Fatigue / Cyclic Loading of Helical Springs

- Helical springs are NEVER used as both compression and extension springs (Hamrock, top of P. 796).
- Therefore, loading is never fully reversing, so we will be using the modified Goodman diagram instead of an S-N plot.
- BUT, if a finite life is specified, use the S-N diagram to compute the allowable shear stress for N cycles of life, to use in the Goodman diagram (S_{se}):
 - Use $S_L = 0.72 S_{SU}$ because this is Torsional loading [Eq. 7.8]
 - S_{SU} is the shear ultimate strength:
 - $S_{SU} = 0.60 S_{UT}$
 - Use S'_{SE} = 45 KSI for unpeened springs, and S'_{SE} = 67.5 KSI for peened springs for materials in Table 17.2 with wire diameter d < 3/8" (10mm).

[Eq. 17.30]

Note that these S'_{SE} are corrected for ALL modification factors EXCEPT reliability, k_r.

- > Apply the Wahl curvature correction factor to BOTH τ_{mean} and τ_{alt} .
- Procedure:
 - A. Get the steady (mean) and alternating loads, P_m and P_a.
 - B. Compute the mean and alternating shears, using K_{Wahl}:

$$\boldsymbol{t}_{m,a} = \frac{8DK_W P_{m,a}}{\boldsymbol{p} d^3}$$

C. FOS against yielding:

$$n_s = \frac{S_{Sy}}{\boldsymbol{t}_a + \boldsymbol{t}_m} = \frac{0.4S_{UT}}{\boldsymbol{t}_{\max}}$$

D. FOS against fatigue (Infinite life):

$$n_s = \frac{S_{SE}}{t_a}$$

E. FOS against fatigue (Finite life):

$$n_s = \frac{S_{SF}}{t_a}$$