# MEEG3311 Machine Design 

## Lecture 9: Power Screws <br> (Chapter 16)

W Dornfeld 16Nov2023

1



Acme
Thread $29^{\circ}$ Thread Angle
 Acme threads are used in C-Clamps, vices, and cartoons.

3


## Details of $60^{\circ}$ Thread Profile



Relationships for M (metric) and UN (unified = US) screw threads.
Example:
UN: $1 / 4-20$, means $0.25 i n$. Major diameter \& 20 threads/inch.
M: M8x1.25, means 8 mm Major diameter \& pitch of 1.25 mm
Pitch Diameter $=$ Crest Diameter $-3 / 4$ *Thread Height It's where the thread thickness = the space between threads.

## Power Screws



Looking at a square thread screw, we unwind one turn:


This shows an inclined ramp with angle $\alpha=\tan ^{-1} \frac{\text { Lead }}{2 \pi r_{m}}$

The Mean Radius is midway between the Crest and Root Radii.

## Square Thread Screw Torque

The torque required to raise the load W is

$$
T_{\text {raise }}=W\left[r_{m} \frac{\mu+\tan \alpha}{1-\mu \tan \alpha}+\mu_{c} r_{c}\right]
$$

and to lower the load, we

flip two signs:

$$
T_{\text {lower }}=W\left[r_{m} \frac{\mu-\tan \alpha}{1+\mu \tan \alpha}+\mu_{c} r_{c}\right]
$$

## Power Screw Thread Angle

If the thread form is not square but has an angle $\beta$, replace the thread friction $\mu$ with the effective friction


$$
\mu_{e f f}=\frac{\mu}{\cos (\beta / 2)}
$$

The effect:

- Square: $\beta=0, \beta / 2=0,1 / \cos \left(0^{\circ}\right)=1.0$
- Acme: $\beta=29^{\circ}, \beta / 2=14.5^{\circ}, 1 / \cos \left(14.5^{\circ}\right)=1.033$
- Unified: $\beta=60^{\circ}, \beta / 2=30^{\circ}, 1 / \cos \left(30^{\circ}\right)=1.15$

The thread angle effectively increases surface friction between 3 and 15\%
Note: Instead of $\beta / 2$, Hamrock uses $\theta_{n}=\tan ^{-1}(\cos \alpha \tan \beta / 2)$
The difference is negligible.

## Power Screws - Overhauling

If the collar friction is small (e.g., it may have a ball thrust bearing), too small a thread friction may let the weight screw down on its own.
This can happen when $\mu<\tan \alpha=\frac{\text { Lead }}{2 \pi r_{m}}$
(the numerator $\mu_{\text {eff }}-\tan \alpha$ goes negative).
$T_{\text {lower }}=W\left[r_{m} \frac{\mu_{e f f}-\tan \alpha}{1+\mu_{e f f} \tan \alpha}+{\underset{\mu}{c}}_{\mu_{c} r_{c}}\right]$


This is the same case for a weight sliding down a ramp when the incline angle $\alpha$ exceeds $\tan ^{-1} \mu$.

## Various Standard Screws



These could be English or Metric.

All have $60^{\circ}$ thread angles.

Other types include Torx drive, Button head, Pan head and more.

## Ball Screws Have Low Friction <br> 

Recirculating balls roll between ball screw and ball nut to minimize friction.


These almost always overhaul.

> For Information Only

11


## C-Clamp Analysis

Thread ID $=0.391 \mathrm{in}$.
Thread OD $=0.480 \mathrm{in}$.
Handle length $=3 \mathrm{in}$.
$\mathrm{N}=8$ Threads/Inch
Thread angle $\beta=60^{\circ}$
Guess $\mu=0.15$
$\mu_{\mathrm{c}}=0$ to simplify things
$\mathrm{W}=500 \mathrm{Lb}$.
What torque is required to cause the 500 Lb. squeeze?

Note: If Acme, could use Eqn. 16.5

$d_{p}=d_{c}-0.5 p-0.01=0.48-(0.5)(0.125)-0.01=0.4075 \mathrm{in}$.
But with a $60^{\circ}$ thread angle, this is NOT an Acme.
Estimate $d_{p}=(I D+O D) / 2=(0.390+0.480) / 2=0.436 \mathrm{in}$.

