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Lecture 8: Cylinders

Thin-Walled Cylinders

(You already covered this in Beer & Johnston.)

A pressurized cylinder is considered to be Thin-Walled if its wall 

thickness is less than 2.5% (1/40th) of its inside diameter.

Under these conditions:

1. We assume the stress distribution is uniform throughout the wall 

thickness – both in the hoop (circumferential) direction and in the 

longitudinal (axial) direction.

2. We assume that the radial stress is negligible.

Then:
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Thin-Walled Cylinder Quiz

Knowing all that you do about pressurized cylinders (i.e., that the 

hoop stress is twice the longitudinal stress), which direction would 

you predict that these pressurized cylinders will fracture?

B
A

A. Lengthwise due to hoop stress.

B. Crosswise due to axial stress.

C. On a 45° angle due to shear 

stress or torque.
C

Stresses in Thick-Walled Cylinders

• Thick-Walled cylinders have a wall thickness greater 

than 1/20th of their average radius.

• They are pressurized internally and/or externally.

• The principal stresses are 

circumferential (hoop) σc, 

radial σr, and 

longitudinal (axial) σl.
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Circumferential & Radial Stresses
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For the general case of both internal and external pressure, the 

circumferential and radial stresses at radius R in the wall are:
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For the special case of only internal pressure, po = 0, and the 

stresses at radius R are:

The sign convention is the same.

Eqns 

10.20/10.22

Eqns 

10.23/10.24

Where the ± is:    +  for circumferential, and
- for radial stress.
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Longitudinal Stresses
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The longitudinal stress is simply given by a Force/Area, where 

the Force is pi times the circular inside area πri
2 , and the Area is 

the annular area of the cylinder cross section, π( ro
2 - ri

2) , or:

This is generally only considered 

for the case of internal 

pressurization ( po = 0).

Un-numbered Equation 

just below Eqn. 10.5
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Stresses vs. Radius

First, the easy observation:  Radial stresses at the inner and 

outer surfaces are equal to minus the pressurization.

• If a surface is unpressurized, the radial stress there is zero.

• If a surface is pressurized, the radial stress there = - p, 
because it is in compression.
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Now let’s look at an internally pressurized cylinder, and how the 

radial and circumferential stresses vary across the wall thickness 

at radius R.

( + is circumferential, - is radial )

Eqns 

10.23/10.24
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Thick-Walled Cylinder with 

internal pressure of 5300 psi.

Stresses for Internal Pressurization

( + is hoop, - is radial )
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Stresses vs. Radius - Internal Pressure

Radial stress is as predicted:

• -5300 psi at the inner, pressurized surface.

• 0 at the unpressurized outer surface.

Hoop stress is:

• Maximum at the inner surface, 13.9 ksi.

• Lower, but not zero, at the unpressurized 
outer surface, 8.5 ksi.

• Larger in magnitude than the radial stress

Longitudinal stress is (trust me):

• 4.3 ksi, considered as a uniform, average 
stress across the thickness of the wall.

Now let’s look at an externally pressurized cylinder.

Hoop

Radial

Thick-Walled Cylinder with 

external pressure of 5300 psi.

Stresses for External Pressurization
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( + is hoop, - is radial )
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Stresses vs. Radius - External Pressure

Radial stress is as predicted:

• 0 at the unpressurized inner surface.

• -5300 psi at the outer, pressurized surface.

Hoop stress is:

• Minimum at the outer surface, -8.9 ksi.

• Maximum at the (unpressurized) inner 
surface, -14.2 ksi.

• Larger than the radial stress

Longitudinal stress is:

• Not usually considered for external 
pressurization.

Hoop

Radial

Burst Tubing Analysis

ID = 0.395”; OD = 0.505”; p = 16,000psi

• What was the hoop stress in the tube?

• Analyze it as both thin-wall and thick-wall.  Which is it?

11

12



7

Stresses vs R for Tube
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Why we use the Thick Wall instead 
of the Thin Wall analysis

The Thin Wall equations underestimate the equivalent stress. 

Even at the transition thickness, the error is 7%

ID = 40t
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Rotating Rings

Stresses (radial & tangential) are similar to those in thick-walled 

cylinders.  The forces come from centrifugal loads on all of the ring 

particles instead of from the internal pressure.

Conditions:

1. ro ≥ 10 t

2. t is constant
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Eqn 10.35

Eqn 10.36

Rotating Rings: Effect of Center Bore Radius on Stresses

Stresses 

for a 2 

inch thick 

steel disk 

rotating at 

5000 

RPM.

Rotating Ring vs Center Bore Radius (0.125 -> 2")
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At what radius is the peak radial stress?

Remember Differentiation?
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Press Fits

In a press fit, the shaft is compressed and the 

hub is expanded.

