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Stress-Strain Curve for Ductile Material
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Effects of Hardness; Brittleness

Hardening by Heat

100 —
Cold-drawn Treating or Cold Working
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Elongation, in

Manufacturing/Metalworking

« Metal fabrication, where sheets and bars
are bent and formed, obviously depends
on going beyond yield into the plastic
forming range.

* It is common for highly-formed metals to
require annealing to reduce their yield
strengths for further forming.




P
TA

Stress, o

Brittle versus Ductile

Ductility is related to the amount of
Plastic Deformation (Strain) at fracture.

Brittle B

} Ductile The strain at fracture = % Elongation
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Hamrock
Fig. 3.7

How to Crack Sheet Metal

» Bend itin a real tight radius. Why?

For any wrap angle 6, the
circumferential wrap is r6.

The Neutral length is (R+t/2)8, and
the length in Tension is (R+t)6.

Sempression The strain is:
Al _ (Tension — Neutral) _
1 Neutral B
(R+1)0—(R+t/2)0  t/2
(R+1/2)6  (R+1/2)
t t

T QR+1) D+1




How to Crack Sheet Metal

« Example: Aluminum Dogbone

Material is 6061-T6 Aluminum

Inner Bend Radius = 0.102”
Thickness = 0.101”

[ Calculate the strain.

t
£=
2R+t

Should it have cracked?
What do you think the stress was?

Aluminum 6061-T6; 6061-T651

From MatWeb.com:

Mechanical Properties Metric English Comments
Ultimate Tensile Strength 310 MPa 45.0 ksi AA; Typical
Tensile Yield Strength 276 MPa 40.0 ksi AA; Typical
Elongation at Break 120 % 120 % AA; Typical, 1/16 in. (1.6 mm) Thickness

17.0 % 17.0 % AA; Typical, 172 in. (12.7 mm) Diameter
Modulus of Elasticity 68.9 GPa 10000 ksi  AA; Typical, Average of tension and compression. Compression

modulus is about 2% greater than tensile modulus

Tensile Yield Strength 276 MPa 400 ksi AA Typical
Elongation at Break 120 % 120 % AA; Typical, 1/16 in. (1.6 mm) Thickness
17.0 % 17.0 % AA; Typical, 172 in. (12.7 mm) Diameter

mmy G50 GPa TOO00 kst AR, Typical, Average of tension and compression. Compression

modulus is about 2% greater than tensile modulus

| See Example 3.1, Hamrock |

What’s nu?

Poisson’s Ratio
v (nu)

€ aTERAL = =V EaxiaL

Question: Is there a resulting lateral stress?
So, could you say there is strain without stress?
Can you think of another way to get strain without stress?

Poisson’s ratio is around 0.3 for most metals.
Lowest is = 0.2 for Cast Iron; Highest is = 0.44 for Lead.

E
Shear modulus (“stiffness in twisting”) is G= T
+Vv
Because most metals have a v of about 0.3, ( )
this means that for most metals, Hamrock
G = what percent of E? Ean. 3.7




Hardness Tests
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Sphere or Rounded- Diamond Pyramid Sphere
Tip Cone
d F 2F
— _ = HV == 0.1801— HBW=0102—————

HR=N-< d? 7D (Df VI? 7d2)
d = depth d = Average Diagonal, mm d = Indent Diameter, mm
N and s are scale factors F =Load, N D = Sphere Diameter, mm

F =Load, N

https://www.sciencedirect.com/topics/engineering/rockwell-test

UTS vs. Hardness
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Brinell Hardness

Ultimate Tensile Strength correlates very well with Brinell hardness.
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11

Stresses in Straight Beams

A uniform beam in pure bending

. . Mc
The maximum stressis o, =T

where | is the Area Moment of Inertia about the Centroid, and
c is the distance from the Neutral Axis, or Centroid.