## Using Dornfeld Lecture Equations

$d_{p}=0.436 \mathrm{in}$.
$\mathrm{N}=8$ Threads/Inch
Lead $=1 / \mathrm{N}=0.125 \mathrm{in}$.
Thread angle $\mathrm{b}=60^{\circ}$
$\alpha=\tan ^{-1} \frac{\text { Lead }}{2 \pi r_{m}}=\tan ^{-1} \frac{0.125}{2 \pi(0.436 / 2)}=\tan ^{-1}(0.09126)=5.21^{\circ}$
Because this is not a square thread, must use effective coefficient of
friction $=\mu / \cos (\beta / 2)=0.15 / \cos \left(30^{\circ}\right)=0.15 / 0.866=0.1732$

$$
\begin{aligned}
T_{\text {raise }} & =W\left[r_{m} \frac{\mu_{e f f}+\tan \alpha}{1-\mu_{e f f} \tan \alpha}+{\stackrel{\mu}{\mu_{c}}} r_{c}\right]=500\left[\frac{0.436}{2} \frac{0.1732+0.09126}{1-(0.1732)(0.09126)}\right] \\
& =(500)(0.218) \frac{0.26446}{0.9842}=29.29 \mathrm{Lb} . \text { In. }
\end{aligned}
$$

## Using Hamrock Equations

$$
\begin{aligned}
& \quad \text { Using Hamrock Equations } \\
& \begin{array}{l}
\mathrm{d}_{\mathrm{p}}=0.436 \text { in. } \\
\mathrm{N}=8 \text { Threads/Inch } \quad \mu=0.15 \\
\text { Lead }=1 / \mathrm{N}=0.125 \mathrm{in} . \quad \mathrm{W}=500 \mathrm{Lb} . \\
\alpha=\tan ^{-1} \frac{\text { Lead }}{2 \pi r_{m}}=5.21^{\circ} ; \tan (\alpha)=0.09126 \\
\theta_{n}=\tan ^{-1}\left(\cos \alpha \tan \frac{\beta}{2}\right)=\tan ^{-1}\left(\cos 5.21^{\circ} \tan 30^{\circ}\right)=\tan ^{-1}(0.9959 \times 0.57735) \\
\theta_{n}=\tan ^{-1}(0.57496)=29.897^{\circ} \quad \text { How close is this to } \beta / 2=30^{\circ} ? \\
T_{\text {raise }}=W\left[\frac{\left(d_{p} / 2\right)\left(\cos \theta_{n} \tan \alpha+\mu\right)}{\cos \theta_{n}-\mu \tan \alpha}+\mu_{c} r_{c}\right]=500\left[\frac{(0.436 / 2)\left(\cos 29.9^{\circ} \tan 5.21^{\circ}+0.15\right)}{\cos 29.9^{\circ}-0.15 \tan 5.1^{\circ}}\right] \\
=(500)(0.218) \frac{(0.866)(0.09126)+0.15}{0.866-(0.15)(0.09126)}=(109) \frac{0.22903}{0.85231}=29.29 \text { Lb.In. }
\end{array}
\end{aligned}
$$

[Eqn. 16.13]
The equations are equivalent. Pick whichever one suits you best.

## Scissors Jack Analysis

| Thread ID $=0.398 \mathrm{in}$. | Lead $=0.10 \mathrm{in}$. |
| :--- | :--- |
| Thread $O D=0.468 \mathrm{in}$. | Thread angle $\beta=29^{\circ}$ |
| Estimate $\mathrm{d}_{\mathrm{p}}=(0.398+0.468) / 2$ | Guess $\mu=0.20$ |
| $\quad=0.433 \mathrm{in}$. | $\mu_{\mathrm{c}}=0$ due to bearing |
| Handle Radius $=135 / 25.4=5.31 \mathrm{in}$. | W $=1522 \mathrm{Lb}$. |

What torque is required to raise the jack? What force is required on the handle?