Before After

Hub

Shaft

Radial 

interference, δr Hub

Shaft
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Press Fits

Press fits, or interference fits, are similar to 

pressurized cylinders in that the placement 

of an oversized shaft in an undersized hub 

results in a radial pressure at the interface.

Hub

Characteristics of Press Fits
1) The shaft is compressed and 
the hub is expanded.

2) There are equal and opposite 
pressures at the mating surfaces.

3) The relative amount of 
compression and expansion 
depends on the stiffness (elasticity 
and geometry) of the two pieces.

4) The sum of the compression and the expansion equals 
the interference introduced.

5) The critical stress location is usually the inner diameter 
of the hub, where max tensile hoop stress occurs.

Hub

Shaft

Hub

Shaft
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Analysis of Press Fits

Start by finding the interface pressure.

If shaft and hub are of the same material:
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Where δr is the RADIAL interference 

for hub and shaft of the same material, 

with modulus of elasticity, E.

If the shaft is solid, ri = 0 and
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Eqn 10.52, 

rearranged

Eqn 10.53, 

rearranged

• ri ≠ 0 only if the 
shaft has a hole in it.

• R is where the shaft 
and hub contact.

Analysis of Press Fits

If the shaft and hub are of different materials

Once we have the pressure, we can use the cylinder 

equations to compute the hoop stresses at the interface.
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A) The ID of the 

hub is tensile:

B) The OD of the shaft 

is compressive:
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Eqn 10.51, rearranged

Eqn 10.45

Eqn 10.49
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Strain Analysis of Press Fits

The press fit has no axial pressure, so σl = 0, and it is a 
biaxial stress condition. 

The circumferential strain

which equals the radial strain (because C = 2πr).  

Because the radial change δ = R εr , we get

the increase in Inner Radius of the outer member (hub):

R

ro

ri

And the decrease in Outer Radius of the inner member (shaft): 
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Eqn 10.46

Eqn 10.13

These two deflections add up to the Radial Interference:  
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Summary of Press Fits

1. Select amount of interference.  Be careful about radial or diametral.  

Interference is really small – maybe 1 to 2 tenths of a percent of 

diameter.

2. Compute the pressure at the mating surface.

•  If same materials, use Eqn. 10.52

•  and if shaft is solid (ri = 0): 

• If different materials, use 

Eqn. 10.51 (flipped)

3. Compute the tensile hoop stress in the outer piece.  Eqn. 10.45 
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Press Fit Problem

A 1 inch diameter shaft is to be pressed into a 3 inch diameter hub with a 

radial interference of 0.001 inch.  Both are AISI 1080 steel, Q&T 800°C. 

What is the resulting surface pressure and hoop stress in the hub?

Caution: Mind your radii and diameters.

Press Fits: Force & Torque

The assembly force required will be 

Fmax = πdLpµ
where p = the interface pressure

µ = the coefficient of friction

The torque capacity available is  

T = FR = RπdLpµ
where R = the interface radius, as 

before.

We know how to compute the interface 

pressure for these equations!

T

d = 2R

L

F

Hamrock 

Section 

10.5.4
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Unrolling a Pressurized Cylinder

Pressurized Cylinder,

inside diameter = d, length = L

Unwrap it

���Area = 

Total normal force Fn = P x A

Friction force = � x P x A

Fn

P

L

Insert/Remove

Twist

L

��

Fn

Torque = Friction force x r

Press Fit Problem 2

For the 1 in. diameter steel shaft that we just calculated, if the friction 

coefficient is 0.15 and the hub is 1 in. thick, what are:

1. The force needed to press the parts together?

2. The maximum torque the joint could withstand?
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Shrink Fits

If heating or cooling a part to achieve a shrink fit, the required 
radial interference is:

∆R = δδδδr = Rα∆T

where R is the interface radius
α is the coefficient of thermal expansion
∆T is the temperature change

To select an amount of interference see ANSI/ASME tables for 

class FN1 (light) to FN5 (Heavy-drive) fits.

 They give interference in 0.001" on diameter for a range of 

diameters

Ex: FN4 for 0.95 to 1.19" diameter, interference = 1 to 2.3 mils on 

diameter.

Note: Conversion of Temperature Change is NOT 
the same as Converting Temperature

Boiling

Freezing

°C °F

212

320

100

180°F100°C

°F = 9/5 °C + 32  °C = 5/9 (°F – 32 )  

Δ°C = 5/9 Δ °F Δ°F = 9/5 Δ °C 
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Press Fit Problem 3

For the 1 inch diameter steel shaft that we just calculated, how many 

degrees F would the hub need to heated to be able to assemble the 

parts without forcing?  If we chose to cool the shaft instead, how many 

degrees C would the shaft need to be cooled to do the same thing? 
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