
FRACTURE MECHANICS     ME312 
 

Hamrock Section 6.3 through 6.5 
 
Just as studying Column Buckling lets us avoid rapid failure of structures by 
unstable bending, Fracture Mechanics (FM) lets us avoid rapid failure of 
structures by unstable cracking. 
 
Examples of unstable cracking are a balloon contacted by a sharp object, and 
the Aloha Airlines 737 shown on page 265 of Hamrock.  The “wrong” 
combination of materials, loads, and initiating crack can result in rapid 
“unzipping” of a structure. 
 
In section 6.2, we saw that holes and notches in plates and bars caused stress 
concentrations above the average stress due to tension, torsion, or bending 
loading.  For a general, ellipse-shaped hole of width = 2a and height = 2b, in a 
very wide plate, the stress concentration factor is: 
 

 Eqn. 6.2 
    

  
This is more commonly called “Kt” for 
“theoretical.”  If the hole is circular, a = b and 
Kc = 3.  This agrees with Hamrock’s Fig. 6.2a 
for a wide plate with a central hole. 
 
For cracks, however, “b” is very, very small 
compared to “a”, and Kc calculated by this 
equation gets huge.  Right at the crack tip, the stress is high enough to actually 
cause a small volume of the material to yield and redistribute the stress in ductile 
materials, or cause local microfractures in brittle materials. 
 

If stresses are high enough at the tip of a crack of sufficient length, even a 
ductile material will “unzip” – have a sudden “brittle-like” fracture. 

 
Rather than deal with giant stress concentrations, Fracture Mechanics uses a 
stress intensity factor, K.  This represents the effective local stress at the crack 
tip.  The stress intensity factor is calculated for a given geometry and load, and 
compared with a threshold value of K above which cracks will propagate in the 
given material.  This threshold value of K is called the fracture toughness or 
critical stress intensity factor, KIC, and is a characteristic of the material 
measured by testing.   
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Hamrock gives some sample fracture toughness values in Table 6.1 on page 
239.  The materials with low fracture toughness that are susceptible to rapid 
crack growth failure are relatively brittle materials, such as: 

• Glass and ceramics 
• Hard steels 
• Strong aluminum alloys 
• Titanium alloys 
• Soft steels below the Ductile  Brittle Transition Temperature 

 
STRESS INTENSITY 
 
For the special case shown here of a long plate 
(h >> b), with a small crack of length 2a in a 
relatively wide (b >> a) plate, the stress 
intensity factor is:  
 

 
 
 

 The σAVG here is P/A, where A is the gross cross section area of the 
plate with no crack there. 

 This is different from the σAVG from Stress Concentrations (Kc), where 
P/A was calculated for the net area, with the area of the hole 
subtracted. 

 
For a plate of realistic dimensions, there are tables of stress intensity 
modification factors (KI/K0) given in Hamrock’s Appendix C (he calls them “Y”).  
Multiplying the appropriate KI/K0 times the K0 calculated above from crack half-
length and the average (gross) tensile stress, will give the actual stress intensity 
KI.  As long as KI is below the KIC for the material, the crack will not unzip. 
 
It is called KI (pronounced K “one”) because it is for Mode I crack propagation 
where the load tends to open the crack.  This is shown in Hamrock’s Figure 6.9a 
on page 237.  The other two modes are In-Plane Shear and Out-Of-Plane Shear, 
and are less used.  (Hamrock incorrectly converts the Roman numeral “I” to a 
little “i” in his sections, and uses Ki.) 
 
Also: Watch out for Hamrock’s equation C.2 and C.3.  If you can figure out what 
“a” is in them, please let me know.  Use the figures, but ignore the equations.
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Hamrock’s Table 6.1 gives inpsi  and mMPa   as units for stress intensity.  

The conversion is inksiinksi
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To summarize, the stress intensity analysis is as follows: 
 

1. Compute the average stress on the uncracked part.  It could be tensile or 
bending. 

2. Compute aK AVG πσ=0 , where “a” is usually half the length of the crack.  
Note: For edge cracks, “a” is the whole length of the crack.  (This equation 
derives from analysis of an infinite plate, but is used for all configurations.) 