## Overhauling Revisited

- Power screws can lower all by themselves if the friction becomes less than the tangent of the lead angle, $\alpha$.
- This corresponds to the numerator in the $T_{\text {lower }}$ equation going negative, with the transition being where the numerator is Zero.
- You can use either Dornfeld or Hamrock equation, but remember that the Dornfeld equation is Effective friction, and you must multiply by $\cos (\beta / 2)$ to get the actual friction.

Hamrock:
Transition when:

$$
T_{\text {lower }}=W\left[\frac{\left(d_{p} / 2\right)\left(\mu-\cos \theta_{n} \tan \alpha\right)}{\cos \theta_{n}+\mu \tan \alpha}+\mu_{c} r_{c}\right]
$$

$$
\mu=\cos \theta_{n} \tan \alpha
$$

Dornfeld:

$$
T_{\text {lower }}=W\left[r_{m} \frac{\mu_{e f f}-\tan \alpha}{1+\mu_{e f f} \tan \alpha}+\mu_{c} r_{c}\right] \quad \begin{gathered}
\mu_{e f f}=\tan \alpha \\
\mu=\mu_{e f f} \cos (\beta / 2)=\cos (\beta / 2) \tan \alpha
\end{gathered}
$$

The equations are equivalent. Pick whichever one suits you best.

## Failure Modes: Tensile Overload



When the tensile stress on a bolt exceeds the material's Proof Strength, the bolt will permanently stretch.

$$
\sigma=\frac{P}{A_{t}} \quad \begin{aligned}
& \text { Where } A_{t} \text { is the Tensile Stress Area for } \\
& \text { the bolt }- \text { the equivalent area of a }
\end{aligned}
$$ section cut through the bolt.

For UN threads,

$$
A_{t}=(0.7854)\left(d_{c}-\frac{0.9743}{n}\right)^{2} \quad \begin{array}{ll}
\left.\mathrm{d}_{\mathrm{c}}=\text { Crest Dia (in. }\right) \\
\mathrm{n}=\text { threads/in. }
\end{array}
$$

For M threads,

$$
A_{t}=(0.7854)\left(d_{c}-0.9382 p\right)^{2}
$$

$\mathrm{d}_{\mathrm{c}}=$ Crest Dia (mm) $\mathrm{p}=$ pitch (mm)

## Tensile Stress Area

Table 16.8 Dimensions and Tensile Stress Areas for UN Coarse and Fine Threads

|  |  | Coarse threads (UNC) |  |  | Fine threads (UNF) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crest diameter, $d_{c}$, in. | Number of threads per, inch, $n$ | $\begin{gathered} \text { Root } \\ \text { diameter, } \\ d_{r}, \text { in. } \end{gathered}$ | $\left[\begin{array}{c} \text { Tensile stress } \\ \text { area, } A_{t}, \\ \text { in. }{ }^{2} \end{array}\right.$ | Number of threads per, inch, $n$ | $\begin{gathered} \text { Root } \\ \text { diameter, } \\ d_{r}, \text { in. } \end{gathered}$ | $\left[\begin{array}{c} \text { Tensile stress } \\ \text { area, } A_{t}, \\ \text { in. }{ }^{2} \end{array}\right]$ |
| \#1 | 0.0600 |  |  |  | 80 | 0.04647 | 0.00180 |
| \#1 | 0.0730 | 64 | 0.05609 | 0.00263 | 72 | 0.05796 | 0.00278 |
|  | -0.0860 | 56 | 0.06667 | 0.00370 | 64 | 0.06909 | 0.00394 |
| \#3 | 0.0990 | 48 | 0.07645 | 0.00487 | 56 | 0.07967 | 0.00523 |
| \#4 | - 0.1120 | 40 | 0.08494 | 0.00604 | 48 | 0.08945 | 0.00661 |
| \#5 | 0.1250 | 40 | 0.09794 | 0.00796 | 44 | 0.1004 | 0.00830 |
| \#6 | 0.1380 | 32 | 0.1042 | 0.00909 | 40 | 0.1109 | 0.01015 |
| \#8 | 0.1640 | 32 | 0.1302 | 0.0140 | 36 | 0.1339 | 0.01474 |
| \#10 | -0.1900 | 24 | 0.1449 | 0.0175 | 32 | 0.1562 | 0.0200 |
| \#12 | -0.2160 | 24 | 0.1709 | 0.0242 | 28 | 0.1773 | 0.0258 |
| \#12 | - 0.2500 | 20 | 0.1959 | 0.0318 | 28 | 0.2113 | 0.0364 |
|  | 0.3125 | 18 | 0.2523 | 0.0524 | 24 | 0.2674 | 0.0580 |
|  | 0.3750 | 16 | 0.3073 | 0.0775 | 24 | 0.3299 | 0.0878 |
|  | 0.4750 | 14 | 0.3962 | 0.1063 | 20 | 0.4194 | 0.1187 |
|  | 0.5000 | 13 | 0.4167 | 0.1419 | 20 | 0.4459 | 0.1599 |
|  | 0.5625 | 12 | 0.4723 | 0.182 | 18 | 0.5023 | 0.203 |
|  | 0.6250 | 11 | 0.5266 | 0.226 | 18 | 0.5648 | 0.256 |
|  | 0.7500 | 10 | 0.6417 | 0.334 | 16 | 0.6823 | 0.373 |
|  | 0.8750 | 9 | 0.7547 | 0.462 | 14 | 0.7977 | 0.509 |
|  | 1.000 | 8 | 0.8647 | 0.606 | 12 | 0.9098 | 0.663 |
|  | 1.125 | 7 | 0.9703 | 0.763 | 12 | 1.035 | 0.856 |
|  | 1.250 | 7 | 1.095 | 0.969 | 12 | 1.160 | 1.073 |
|  | 1.375 | 6 | 1.195 | 1.155 | 12 | 1.285 | 1.315 |
|  | 0.500 | 6 | 1.320 | 1.405 | 12 | 1.140 | 1.581 |
|  | 1.750 | 5 | 1.533 | 1.90 |  |  |  |
|  | 2.000 | 4.5 | 1.759 | 2.5 | - | - | - |

