When it's new, things will be flat and the pressure will be uniform.

\[F = p \times A = p \times \pi (r_o^2 - r_i^2) \quad \text{[Eqn. 18.4]} \]

Can also integrate \(dA = 2\pi r dr \):

\[
\int p dA = \int_{r_i}^{r_o} p 2\pi r dr = 2\pi p \left(\frac{1}{2} r^2 \right) \bigg|_{r_i}^{r_o} = \pi p (r_o^2 - r_i^2)
\]

This is useful because we need to integrate to get the Torque:

\[dT = p dA \mu r \], where \(\mu \) is the coefficient of friction

\[dT = 2\pi r^2 p \mu dr \]

\[
T = \int_{r_i}^{r_o} 2\pi p \mu r^2 dr = 2\pi p \mu \left(\frac{1}{3} r^3 \right) \bigg|_{r_i}^{r_o} = \frac{2}{3} \pi p \mu (r_o^3 - r_i^3)
\quad \text{[Eqn. 18.5]}

Since \[p = \frac{F}{\pi (r_o^2 - r_i^2)} \]

\[
T = \frac{2}{3} \mu F \frac{(r_o^3 - r_i^3)}{(r_o^2 - r_i^2)} \quad \text{[Eqn. 18.5]}
\]

If the clutch has multiple plates, multiply this Torque by the \(N \) friction interfaces.
Since wear is proportional to pressure times surface velocity, and surface velocity increases linearly with radius, r, wear is maximum at the outer radius. Wear reduces the pressure at the rim, and the geometry changes to a uniform wear condition.

If pv is constant and v increases linearly with r, then p must decrease with r:

$$p = p_{\text{max}} \frac{r_i}{r}$$

Now computing the normal force

$$F = \int_{r_i}^{r_o} 2\pi \ p \ r \ dr = \int_{r_i}^{r_o} 2\pi \ p_{\text{max}} \frac{r_i}{r} \ r \ dr = 2\pi p_{\text{max}} \ r_i (r_o - r_i)$$

[Eqn. 18.10]

Similarly,

$$T = \int_{r_i}^{r_o} 2\pi \ p \mu \ r^2 \ dr = \int_{r_i}^{r_o} 2\pi \ p_{\text{max}} \mu \frac{r_i}{r} \ r^2 \ dr = \pi \mu p_{\text{max}} \ r_i (r_o^2 - r_i^2)$$

[Eqn. 18.12]

Or, in terms of applied force, F

$$T = N\mu F \left(\frac{r_o + r_i}{2}\right)$$, where N is the number of friction faces.

[Eqn. 18.13]

Example of multiplate axial clutch with $N = 4$.
- Four gaps close up on actuation.
- Components slide axially so that each contact surface transmits the actuating force, F.
- N is usually even.
For a given applied force, F, there is an optimal ratio of r_o to r_i.

\[T = \pi \mu p_{\text{max}} r_i \left(r_o^2 - r_i^2 \right) \]

\[T = k \times r_i \left(r_o^2 - r_i^2 \right) \quad \text{where} \quad k = \pi \mu p_{\text{max}} \]

\[T = kr_i r_o^2 - kr_i^3 \]

\[\frac{d}{dr_i} T = kr_o^2 - 3kr_i^2 = 0 \quad \text{at max or min} \]

\[kr_o^2 = 3kr_i^2 \]

\[r_o^2 = 3r_i^2 \]

\[r_o = \sqrt{3} r_i \quad \text{or} \quad r_i = 0.577 r_o \]

Generally r_i is between .45 and .80 of r_o.

CONE CLUTCHES

Hamrock §18.3

Torque Equations

\[T_{\text{UnifPr}} = \frac{1}{\sin(\alpha)} \left(\frac{2}{3} \mu F \left(r_o^3 - r_i^3 \right) \right) \frac{1}{\left(r_o^2 - r_i^2 \right)} \]

\[T_{\text{UnifWear}} = \frac{\mu F}{\sin(\alpha)} \frac{r_o + r_i}{2} \]

- Simply take the torque equations for Axial clutches, and multiply them by $1/\sin(\alpha)$
- Since $8^\circ < \alpha < 15^\circ$ usually, the multiplier ~ 7.2 to 3.9.
- N usually is 1 -- cone clutches are not typically ganged.
DRUM BRAKE - SHORT SHOE

DRUM WIDTH = b
FRICITION COEF. = \(\mu \)

FOR A LINING PRESSURE OF \(P_a \),
THE NORMAL FORCE IS \(P = P_a r b \) RADIANS
THE TORQUE IS \(T = \mu P r \)

CASE 1: PIVOT AT ₁
ΣM ABOUT PIVOT:
\[
WD + \mu P A = PC
\]
\[
WD = PC - \mu P A = P (C - \mu A)
\]
\[
W = P \frac{(C - \mu A)}{D}
\]

THE FRICTION TORQUE \(\mu P A \) ADDS TO THE ACTUATION TORQUE.
IF \(\mu A > C \) THEN IS SELF-LOCKING
\[
T = \frac{\mu P WD}{(C - \mu A)} \quad \text{[EQ. 18.28]}
\]