3. Determine the stress intensity modification factor (KI/K0) for the actual 
geometry that you have. 

4. Multiply K0 by KI/K0 to get KI, the actual stress intensity for your geometry 
and loading. 

5. Compare KI to the fracture toughness or critical stress intensity factor, 
KIC, for the material that you have.  If KI doesn’t exceed KIC, the crack will 
not propagate. 

6. Compute the factor of safety 
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7. For completeness, check for yielding using the net area (the cross section 
minus the crack area). 

 
 
 
TO STUDY FURTHER: 
www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_intro.cfm 
Good web site on Engineering Fundamentals 



EXAMPLE 
 
 
You have a 7075-T651 Aluminum plate of 
Width b = 6” 
Length 2h = 6” 
Thickness  t = 0.06” 
With a central crack of length lc = 1”. 
 
What is the highest load that can be applied 
without causing a sudden fracture? 
 
• Gross area is (6” x 0.06”) = 0.36 in2. 
• Average tensile stress is F/A = F/0.36 = 

2.78F psi. 
• From Table 6.1, KIC = 26 inksi . 
• From Hamrock Appendix C, Figure C.1,  

o h/b = 3/6 = 0.5 
o lc/b = 1/6 = 0.167 
o KI/K0 = 1.15 

• 5.0)78.2(15.115.115.1 0 ⋅=== ππσ FaKK AVGI , or KI = 4.01F 
• And KI must not exceed the fracture toughness, so set  

    KI = 4.01F = 26 inksi , from which F = 6,584 lb. 
• As a check, compute P/A on the net area 

psilb 945.21
)16)(06.0(

6584
=

−
=σ   

This is less than the 73 ksi yield strength from Table 6.1. 
(Note that the column heading says Yield stress, Sy, when it really should say 
Yield strength.) 
 

If the problem had given us an applied load and had asked for the maximum 
allowable crack size, we would have used: 
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A BENDING EXAMPLE 
 
 
 
 
 
 
 
 
 
A 6” length of 1” x 0.25” 2024-T351 Aluminum bar has a 0.1” deep edge cut in it, 
and is loaded as shown above.  What is the maximum load, F, that can be 
applied to the bar without failure? 
 
First we compute the local bending stress on the uncracked part.  The area 
moment of inertia is bh3/12 = (0.25)(1.0)3/12 = 0.0208 in4.  The distance from the 
neutral axis to the outer fiber, c, is 0.5”.  The moment at the center of the bar is 
(0.5F)(3) = 1.5F in.lb.  The stress is Mc/I = (1.5F)(0.5)/(0.0208) = 36.06 F psi. 
 
From Table 6.1, KIC = 33 inksi  for 2024-T351. 
 
Going to Appendix C, we see that Figure C.4 represents the geometry and 
loading that we have.   

lc/b = 0.1/1.0 = 0.1  
a/b  = 3.0/1.0  = 3.0 

Reading between the lines, it looks like KI/K0 = 1.0 . 
 
We can write KI = KI/K0 x K0 = KI/K0 x aAVG πσ  and set this equal to the fracture 

toughness KIC = 33 inksi  to determine the maximum load.  Since KI/K0 = 1.0, 
this is just 
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Now to check yielding, we analyze the cracked bar.  The height of the cracked 
section is (1.0 – 0.1) = 0.9 in, and c is half that, or 0.45 in.  Our new moment of 
inertia is (0.25)(0.9)3/12 = 0.0152 in4.  The stress is  

Mc/I = (1.5)(1632)(0.45)/(0.0152) = 72.47 ksi. 
But this is greater than the 47 ksi Yield Strength, per Table 6.1, so the bar would 
actually yield in bending before the stress intensity got high enough to cause a 
crack propagation failure.  The maximum load would actually be 1058 lb before 
the bar would begin to yield.  Good thing we checked.   
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