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Stress-Strain Curve for Ductile Material
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Effects of Hardness; Brittleness

This slope does NOT 
change because the 
Modulus is the same.

Hardening by Heat 
Treating or Cold Working 
increases the Yield 
Strength of materials.

Terminology:
Strength = Material Property;
Stress = Applied LoadingS
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Manufacturing/Metalworking

• Metal fabrication, where sheets and bars 
are bent and formed, obviously depends 
on going beyond yield into the plastic 
forming range.

• It is common for highly-formed metals to 
require annealing to reduce their yield 
strengths for further forming.
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Brittle versus Ductile

Ductile if %El > 5%
Brittle if %El < 5%

Ductility is related to the amount of 
Plastic Deformation (Strain) at fracture.

The strain at fracture = % Elongation
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Hamrock 
Fig. 3.7

How to Crack Sheet Metal

• Bend it in a real tight radius.  Why?

For any wrap angle θ, the 
circumferential wrap is rθ.

The Neutral length is (R+t/2)θ, and 
the length in Tension is (R+t)θ.

The strain is: 
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How to Crack Sheet Metal
• Example: Aluminum Dogbone

Material is 6061-T6 Aluminum

Inner Bend Radius = 0.102”
Thickness = 0.101”
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From MatWeb.com:

See Example 3.1, Hamrock

Should it have cracked? _____
What do you think the stress was? _____________

Calculate the strain.
tR

t

+
=

2
ε

Poisson’s Ratio
ν (nu)

What’s nu?
εAXIAL

εLATERAL = -ν ν ν ν εAXIAL

Question:  Is there a resulting lateral stress?  _______
So, could you say there is strain without stress?  ______
Can you think of another way to get strain without stress? ______

Poisson’s ratio is around 0.3 for most metals.

Lowest is ≈ 0.2 for Cast Iron; Highest is ≈ 0.44 for Lead.

Shear modulus (“stiffness in twisting”) is

Because most metals have a ν of about 0.3, 
this means that for most metals, 
G ≈ what percent of E? __________

)1(2 ν+
=

E
G

Hamrock 
Eqn. 3.7
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Hardness Tests

https://www.sciencedirect.com/topics/engineering/rockwell-test

Sphere or Rounded-
Tip Cone

Diamond Pyramid Sphere

d = depth 

N and s are scale factors 

d = Average Diagonal, mm

F = Load, N 

d = Indent Diameter, mm

D = Sphere Diameter, mm

F = Load, N 
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UTS vs. Hardness

Ultimate Tensile Strength correlates very well with Brinell hardness.
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Ashby Charts
Look them over.

Understand what they 
are and how they 
represent differences 
among materials.

My favorite is Fig. 3.19, 
comparing Modulus of 
Elasticity and Density.

Most 
Common 

Metals

Beryllium

The natural frequency of a 
cantilever beam is nearly 
the same for steel or 
aluminum, but for 
Beryllium it is almost 3x 
higher!

What is         for Aluminum ______ and for Steel _____?  What are the units? _____ρ
E

Stresses in Straight Beams

• A uniform beam in pure bending

I

Mc
=maxσ

r

M

M

The maximum stress is

where I is the Area Moment of Inertia about the Centroid, and
c is the distance from the Neutral Axis, or Centroid.

We need to know these properties of the beam cross section 
to be able to calculate bending stress, one of the most 
common large stresses on structures.
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Hamrock Chapter 4:
Area Moment of Inertia

Definitions:

• Centroid of an Area

• Area Moment of Inertia

• Parallel Axis Theorem

Hamrock 
Section 4.2

This is NOT same as J = Polar Moment of Inertia, or as Mass 
Moment of Inertia, Im, (which has units Lb.In.Sec2, and sets 
how fast a torque can rotationally accelerate a device.)
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Parallel Axis Theorem

Ix' = Ix + Ad2 = bh3/12 + bhd2

where:
• Ix' = moment of inertia about an axis that IS NOT through the center
• Ix = moment of inertia about an axis that is through the centroid 

= bh3/12
• d = distance between the x axes
• A = area of the cross section = bh
Note: the axes must be parallel
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Moment of Inertia Procedure
1. Find neutral axis (centroid) of total area. 
     Why?  Because we will use I to calculate 

       bending stress about the neutral axis. 
 