19

Failure Modes: Thread Shear


## Failure Modes: Shank Shear


$A_{\text {shear }}=\frac{\pi d_{\text {shank }}^{2}}{4}$

$A_{\text {shear }}=2 \times \frac{\pi d_{\text {shank }}^{2}}{4}=\frac{\pi d_{\text {shank }}^{2}}{2}$

Bolts are not really intended to be used this way unless they are Shoulder Bolts:


Typically, the preload from tightening the bolt clamps the joint, and the friction between the members holds the joint.

## Bolt Preload

JH Bickford explains :

## 'When we tighten a bolt,

(a) we apply torque to the nut,
(b) the nut turns,
(c) the bolt stretches,
(d) creating preload.'

The bolt is really a spring that stretches and creates preload on the joint.


We use the Power Screw equations to determine how torque results in preload. This can be approximated simply by:

$$
T=K D_{\text {crest }} P
$$

Where T is torque, $\mathrm{D}_{\text {crest }}$ is the bolt crest diameter, P is the preload, and K is a dimensionless constant. $\mathrm{K}=0.20$ for clean, dry threads and $\mathrm{K}=0.15$ for lubricated threads.
Bolt Stiffness

A bolt looks like two springs in series: one rod with the Crest diameter and one with the Root diameter.
Their lengths are increased to reflect the head and nut.
For Information Only

$$
\frac{1}{k_{b}}=\frac{4}{\pi E}\left(\frac{L_{s}+0.4 d_{c}}{d_{c}^{2}}+\frac{L_{t}+0.4 d_{r}}{d_{r}^{2}}\right)
$$



## Joint Stiffness

The material clamped by the bolt also acts like a spring - in compression.
Effectively, only the material in the red double conical area matters.

There are many methods to calculate this stiffness.

