Machine Design

Flexible Power Transmission: Belts

1

Belt Basics

To transmit power: need Torque. *Recall: Power = Torque x Rot'l Speed*

And since Torque = (F_{tight} - F_{slack}) x R [Σ Moment] need F_{tight} > F_{slack} ,

where F_{tight} and F_{slack} are the tensions in the two legs of the belt.

Belt Tension

Flat and V-Belts depend on friction, so they need a normal force due to an initial preload.

Before moving, $F_{tight} = F_{slack} = F_i$. As rotation begins and torque builds,

$$F_{tight} = F_{tight} + \Delta F = F_i + \Delta F$$
 and
 $F_{slack} = F_{slack} - \Delta F = F_i - \Delta F$, from which

$$F_{tight} + F_{slack} = 2 F_{i}$$

Belt Wrap Angles

If both pulleys are the same size, the "wrap" angles, ϕ , are both 180°.

If not, calculate $\alpha = \sin^{-1} \left(\frac{R - r}{C} \right)$

and the wrap angles are:

 $\phi = 180^{\circ} - 2\alpha$ for the small pulley, and

 $\phi = 180^{\circ} + 2\alpha$ for the big pulley.

Weightless Belts

The operating belt tension ratio is constrained by the friction, μ , and the wrap angle, ϕ :

 F_{slack}

Note: Since the wrap angle is less on the smaller pulley, it is the limiting component.

Real Belts

For a real belt that weighs W lb/in (or has a mass of m kg/m), there is a centrifugal force (mv²) of

$$F_{c} = \frac{Wv^{2}}{g} [lb] \text{ or } F_{c} = mv^{2} [N]$$
(g = 386 in/s²)

This force reduces the belt tension that the pulley feels, and the operating tension ratio becomes:

$$\frac{F_{tight} - F_c}{F_{slack} - F_c} = e^{\mu \phi}$$

μ

F_{slack}

V-Belts

The wedging action of a V-Belt with Vee angle = 2β will increase the belt-to-pulley friction to be effectively

$$\mu_{eff} = \frac{\mu}{\sin(\beta)}$$

This lets the operating tension ratio, and therefore the torque, be much greater.

For a typical Vee angle of $2\beta = 36^{\circ}$, $1/sin(18^{\circ}) = 3.2$, more than tripling friction.

Belt Calculations

Frequently, you will know the initial belt tension, F_i , and you will use these two equations:

1)
$$F_{tight} + F_{slack} = 2 F_i$$

2)
$$\frac{F_{tight} - F_c}{F_{slack} - F_c} = e^{\mu\phi}$$

to solve for whichever quantity is unknown.

Once you know F_{tight} and F_{slack} , you can compute the operating Torque T = ($F_{tight} - F_{slack}$) x R, and also the operating Power P_{max} = T x Rot'l Speed [Rad/sec] or $P_{max} = (F_{tight} - F_{slack})$ x Linear Belt Speed

Belt Power Limit

As a sanity check, recall $F_{belt} = F_i \pm \Delta F$. When torqued so that ΔF increases to F_i , then $F_{tight} = 2 F_i$ and $F_{slack} = 0$

Then the limit of power transmitted is

$$P_{HP} = \frac{2F_i[lb] \times V[ft/s]}{550} HorsePower$$

(This tension ratio = $2 F_i$ / 0 will be greater than the friction and wrap angle allow, so actual power must be something less than this result.)

Belt Length

Knowing the pulley radii and their center spacing, the belt length can be calculated:

Belts: 10

Belts

- Belts may be "rated" by:
 - A max. tension, F_{tight}
 A max. stress (which, times cross section area, gives max tension)
 A max power (esp. V-Belts; is function of speed and pulley diameter)
- Timing belts and roller-chain carry all the torque in the tight side of the loop.