  ( A1 + A2 + A3 ) rtot = A1 r1 + A2 r2 + A3 r3  
 

       Solve for rtot .   
 

 Cut-outs have negative areas. 
 

 Pick a convenient axis to measure r’s from. 
 

 If you pick an outer edge, you will always know which direction rtot is! 
 
2. Compute Moment of Inertia about the centroid of each sub-piece. 
 

For example:                 
12

3bh
I

CG
=                                   

64

4D
I

CG

π
=  

 
 
3. Use Parallel Axis Theorem to translate to about the neutral axis 

                                 
2

AdII CGX +=     

where “d” is the distance from the sub-piece’s centroid to the total area 
centroid, and “A” is the area of the sub-piece. 
 
4.  Add up the translated moments of inertia of all the pieces, subtracting 
moments if they are cut-outs. 

b 
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A2

A1

A3

r2,3

rtot

r1

Hamrock 
Section 4.2.3

Elementary Load Building Blocks

From 
DAWright 
at U of 
Western 
Australia

STRESS

A

P
=σ

A

P
=τ

I

My
=σ

J

Tr
=τ

Hamrock 
Eqn. 4.22

Eqn. 4.46

Eqn. 4.32
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Stresses in Curved Beams
Bending Stresses in a curved beam are not linearly distributed across 
the beam section, but have a hyperbolic distribution that is higher at 
the inside surface than for a straight beam.

Stresses in Curved Beams

2) Calculate the centroidal radius, R, 
based on the cross-section shape.  
(Hamrock § 4.5.3)

Rectangular:  Circular:    

1) Draw a very good picture.
• Show the applied Force, F
• Show ri, ro, Area

3) Compute the neutral radius, rn, based on 
the section shape.  (Hamrock § 4.5.3)

Rectangular:  Circular:
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Stresses in Curved Beams (2)

5) Compute the moment about the 
centroidal radius, R.  
Here M = F x L, not F x R, because the 
force is not through the center of 
curvature.

4) Compute the eccentricity, e = R - rn

6) Calculate the distances from the neutral 
axis to the inner and outer surfaces: 

ci = rn – ri and co = ro – rn.

7) Calculate the stresses at the inside and 
outside surfaces:

and                            ,

where A = the section area
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Stresses in Curved Beams (3)

8) Add or subtract any P/A stresses
in this section 
(using superposition).

Rectangular:  Circular: 

brr

F

io )( −
=σ 2

cr

F

π
σ =

9)  As a check, compare the answer to MC / I
for a straight beam with neutral axis on 
the centroid and see if it makes sense.
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Stresses in Curved Beams (4)

The stress distribution: 
1) is hyperbolic, rather than linear for a straight beam,
2) passes through zero at the neutral axis rather than at the 
centroid,
3) has the highest stress at the inside radius. 

From 
DAWright 
at U of 
Western 
Australia

Stresses in Curved Beams

Calculate and compare 
the stresses on a 2” 
diameter bar with an 
applied bending 
moment of 1000 in-lb 
for these cases:

1) A straight bar

2) A curved bar with 
R = 3 in.

1

M=1000 
in-lb

M

Ri
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R
M

M
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2

22

c

n

rRR
r

−+
=

i

i

i
Aer

Mc
=σ

o

o

o
Aer

Mc
−=σ4

4
rI

π
=

21

22



12

Transverse Shear

Hamrock Fig. 4.19 shows 
difference  between 
behavior of boards not glued 
together (top) and boards 
glued together (bottom).

Solid beams behave like 
boards glued together, and 
the interior layers see shear 
stress along them.

The outside surfaces have nothing to constrain 
them, and therefore see no shear stress.

