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Compression Springs
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A Free Body Diagram of a coil 

spring (cutting through 

anywhere on the coil) shows 

that there must be torsion on 

the coil to balance the load.

Coil springs have these features:

Wire diameter, d or dwire

Coil Mean diameter, D or Dmean

Coil Inner Diameter,  ID = D – d

Coil Outer Diameter, OD = D + d

Spring Index, 

d

D
C =

You can think of the 

OD as the Mean 

Diameter plus twice 

the wire radius, so

OD = D + 2r = D + d
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Spring Index

Hamrock 

Eqn. 17.7

It is seldom practical to make a 

spring with an Index, C, less 

than 3 or greater than 12.

A small Index means a large 

curvature, and a large index means 

a small curvature.

C = 3

C = 12

Springs with C in the range of 5 to 10 are 

preferred.  

Springs with small C are hard to 

manufacture and have large stress 

concentrations due to the tight curvature.

Stress In Springs

Hamrock 

Page 495
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Stress In Springs

Hamrock 

Page 495

The term in parentheses is a constant, so this can be 

rewritten:
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Torsion Direct

If the Spring Index, C, ranges from 3 to 12, then the Direct 

Shear is from 1/6th to 1/24th of the Torsional Shear.

3max,

8

d

PDKd
tot

π
τ = [Eqn. 17.8]

Use this for 

STATIC

loading.

Where Kd, the Transverse Shear Factor, is

Spring Stress Exercise

A spring made from 0.1 in. music wire has an outside 

diameter of 1 inch.  If it has a load of 25 Lbs applied to it, 

what is the maximum shear stress?
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Curvature Effects

Hamrock 
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Curvature Direct

For cyclic (dynamic) loading, we include this 

curvature effect, and write:

where

3max,

8

d

PKD w
tot

π
τ = [Eqn. 17.10]

Use this for 

CYCLIC

loading.

Adding the effect of curvature drives up the stress at the Inner 

Radius.

Remember curved 

beams & their 

stress distribution?

Shear Factors
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Another Cyclic correction factor 

is the Bergsträsser factor, Kb

It is simpler and very close to Kw

Clearly, the lower the Index, the higher the curvature, 

and the higher the max shear.
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Spring Materials

m

p

ut
d

A
S =

There are a very limited number of materials commonly used for 

making springs, listed in Table 17.1.

The allowable shear yield of these materials Ssy = 0.40 Sut, 

and the Sut varies with wire size!

The variation is:

where Ap and m come from Table 17.2.

Caution: Use Ap in ksi with d in inches, and Ap in MPa with d in mm.

A plot of Sut versus wire diameter for the material in Table 17.2 is 

shown on the next two slides, first in Metric and then in English units.

Hamrock 

Page 493

[Eqn. 17.3]

How much factor of safety did our spring have?

[Eqn. 17.2]
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From Hamrock, Table 17.2 & Eqn. 17.2

9

10



6

Min. Ultimate Tensile Strengths of Common Spring Wires
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From Hamrock, Table 17.2 & Eqn. 17.2

Spring Deflection

Castigliano’s theorem gives spring deflection as
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CGd

NPC aδ [Eqn. 17.17]

Because C is usually between 3 and 12, the second term would be 

between 0.056 and 0.0035, and the equation is often shortened to

Gd

NPC a

3
8

=δ [Eqn. 17.15]

thereby ignoring between 0.35% and 5.6% of the deflection.

I suggest that you generally use Eqn. 17.17, dropping the 

second term only if C is large.

In both equations, P is the applied load on the spring, G is the 

material Shear Modulus                , and Na is the number of 

active coils. )1(2 ν+
=

E
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Active Coils
The number of active coils depends on how the ends of the 

coils are finished.

[~Table 17.3]

Ends Nend Nactive Lsolid Pitch*

Plain 0 Ntot d(Ntot + 1) (Lfree – d)/Na

Plain & Ground 1 Ntot - 1 d x Ntot Lfree/(Na+1)

Squared 2 Ntot - 2 d(Ntot + 1) (Lfree – 3d)/Na

Squared & Ground 2 Ntot - 2 d x Ntot (Lfree – 2d)/Na

* Pitch is ONLY measured when spring is UNLOADED!  (L = Lfree)

Plain
Plain & 
Ground

Squared & 
Ground

Squared

Spring Stiffness

The stiffness, k, is the force per deflection.  

)5.01(8
23

CNC

Gd
k

a +
= [Eqn. 17.18]

If C is large, this can be reduced to

aa ND

Gd

NC

Gd
k

3

4

3
88

==

Note: k, δ, and τ are functions of d, D, Na, G, and P, but NOT 

of pitch and therefore not Lfree.

k is also known as the Spring Rate or Spring Constant.
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Spring Example

My Garage Door spring (yes, it’s an extension 

spring, but it is close enough).

dwire =  0.155 in.

OD = 1.400 in.

Ntot = 160 turns

lblkForce

inlb
NC

Gd
k

a

3.97)3.265.62)(687.2(

/687.2
)160()032.8(8

)155.0)(105.11(

8
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Lfree = 26.3 in.

Lextended = 62.5 in.