CASE 2: PIVOT AT ₂
ΣM:
\[
WD = PC + \mu P B = P (C + \mu B)
\]
\[
W = P \frac{(C + \mu B)}{D}
\]
\[
T = \frac{\mu P WD}{(C + \mu B)} \quad \text{[EQ. 18.30]}
\]
Problem 18.27 Done As SHORT Shoe
\[\Sigma M_L \quad \text{cw} \quad \text{ccw} \]
\[(1000 \times 36) + \mu F_L(15) = (200)(4) + F_L(17) \]
\[F_L(15\mu - 17) = 800 - 36000 \]
\[F_L(-13,25) = -35,200 \]
\[F_L = 2656.6 \text{ lb.} \]

\[\Sigma M_R \quad \text{cw} \quad \text{ccw} \]
\[F_R(17) + \mu F_R(15) = (1000)(40) \]
\[F_R(17 + 3.75) = 40,000 \]
\[F_R = 1927.7 \text{ lb.} \]

PAD: \[L = \frac{1}{3}(\pi)(30) = 31.42'' \text{ contact} \]
\[P_L = \frac{F_L}{L \cdot b} = \frac{2656.6}{3192} = 100 \text{ psi} \]
\[b = \frac{2656.6}{3192} = 0.845 \text{ in.} \]
\[P_R = \frac{F_R}{L \cdot b} = \frac{1927.7}{(3192)(0.845)} = 72.6 \text{ psi} \]

TORQUE = \[\mu r (F_L + F_R) = (0.25)(15)(2656.6 + 1927.7) \]
\[T = 17,191 \text{ in. lb.} \]
Drum Brake - Long Shoe

Fig. 18.8

\[a = d_7 \]
\[C = d_6 \]
\[P_a = P_{\text{max}} \]

Eq. 18.35

\[M_f = \frac{M_p abr}{\sin \theta_a} \left[-r (\cos \theta_2 - \cos \theta_1) - \frac{a}{2} (\sin^2 \theta_2 - \sin^2 \theta_1) \right] \]

Moment on shoe from circumferential friction

Eq. 18.34

\[M_p = \frac{P_ab r a}{\sin \theta_a} \left[\frac{1}{2} (\theta_2 - \theta_1) \frac{\pi}{180} - \frac{1}{4} (\sin 2\theta_2 - \sin 2\theta_1) \right] \]

Moment from perpendicular forces

\[\Sigma M \text{ @ pivot} \]

\[F_C = M_p \pm M_f \]

Sign dependent on direction of rotation

Torque:

\[T = \frac{ \mu P_ab r^2}{\sin \theta_a} (\cos \theta_1 - \cos \theta_2) \] [18.38]
Figure 3.7 Free-body force diagrams for two shoes of an internal brake. Actuating force Q, anchor-pin reactions R, and distribution and relative magnitude of pressure and friction forces are shown.

Prob. 18.27
AS LONG SHOE

\[M_f = \frac{MP_a br}{\sin \Theta_a} \left[-r \left(\cos \Theta_2 - \cos \Theta_1 \right) - \frac{a}{2} \left(\sin^2 \Theta_2 - \sin^2 \Theta_1 \right) \right] \]
\[= (0.25)(100)b(15) \left[-15(-0.866 - 0.866) - 8.5(0.25 - 0.25) \right] \]
\[= 375 \times 25.98 \]
\[M_f = 9792.5 \text{ in. lb.} \]

\[M_p = \frac{P_a b r a}{\sin \Theta_a} \left[\left(\frac{120}{360} \right) \frac{\pi}{2} - \frac{1}{4} \left(\sin 2 \Theta_2 - \sin 2 \Theta_1 \right) \right] \]
\[= (100)b(15)(17) \left[1.0472 - (0.25)(-0.866 - 0.866) \right] \]
\[= 25,500 \times 1.0472 + 0.433 \]
\[M_p = 37745.1 \text{ in. lb.} \]

\[FC = M_p - M_f \]
\[35,200 = 37745.1b - 9792.5b \]
\[b = \frac{35,200}{28,000} = 1.26 \text{ in.} \]

\[T_{left} = \frac{MP_a b r^2}{\sin \Theta_a} \left(\cos \Theta_1 - \cos \Theta_2 \right) \]
\[= (0.25)(100)(31.26)(15)^2(0.866 - (-0.866)) \]
\[T_{left} = 12,276 \text{ lb. in.} \]
Solve for Pressure on Non-Self Actuating Shoe

\[M_F = \frac{(9742.5)(1.26)}{100} P_{\text{right}} \]

\[M_P = 122.76 \, P_{\text{right}} \]

\[M_P = \frac{(37795.1)(1.26)}{100} \, P_{\text{right}} \]

\[M_P = 475.59 \, P_{\text{right}} \]

\[F_C = M_P + M_F \]

\[(40)(1000) = 475.59 \, P_{\text{right}} + 122.76 \, P_{\text{right}} \]

\[P_{\text{right}} = \frac{40,000}{(475.59 + 122.76)} = \frac{40,000}{598.35} \]

\[P_{\text{right}} = 66.85 \text{ PSI} \]

\[T_{\text{right}} = \mu P_{\text{right}} b w^2 (\cos \Theta_1 - \cos \Theta_2) \]

\[= (0.125)(66.85)(1.26)(15)^2 (2)(0.866) \]

\[T_{\text{right}} = 8206 \text{ Lb. in.} \]

\[T_{\text{tot}} = T_{\text{left}} + T_{\text{right}} = 20,482 \text{ Lb. in.} \]
Automotive-type disk clutch. (Courtesy Borg-Warnar Corporation.)