Hamrock 
Section 4.6

Transverse Shear

From http://users.wpi.edu/~cfurlong/me3320/lect06-07/Lect06-07.pdf

Even though we usually write transverse shear as τ = P/A, that 
is just the average shear.  In reality, it has a distribution that 
depends on the actual beam shape:

As Hamrock says below Eqn. 4.66: “In all cases, shear stress is zero on 
extreme fibers, is maximum on the neutral axis, and has a parabolic 
distribution through the thickness.”
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Notes on Power

Hamrock 
Section 4.4.2

Power is the rate at which work gets done, so has units of 
(Force x Distance) / Time = Work / Time.

Example: 1 HP = 550 Lb x Ft / Sec

This can also be looked at as 
Force x (Distance / Time) = Force x Velocity.

If a motor is involved, it can also be viewed as
Torque x Rotational Velocity = (Force x Distance) x (Radians / Time)

RPMLbIn
Rad

vSec

Ft

In

Sec

LbFt
HP ⋅⋅=























×
= 63025

2

Re1

min

6012
5501

π

In the SI system, it is simply 
Power  (Watts) = Tω = Torque (Nm) x Rotational Speed (Radians/Sec)

For conversion, 1 HP = 745.7 Watts

Note the orderly 
unit conversion.

Power Example
Horsepower: 1-1/2 
Frame: 56 
Shaft Diameter: 5/8" 
Volts: 115 volt 
Full load amps: 14.2 
Phase: single 
Enclosure: Open dripproof 
No load speed: 3600 RPM 
Reversible: yes 
Service factor: 1.0 
Weight: 29 lbs. 

A. If this motor didn’t slow down when delivering its full rated 
power (it does), what torque would it be delivering?

B. What would the maximum stress in the shaft be then?

C. What is the efficiency (mechanical power/electrical power) 
of the motor?
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• Torque = Power / Speed

•

• Electrical power (W) = Volts x Amps

Motor Calculations

4

2
, rJ

J

Tr π
τ ==

Motor Fun Facts
For a NEMA D Frame motor, the frame number is how many 1/16ths of 
an inch from the shaft center to base (the “D” dimension).

A size 56 frame is 
56/16 = 3.5”.

The standard controls 
mostly the motor 
mounting details, not 
the motor body 
dimensions
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Simple Stress Distributions

• Axial load on 
a uniform bar

P
A

A
P=σ

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is uniform over the whole section.

3. What is the value?
Answer: σ = P/A

Note that all material is equally stressed.  
What about E?

Simple Stress Distributions

• Torsional load (torque) on a uniform round bar

J

Tr
=maxτ

4

2
rJ

π
=

T

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum at the outer surface.

3. What is the value?
Answer: τ = Tr/J

Note that the 
material in the 

center of the bar 
(along its axis) 

isn’t loaded very 
much.
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Simple Stress Distributions

• Torsional load (torque) on a uniform tube

J

Tro=maxτ
)(

2

44

io rrJ −=
π

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum at the outer surface.

3. What is the value?
Answer: τ = Tr/J

Removing the 
material in the 

center of the bar 
(along its axis) 
saves weight 
and $ without 
too much loss.

T

Simple Stress Distributions

• For a uniform beam in pure bending

I

Mc
=maxσ

r

M

M

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum at the 
top & bottom surfaces.

3. What is the value?
Answer: σ = Mc/I

Note that the 
material in the 

center of the bar 
(along its axis) 

isn’t loaded very 
much.
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Simple Stress Distributions

• For an “I” beam in pure bending

I

Mc
=maxσ

M

M

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum at the 
top & bottom surfaces.

3. What is the value?
Answer: σ = Mc/I

Removing the 
material in the 

center of the bar 
(along its axis) 

saves weight and 
$ without too 
much loss.

Non-Simple Stress Distributions

• For a cantilever beam with an end load

I

Mc
=maxσ

Describe the maximum bending stress:

1. What position along the beam?
Answer: At the left end of the beam.

2. What location in the cross section?
Answer: It is maximum at the top and bottom faces.

3. What is the value?
Answer: σ = Mc/I

What about the 
transverse 

shear?