G = 11.5 x 106 psi
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Spring Force and Deflection

At Free 
Length

At Solid 
Length

P = k x ΔL

P = k x ΔL

A change in spring length is 

always accompanied by a 

change in spring force = k x ΔL, 

up until the spring bottoms out.

P = 0



Two things to (almost) always count on.
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Spring Free Length

Free Length = Solid Length + Margin + Max Compressed Length

Margin keeps you safe from bottoming out.

x = Fmax / Stiffness, k

Free Length 

(No Load)
Max. 

Compressed 

Length
Solid 

Length

x

MarginPitch

Spring Buckling

Like all long, skinny things with a load on them, springs can buckle.
Buckling is related to the Free Length of the spring, and to the End Conditions.

To make it stable, 

you can “guide” it 

on the inside or 

outside.
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Spring Vibration
Springs can vibrate longitudinally (or surge) just like 

a Slinky:

The frequency is

Hz
G

D

d

N
f

a

n
ρπ 32

2
2

=

Here G is the Shear Modulus, and ρ is the mass density (or 

weight density divided by g).

To avoid resonances, avoid cyclic loading a spring near integral 

multiples of fn.

For steel springs where G and ρ are 

constants, this can be simplified to:
)(

000,353

)(
900,13

2

2

mminDanddHz
ND

d
f

inchesinDanddHz
ND

d
f

n

n

=

=

[Eqn. 17.20]

For the garage door spring, fn=8.7Hz.

For Information Only

Fatigue / Cyclic Loading of Helical Springs

• Helical springs are NEVER used as both compression and extension 

springs (Hamrock, top of Section 17.3.7).

• Therefore, loading is never fully reversing, so we will use the 

modified Goodman diagram instead of an S-N plot.

1. Get the steady (mean) and alternating loads, Pmean and Palt.

2. Compute the mean and alternating shears, 

using KWahl for BOTH:

3. FOS against yielding:

4. FOS against fatigue (Infinite life):
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Design for Finite Life

If a finite life is specified, use the S-N diagram to compute the allowable 

shear stress for N cycles of life, to use in the Goodman diagram (Sse):

• Use SL = 0.72 SSU because this is Torsional loading    [Eq. 7.7]  

• SSU is the shear ultimate strength:

SSU = 0.60 SUT [Eq. 17.29]

• Use S’SE = 45 KSI  for unpeened springs, and [Eq. 17.28]

S’SE = 67.5 KSI  for peened springs             

for materials in Table 17.2 with wire diameter d < 3/8” (10mm).

• Note that these S’SE are corrected for ALL modification factors EXCEPT 

reliability, kr.

See Figures on next slide.

SSU = 0.6 SUT

NLife

SSF

S-N Diagram

SL = 0.72 SSU

SSE = kr x (45 or 67.5 ksi)

Design for Finite Life

FOS against fatigue (Finite life): 
alt

SF
s

S
n

τ
=

See Example 17.4, page 500.

SSU = 0.6 SUT

SSE = kr x (45 or 67.5 ksi)

NLife

SSF

SSy = 0.4 SUT

SSy
SSU = 

0.6 SUT

S-N Diagram Modified Goodman 
Diagram

Zero to Max 

Loading

τmean

τalt

Operating Area

SL = 0.72 SSU

SSF
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Helical Extension Springs

A. All coils are active.  One coil is typically added to the number of active 

coils to obtain the body length.

B. The Free Length is measured between the insides of the end loops.

C. They are often close-wound with some initial preload.

once P > preload.

D. Spring rate and shear stress are the same as for compression springs.

E. Critical stresses can be in the end hooks.

> See Eqns. 17.36 and 17.37

δ

P
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∆
=ΔP

δPreload

P

x

Helical Torsion Springs

Similar to unwinding a 

garden hose from a reel, 

these springs work in 

bending. 

)1(4

14

32

2

3max

−

−−
=

==

CC

CC
K

d

M
K

I

McK

i

i
i

π
σ

where

0.8

0.9

1.0

1.1

1.2

1.3

1.4

3 4 5 6 7 8 9 10 11 12

Spring Index, C

K
i

Compare the max stress 

to Bending yield

and Bending endurance 

syS3=

seS3=

M = Moment

C = Index
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Helical Torsion Spring Deflection

Torsional spring stiffness 

has different units from 

compression or extension 

springs: 

Radian

Torque

DN

Ed
k

v

Torque

DN

Ed
k

a

a

64

Re186.10

4

4

=

=

θ

θ

Note: The ID changes as the spring is loaded:

Active Turns:
D

ll
NN bodya

π3

)( 21 +
+=

1l

2l

bodyN

ID
N

N
ID

loadeda

a
loaded =

D = Dmean

Exercise: Hand Grip
dwire = 0.20 in.

ID = 0.90 in.

L1 = L2 = 3 in.

Nb = 2.4 turns of steel wire

What is Kθ?

How much force does it take to squeeze 

the handles 1.5” together (measured at a 

3 in. radius from the coil center)?

3 in.
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What’s the deal with Leaf Springs?

Material has same 

stress everywhere!

Repackaged 

equivalentMoment

Moment 

of Inertia

I

Mc
=σ

Triangular 

Plate 

loaded at tip

Side View

Rubbing between plates 

damps out motion.
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