MEEG3311 Machine Design

Lecture 3:
Deflection

W Dornfeld
21Sep2023

Simple Deformations

- Axial load on a uniform bar

$$
\begin{array}{lc}
\sigma=P / A=\varepsilon E & \text { Stiffness: } \\
\varepsilon=\frac{P}{A E} & k=\frac{P}{\delta}=\frac{A E}{L} \\
\delta=\varepsilon L=\frac{P L}{A E} & \begin{array}{l}
\text { Hamrock } \\
\text { Section 4.3 }
\end{array}
\end{array}
$$

- Torsional load (torque) on a uniform round bar

Stiffness:
$k=\frac{T}{\theta}=\frac{J G}{L}$
Nm / Radian

Hamrock
Section 4.4.1

Beam Flexure

- For a uniform beam in pure bending,

$$
\begin{equation*}
\frac{1}{r}=\frac{M}{E I} \tag{Eq.4.47}
\end{equation*}
$$

So a large Moment means a small radius of curvature, r

$$
r=\frac{E I}{M}
$$

Because
$\frac{d^{2} y}{d x^{2}}=\frac{-M}{E I}$

We can integrate our way from Moment, M , to the deflection, y .

Example Beam Loading

20 inch long beam with
$\mathrm{w}=80 \mathrm{lb} / \mathrm{in}$
load

5

MEEG3311 Approach

1. You must be able to draw the V \& M diagrams to find the max bending and transverse shear stresses in beams. (This is really stress, but it is the basis of deflection.)
2. Understand the slope and deflection concept, but because it is tedious, use tables like Hamrock Appendix D or a handbook to determine beam deflections.
3. Use Superposition to handle combined loadings (including loads in different planes, like Horiz \& Vert).
4. Understand how to use slopes and rotations.
5. Use a program (like MDSolids or Excel etc.) to solve the deflection.
6. For complicated structures, use Finite Element or Castigliano.

Hamrock Appendix D Beams

1 Cantilever-end load

$$
\begin{aligned}
R_{1} & =V=F \quad M_{1}=F l \\
M & =F(x-l) \\
y & =\frac{F x^{2}}{6 E I}(x-3 l) \\
y_{\max } & =-\frac{F l^{3}}{3 E I}
\end{aligned}
$$

4 Cantilever-moment load

$$
\begin{aligned}
R_{1}=V=0 & M_{1}=M=M_{B} \\
y=\frac{M_{B} x^{2}}{2 E I} & y_{\max }=\frac{M_{B} I^{2}}{2 E I}
\end{aligned}
$$

\qquad

$$
{ }^{M} \mid
$$

Hint:
See Slide 3

Hamrock Appendix D Beams

Deflection \& Slope in Excel: Beam D. 2

9

Deflection \& Slope in MDSolids: Beam D. 2

Basic Angle Relationship

$$
\theta=\frac{S}{r} ; S=r \times \theta
$$

Θ is in Radians

For small angles, T ~ S

How many degrees is a Radian?

11

Piece-Wise Deflection of a Crank Arm

How much does the loaded end of the arm deflect?

Breaking it into pieces and looking at the FBD will help.

Piece-Wise Deflection of a Crank Arm

Deflection of the loaded end point is the sum of three deflections:

1. Bending of the 6 " Rod due to the 300 lb load.

$$
y_{1}=\frac{F l^{3}}{3 E I}
$$

2. Twisting of the 6 " Rod due to the 1200 in.lb torque, with rotation of the 4" Rod.

$$
\theta=\frac{T l}{J G}, \quad y_{2}=r \theta
$$

3. Bending of the 4 " Rod due to the 300 lb load.

$$
y_{3}=\frac{F l^{3}}{3 E I}
$$

Piece-Wise Deflection of a Crank Arm

$$
\begin{gathered}
r=0.375^{\prime \prime} \quad I=\frac{\pi r^{4}}{4}=0.01553 i^{4} \\
J=\frac{\pi r^{4}}{2}=2 I=0.03106 i^{4} \\
E=30 \times 10^{6} p s i, \quad G=11.5 \times 10^{6} p s i \\
y_{1}=\frac{F l^{3}}{3 E I}=\frac{(300)(6)^{3}}{3\left(30 \times 10^{6}\right)(0.01553)}=0.0464 \text { in } \\
y_{2}=r \theta=\frac{r T l}{J G}=\frac{(4)(1200)(6)}{(0.03106)\left(11.5 \times 10^{6}\right)}=0.0806 \text { in } \\
y_{3}=\frac{F l^{3}}{3 E I}=\frac{(300)(4)^{3}}{3\left(30 \times 10^{6}\right)(0.01553)}=0.0137 \text { in } \\
\begin{array}{ll}
\text { Short arm sweeping bending } \\
y_{\text {total }}=y_{1}+y_{2}+y_{3}=0.1407 \text { in } & \text { Short arm bending }
\end{array}
\end{gathered}
$$