F

M=FL F
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Non-Simple Stress Distributions
F

M=FL

F

It is best to map out the Shear, V, 
and Moment, M, distribution when 
they vary along the beam.

The Transverse Shear, for this 
rectangular cross section beam, is 
parabolic, with a max of 1.5 x τavg:

This is why max bending 
stress is at the left end.

Non-Simple Stress Distributions

• For a cantilever beam with an end load

Describe the maximum transverse shear stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum on the neutral axis (and zero 

at the top and bottom faces).

3. What is the value?
Answer: τ = 1.5 V/A

How do I (or do I) combine 
the bending and the 
transverse shear?

F

F

M=FL
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Dealing with Several Stresses

Considering:
1. Superposition
2. Mohr’s circle
propose how to handle the bending plus shear stresses.

F

M=FL F

Summary
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Example Beam Loading
20 inch long 
beam with 
two 100lb 
loads

Shear, V
(Lb)

Moment, M
(In.Lb.)

V
dX

dM
=

w
dX

dV
−=

Beam cross 

section is 1 

inch square.

What stresses are where?

Calculate Amongst Yourselves
1. Show the location (along the beam) of the max stresses. 
2. Show the position (in the cross section) of the max stresses.
3. Calculate the max stress values.
4. Do they combine in any way?  Describe. 
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Stresses in a Crank Arm

4 in

6 in

300 LB

3/4 in

4 in Rod

1200 in.lb 
Moment

300 lb

300 lb

Break it into pieces and 
look at the FBD.

6 in Rod 1200 in.lb 
Torque

300 lb

1200 in.lb 
Torque1800 in.lb 

Moment

300 lb

This piece has a 
bending Moment.

This piece has a 
bending Moment 

and a twisting 
Torque.

Note that the 
moment  turns 
into a  torque 
where the arm 
bends the 
corner.

Stresses in a Crank Arm

We already know how to do a tip-loaded cantilever.  Let’s take a 
look at the piece that bends and twists.  Let’s slice off a thin section 
near the wall:

6 in Rod 1200 in.lb 
Torque

300 lb

1200 in.lb 
Torque1800 in.lb 

Moment

300 lb

1800 in.lb 
Moment

300 lb 
Shear

300 lb 
Shear

A

B
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Stresses in a Crank Arm

Now let’s get the stresses.

1800 in.lb 
Moment

300 lb 
Shear

300 lb 
Shear

A

B

ShearPure

psi

psi
A

V

psi
J

Tr

psi
I

Mc

BENDINGxzTOTAL

BENDING

xz

x

→

=−=

====

====

====

582,13

905
325.1

1200

4)75.0(3

)300)(4(

3

4

487,14
03106.0

450

32)75.0(

)375.0)(1200(

460,43
01553.0

675

64)75.0(

)375.0)(1800(

2

4

4

τττ
π

τ

π
τ

π
σ

A

B

y

xz

At "A": Bending M = 1800 in.lb.
Torsion T = 1200 in.lb.

[Shear V = 300 lb, but is at neutral axis, 
not on top surface.]

At “B": Torsion T = 1200 in.lb.
Shear V = 300 lb

[Bending is at top and bottom only, not at 
neutral axis.]

C

Note that at location “C”, the two shears 
would ADD to 15,392 psi.

Stresses in a Crank Arm

These stresses occur at 
the same point, so can 
use Mohr.

psi
J

Tr

psi
I

Mc

xz

x

487,14

460,43

==

==

τ

σ

A

y

xz

For Xstress = 43.5, Ystress = 0.0, XYShear = -14.5,           Angle = -16.85, Stress1 = 

47.85, Stress2 = 0.00, Stress3 =-4.39, ShearMax = 26.12

X,-T

Y,T
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The Mohr circle gives:
σ1 = 47.846 ksi
σ2 =   0.000 ksi
σ3 =  -4.386 ksi
τMax = 26.116 ksi
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