607.4 \ psi$
4	12.24	$q_{s}/q = 0.66$	
5	12.22	$r_b \mathbf{m}/c = 4$	
6		$W_r^* = \frac{W_r}{2r_b w_t} = \frac{1800}{(.032)(.032)} = 1.76$	$\times 10^{6} N / m^{2} = 1.76 MPa$
7			$-\Delta t_m = \frac{(8.3)(1.76)(4)}{(4.4)(1-0.66/2)} = 19.8^{\circ}C \times \frac{9}{5} = 35.64^{\circ}F$

So the mean lubricant temperature would be $40^{\circ} + 19.8/2 = 49.9^{\circ}$ C. This would make the viscosity 0.04, which would make $B_j = 0.070$, so we really should run through the calculations again, possibly several times...

Boundary Lubricated Bearings

P is projected load pressure = $W_r / (2 r_b w_t)$ in MPa or ksi V is surface speed at contact radius = $2 \pi r_b \omega_b$ in m/sec or ft/min (NOT in/sec)

- PV is a measure of the bearing's ability to absorb energy without overheating.
- Design for about ½ of the rated PV value.

	Static P		Dynamic P		V		PV	
Material	MPa	(ksi)	MPa	(ksi)	m/s	(fpm)	MPa · m/s	(ksi · fpm)
Bronze	55	(8)	14	(2)	6.1	(1200)	1.8	(50)
Lead-bronze	24	(3.5)	5.5	(0.8)	7.6	(1500)	2.1	(60)
Copper-iron	138	(20)	28	(4)	1.1	(225)	1.2	(35)
Hardenable								
copper-iron	345	(50)	55	(8)	0.2	(35)	2.6	(75)
Iron	69	(10)	21	(3)	2.0	(400)	1.0	(30)
Bronze-iron	72	(10.5)	17	(2.5)	4.1	(800)	1.2	(35)
Lead-iron	28	(4)	- 7	(1)	4.1	(800)	1.8	(50)
Aluminum	28	(4)	14	(2)	6.1	(1200)	1.8	(50)

Operating Limits of Boundary-Lubricated Porous Metal Bearings [3]

Operating	Limits o	f Boundary	-Lubricated	Nonmetallic	Bearings	[3]
-----------	----------	------------	-------------	-------------	----------	-----

	Р		Temperature		V		PV	
Material	MPa	(ksi)	°C	(°F)	m/s	(fpm)	MPa·m/s	(ksi · fpm)
Phenolics	41	(6)	93	(200)	13	(2500)	0.53	(15)
Nylon	14	(2)	93	(200)	3.0	(600)	0.11	(3)
TFE	3.5	(0.5)	260	(500)	0.25	(50)	0.035	(1)
Filled TFE	17	(2.5)	260	(500)	5.1	(1000)	0.35	(10)
TFE fabric	414	(60)	260	(500)	0.76	(150)	0.88	(25)
Polycarbonate	7	(1)	104	(220)	5.1	(1000)	0.11	(3)
Acetal	14	(2)	93	(200)	3.0	(600)	0.11	(3)
Carbon (graphite)	4	(0.6)	400	(750)	13	(2500)	0.53	(15)
Rubber	0.35	(.05)	66	(150)	20	(4000)		
Wood	14	(2)	71	(160)	10	(2000)	0.42	(12)

Ref. 3: "Mechanical Drives," *Machine Design Reference Issue*, Penton/IPC, Cleveland, 18June1981.