Thick-Walled Cylinders and Press Fits

1

Stresses in Thick-Walled Cylinders

- Thick-Walled cylinders have an average radius less than 20 times the wall thickness.
- They are pressurized internally and/or externally.
- The principal stresses are circumferential (hoop) σ_c , radial σ_r , and longitudinal (axial) σ_l .

Circumferential & Radial Stresses

For the general case of <u>both</u> internal and external pressure, the circumferential and radial stresses at radius R in the wall are:

$$\boldsymbol{S} = \frac{r_i^2 p_i - r_o^2 p_o \pm (p_i - p_o) r_i^2 r_o^2 / R^2}{r_o^2 - r_i^2}$$

$$\overset{\text{Eqns}}{[10.20/10.22]}$$
Where the ± is: + for circumferential, and
- for radial stress.

For the special case of only internal pressure, $p_o = 0$, and the stresses at radius R are:

$$\mathbf{s} = \frac{r_i^2 p_i}{r_o^2 - r_i^2} \left(1 \pm \frac{r_o^2}{R^2} \right)$$

Eqns	
10.23/10.24	

The sign convention is the same.

Longitudinal Stresses

The longitudinal stress is simply given by a Force/Area, where the Force is p_i times the circular inside area πr_i^2 , and the Area is the annular area of the cylinder cross section, $\pi (r_o^2 - r_i^2)$, or:

Stresses vs. Radius

First, the easy observation: Radial stresses at the inner and outer surfaces are equal to minus the pressurization.

- If a surface is <u>unpressurized</u>, the radial stress there is zero.
- If a surface is pressurized, the radial stress there = p, because it is in compression.

Now let's look at an internally pressurized cylinder, and how the radial and circumferential stresses vary across the wall thickness at radius R.

(+ is circumferential, - is radial)

Stresses vs. Radius - Internal Pressure

Radial stress is as predicted:

- -5330 psi at the inner, pressurized surface.
- 0 at the unpressurized outer surface.

Hoop stress is:

- Maximum at the inner surface, 13.9 ksi.
- Lower, but not zero, at the unpressurized outer surface, 8.5 ksi.
- Larger in magnitude than the radial stress

Longitudinal stress is (trust me):

• 4.3 ksi, considered as a uniform, average stress across the thickness of the wall.

Now let's look at an externally pressurized cylinder.

Stresses vs. Radius - External Pressure

Radial stress is as predicted:

- 0 at the unpressurized inner surface.
- -5330 psi at the outer, pressurized surface.

Hoop stress is:

- Minimum at the outer surface, -8.9 ksi.
- Maximum at the (unpressurized) inner surface, -14.2 ksi.
- Larger than the radial stress

Longitudinal stress is:

• Not usually considered for external pressurization.

Press Fits

In a press fit, the shaft is compressed and the hub is expanded.

Press Fits

Press fits, or interference fits, are similar to pressurized cylinders in that the placement of an oversized shaft in an undersized hub results in a radial pressure at the interface.

Characteristics of Press Fits

- 1) The shaft is compressed and the hub is expanded.
- 2) There are equal and opposite pressures at the mating surfaces.
- 3) The relative amount of compression and expansion depends on the stiffness (elasticity and geometry) of the two pieces.

- 4) The sum of the compression and the expansion equals the interference introduced.
- 5) The critical stress location is usually the inner diameter of the hub, where max tensile hoop stress occurs.

Analysis of Press Fits

Start by finding the interface pressure.

$$p = \frac{Ed_{r}}{R} \left[\frac{\left(r_{o}^{2} - R^{2}\right) \left(R^{2} - r_{i}^{2}\right)}{2R^{2} \left(r_{o}^{2} - r_{i}^{2}\right)} \right]$$

Where **d**, is the RADIAL – interference for hub and shaft of the same material, with modulus of elasticity, E.

If the shaft is solid, $r_i = 0$ and

$$p = \frac{E\boldsymbol{d}_r}{2R} \left[1 - \frac{R^2}{r_o^2} \right]$$

B) The OD of the shaft is compressive:

Strain Analysis of Press Fits

The press fit has no axial pressure, so $\sigma_{\parallel} = 0$, and \mathbf{r}_{o} it is a biaxial stress condition. The circumferential strain $\mathbf{e}_{c} = \frac{\mathbf{S}_{c}}{E} - \frac{\mathbf{n} \mathbf{S}_{r}}{E}$ which equals the radial strain (because $C = 2\pi r$). Because the radial change $\delta = R \varepsilon_{r}$, we get the increase in Inner Radius of the outer member (hub):

And the decrease in Outer Radius of the inner member (shaft):

$$\boldsymbol{d}_{i} = -\frac{pR}{E_{i}} \left(\frac{R^{2} + r_{i}^{2}}{R^{2} - r_{i}^{2}} - \boldsymbol{n}_{i} \right)$$

Eqn 10.50

F

Notes on Press Fits

As a check, make sure that $|\boldsymbol{d}_i| + |\boldsymbol{d}_o| = \boldsymbol{d}_r$

The assembly force required will be $F_{max} = \pi dLp\mu$ where p = the interface pressure μ = the coefficient of friction

The torque capacity available is $T = FR = R\pi dLp\mu$ where R = the interference radius, as before.

We conveniently know the interface pressure for these equations!

Shrink Fits

If heating or cooling a part to achieve a shrink fit, the required radial interference is:

 $\Delta R = \mathbf{d}_{\mathbf{r}} = R\alpha\Delta T$

where R is the interface radius α is the coefficient of thermal expansion ΔT is the temperature change

To select an amount of interference see ANSI/ASME tables for class FN1 (light) to FN5 (Heavy-drive) fits.

They give interference in 0.001" on <u>diameter</u> for a range of diameters

Ex: FN4 for 0.95 to 1.19" diameter, interference = 1 to 2.3 mils on diameter.