Compare these calculator stiffness results from tribology-abc.com with Hamrock's Example 16.6


| Diameter bolt d |  |  | 14 | mm |
| :---: | :---: | :---: | :---: | :---: |
| Young's modulus bolt E |  |  | 206.8 | GPa |
| Thickness clamped material $\mathrm{Im}_{\mathrm{m}}$ |  |  | 25 | mm |
| Young's modulus clamped material E |  |  | 206.8 | GPa |
| Solve | Reset | Print |  |  |
| Bolt stiffness $\mathrm{k}_{\mathrm{b}}=\mathrm{AE} / \mathrm{l}_{\mathrm{m}}$ |  |  | 1.27 | $10^{9} \mathrm{~N} / \mathrm{m}$ |
| Diameter $\mathrm{d}_{2}=1.5 \mathrm{~d}$ |  |  | 21 | mm |
| Diameter $\mathrm{d}_{3}=\mathrm{d}_{2}+\mathrm{I}_{\mathrm{m}} \cdot \tan (\varphi), \varphi=30^{\circ}$ |  |  | 35.43 | mm |
| Stiffness clamped material $\mathrm{k}_{\mathrm{m}}$ |  |  | 3.9 | $10^{9} \mathrm{~N} / \mathrm{m}$ |
| Joint stiffness factor ${ }^{1)} \mathrm{C}_{\mathrm{m}}=\mathrm{k}_{\mathrm{b}}\left(\mathrm{k}_{\mathrm{b}}+\mathrm{k}_{\mathrm{m}}\right)$ |  |  | (1) 0.25 |  |

${ }^{1)}$ For simplicity, the clamped materials are frequently assumed to have a stiffness 1) For simplicity, the clamped materials are frequently assumed to have a stifness
of three times the bolt stiffness, which results in a joint stiffness factor of $\mathrm{C}_{\mathrm{m}}=1 / 4$.

| Hamrock |
| :--- |
| Page 458 |

## How Bolt Preload Works



Preload isolates the bolt from most of any external loads.
The joint stiffness factor, $\mathrm{C}_{\mathrm{k}}$, determines what fraction of external loads the bolt actually sees.

$$
C_{k}=\frac{k_{b}}{k_{b}+k_{j}}
$$

| Hamrock |
| :---: |
| Eqn. 16.21 |



For Metric grades, the first number $\times 100=$ Sut in MPa. The fraction $x$ Sut $=$ Sy. Ex: grade 12.9 has Sut $\approx 1200 \mathrm{MPa}$ and Sy $\approx 0.9 \times 1200=1080 \mathrm{MPa}$.

## Bolt Loading

Generally, bolts are preloaded to:

- 75\% of Proof Load for reused connections
- $90 \%$ of Proof Load for permanent connections
where Proof Load $=$ Proof Strength $\times \mathrm{A}_{\mathrm{t}}$.
The Proof Strength is approximately at the elastic limit for the material.


For Information Only

## Summary of Screws

1. Behavior

$$
\text { - Torque } \rightarrow \text { Axial Preload }
$$

$$
T_{\text {ratis }}=W\left[r_{m} \frac{\mu+\tan \alpha}{1-\mu \tan \alpha}+\mu_{c} r_{c}\right]
$$

2. Standards

$$
\mu_{e f f}=\frac{\mu}{\cos (\beta / 2)}
$$

- Shape
* Metric / UN
* ACME

Table 16.2

* Other (Square)
- Grade (Strength)
* Inch (UN) Table 16.6
* Metric

Table 16.7

- Sizes
* Inch (UN) Table 16.8
* Metric Table 16.9


Information related to Bolted Joints

- Glossary of fastener and related terms
- Torque Convertor - Conversion program for torque units
- Methods of Tightening Bolts
- Bolt Tightening and Quality Control
- Case Study - Torque Tightening
- Vibration Loosening of Bolts
- Strength of Threaded Fasteners
- Bolted Joints containing Gaskets
- Frequently Asked Questions
- The Importance of Preload - The Joint Decompression Point
- Bolt Crosstalk and the need for a Tightening Sequence

Tightening the Nut or the Bolt Head

- Use of Two Nuts to Prevent Self Loosening
- Tutorial on the theory of Bolted Joints
- Why is a bolt's preload force vital?

* How a bolted joint sustains an applied force What is a Joint Diagram?
Joint Diagram with an external force applied
The effect of a high external force on a joint
The effect of a compressive external force on a joint The Effect of Joint Deformation loss due to Embedding Bolt Preload Variation due to the Tightening Method
- Why nuts and bolts come loose
- Video - Junker Fastener Vibration Test

Tests on the double nut system of locking

- Tests on helical spring washers
- Information related to screw threads
. Historical background to screw threads
- Basic Thread Terminology