Crank Arm Deflection by FEA

15

Traffic Light Pole - Deflection

From U of
Arkansas FEMur

Traffic Light Calculations

Simplified Case With One Beam Size $\begin{gathered}M=34010 \mathrm{bx}(100+120 \text { in } \\ +220010 \times 120 \mathrm{in}\end{gathered}$

Use Appendix
Formulas and
Superposition

1 Cantilever-end load

2 Cantilever-intermediate load

$$
\begin{aligned}
R_{1} & =V=F \quad M_{1}=-F a \\
M_{A B} & =F(x-a) \quad M_{B C}=0 \\
y_{A B} & =\frac{F x^{2}}{6 E I}(x-3 a) \\
y_{B C} & =\frac{F a^{2}}{6 E I}(a-3 x) \\
y_{\max } & =\frac{F a^{2}}{6 E I}(a-3 l)
\end{aligned}
$$

17

Traffic Light Calculations

Simplified Case With One Beam Size

How Did We Do? compare with mosolids:

What if we changed to a 5" Pipe, with I = 13.70 in 4 ?

What if we changed to a 6" Aluminum Pipe, with
$\mathrm{E}=10.5 \mathrm{MSI} ?$

19

Traffic Light Calculations

Real Case With Two Beam Sizes

1 Cantilever-end load

4 Cantilever-moment load

Slope @ Tip due to F:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 F x^{2}}{6 E I}-\frac{2 F x 3 l}{6 E I}=\frac{F x^{2}}{2 E I}-\frac{F x l}{E I} \\
& \frac{d y}{d x}=\frac{F x}{E I}\left(\frac{x}{2}-l\right)
\end{aligned}
$$

$$
\begin{array}{lll}
R_{1}=0 & M_{1}=M_{B} \quad M=M_{B} & \text { Slope @ Tip due t } \\
y=\frac{M_{0} z^{2}}{2 E I} & y_{m a x}=\frac{M_{B} I^{2}}{2 E I} & \frac{d y}{d x}=\frac{2 M_{B} x}{2 E I}=\frac{M_{B} x}{E I}
\end{array}
$$

Deflection at tip due to slope is $\theta \times \mathrm{L}_{1}$

21

Castigliano's Theorem

" ... the partial derivative of the strain energy, considered as a function of the applied forces acting on a linearly elastic structure, with respect to one of these forces, is equal to the displacement in the direction of the force at its point of application."

From intota: The deflection of an elastic material subjected to a load in the direction of each load equals the partial derivative of the work of deformation with respect to the component of the force in that direction. This theorem is related to the principle of virtual work, and it applies for elastic material obeying Hooke's law.

This should vaguely make sense, because for a spring,
the stored energy is the integrated area under the force vs deflection curve. So it is plausible that differentiating
 that could get you to the deflection.

Castigliano, Continued

1. You write an expression for the total strain energy in your structure, based on each type of loading (see table).
2. If you want to know a deflection where there isn't a load applied, just stick a "fictitious" load, Q, there.
3. Then take partial derivatives of the energy wrt the loads.

Loading Type	Strain Energy Constant Variables	Strain Energy General Case			
Axial	$\mathrm{U}=\frac{\mathrm{F}^{2} \mathrm{I}}{2 \mathrm{EA}}$	$\mathrm{U}=\int_{0}^{1} \frac{\mathrm{~F}^{2} \mathrm{dx}}{2 \mathrm{EA}}$	$	$	$\mathrm{U}=\frac{\mathrm{M}^{2} \mathrm{I}}{2 \mathrm{E} \mathrm{I}}$
:---	$\quad \int_{0}^{1} \frac{\mathrm{M}^{2} \mathrm{dx}}{2 \mathrm{EI}}$.				

4. Then set $\mathrm{Q}=0$ and voilà!

Castigliano, Concluded

1. The MEEG3311 web site has an analysis of the Crank Arm by Castigliano (shown here).
2. Hamrock has several examples in section 5.6.
3. All of the formulas for deflection in handbooks and Beer \& Johnston were figured out by using Castigliano's theorem.
4. Carlo Alberto Castigliano (1847 1884) figured it out when he was 25 years old.
5. There will be no homework or exam problems on using Castigliano's theorem, but maybe a question.

