

Distortion Energy In the more common case of biaxial principal stresses (σ_3 =0), this reduces to: $\sigma_e = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$ In our example, this is: $\sigma_e = \sqrt{80^2 - (80)(-40) + (-40)^2}$ $= \sqrt{6400 + 3200 + 1600}$ $= \sqrt{11,200} = 105.8ksi$ This exceeds Sy = 100ksi, so DET also predicts yielding.

11

Distortion Energy - Simplified If you have only direct biaxial stress (σ_z =0), you can calculate DET directly from σ_x , σ_y , and τ_{xy} without getting the principal stresses: $\sigma_e = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$ And, if you have only bending and torsion (σ_y =0), this reduces to: $\sigma_e = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$ (Hamrock buries this in Ex. 7.4 on page 170.)

Factors of SafetyThe Factor of Safety, n_s, for a component is the ratio of the stress
allowed by the component's material, divided by the maximum stress
predicted (or measured). We usually use the yield strength, Sy, as
the allowable stress for ductile materials. See Hamrock's Appendix A
for Sy. $n_s = \frac{Sy}{\sigma_{max}}$ Using the Failure Theories, we will generally compute n_s either by:
 $n_s = \frac{Sy}{\sigma_e}$ or $n_s = \frac{Sy}{(\sigma_1 - \sigma_3)}$
For DET (von Mises)For MSST

Static Safety FactorsA bar of AISI 1040 Steel sees a bending and twisting
load, resulting in a bending stress of 15 ksi and a shear
stress of 6.5 ksi at its most highly stressed location.Find the MSS and the DET factors of safety against
yielding.Calculate both FoS's using both Direct stresses and
Principal stresses.