We need to know these properties

of the beam cross section

to be able to calculate bending stress, one of the most
common large stresses on structures.
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Hamrock Chapter 4:
Area Moment of Inertia

Definitions: deA
» Centroid of an Area X = AT

_ 2
- Area Moment of Inertia 1+ = I y dA

A

— 2
« Parallel Axis Theorem . =1.+Ad

CENTROID

This is NOT same as J = Polar Moment of Inertia, or as Mass
Moment of Inertia, I, (which has units Lb.In.Sec?, and sets

how fast a torque can rotationally accelerate a device.) Hamrock

Section 4.2
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Parallel Axis Theorem

Y’ Y

ol

J
+

o !
IX' = Ix + Ad2 = bh3/12 + bhd?
where:
+ Ix'=moment of inertia about an axis that IS NOT through the center
« Ix = moment of inertia about an axis that is through the centroid
= bh3/12
» d = distance between the x axes
» A = area of the cross section = bh
Note: the axes must be parallel

14




Moment of Inertia Procedure

1. Find neutral axis (centroid) of total area.

L

23

Why? Because we will use I to calculate
bending stress about the neutral axis. I A °
tot
(A1 +A2+A3)I’101=A1 r +A2F2+A3I’3
JES ZSVREUR SSRSN HEOVE I
Solve for ri .
. [ o —
= Cut-outs have negative areas. A A
2 '3

= Pick a convenient axis to measure r’s from.

If you pick an outer edge, you will always know which direction ri is!

2. Compute Moment of Inertia about the centroid of each sub-piece.

3
For example: _Bh I =%

b

3. Use Parallel Axis Theorem to translate to about the neutral axis
I,=1,+Ad’

where “d” is the distance from the sub-piece’s centroid to the total area

centroid, and “A” is the area of the sub-piece.

4. Add up the translated moments of inertia of all the pieces, subtracting
moments if they are cut-outs.

Hamrock
Section 4.2.3
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Elementary Load Building B

locks

STRESS RESULTANT STRESS DISTRIBUTION STRESS
TENSILE OR [
COMPRESSIVE p i T P
=P FORCE-F 0O =—
&
Ei Hamrock
5; Geometic instabiity B In A E 4.9
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o — Vl Western
) - .
Eé - N _ My Australia
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% E direction across the beam Eqn 4.46
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£ TORSIONAL neutsl ;
E5! MOMENT-T s 5 Tr
] E +
=31 rorquEoF XD/« - na T=—
% ROUND SHAET) end view J
Stress is uniforn in circunmf er-
ential direction around the shaft Eqgn. 4.32
; aterial f
The practical unit of stress is naither 107 Kim® stressinmemberfal __ stressresuant TDPESM X En:f?n':,;zn
nor 10°Pa, but MPa. (equivalent to MimmE). distance fram neutral propetty of members [elastic: [ strain |

Stressconversionfactor: 6.895kPa perlhmnz axds, if linear | cross-sectional georm etry modulus)
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Stresses in Curved Beams

Bending Stresses in a curved beam are not linearly distributed across
the beam section, but have a hyperbolic distribution that is higher at

the inside surface than for a straight beam.

P o
Q
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Stresses in Curved Beams

1) Draw a very good picture.
» Show the applied Force, F
» Show ri, ro, Area

2) Calculate the centroidal radius, R,
based on the cross-section shape.
(Hamrock § 4.5.3)

Rectangular: g = i t”

 Circular: R=r+r,
2

3) Compute the neutral radius, r,,, based on
the section shape. (Hamrock § 4.5.3)

Rectangular: Circular:
— 2_ 2
- = r,—r - :R+,/R T
In(r, /1;) " 2

T

Rectangular
L=k

" InGr /1)

“> T T — ——-Neutral radius, r,
" Centroidal radius, R

18




Stresses in Curved Beams (2)

9% ‘ﬁ—e

4) Compute the eccentricity, e=R - r,,
’ o[ ]

5) Compute the moment about the o 1
centroidal radius, R. ]
Here M = F x L, not F x R, because the
force is not through the center of

curvature.

fi

6) Calculate the distances from the neutral
axis to the inner and outer surfaces:
C,=r,—r andc,=r,—r,.

7) Calculate the stresses at the inside and

outside surfaces: s
Centroidal radius, R
o Mc, d o Mc,
[l n ==,
Aer, a ? Aer,

i o

where A = the section area

19

Stresses in Curved Beams (3)

8) Add or subtract any P/A stresses
in this section
(using superposition).

Rectangular: Circular:
F F —
= o=— w}
(ra - ri )b ﬂ-r" R

9) As a check, compare the answer to MC /1
for a straight beam with neutral axis on
the centroid and see if it makes sense.

“> T T — ——-Neutral radius, r,
" Centroidal radius, R

20
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Stresses in Curved Beams (4)

STRESS (MPa)

20 0

E L |

E | rpemes

F0F IIITIIITEF oo

r=29.81

S r=31.00 i From

[=T .

S I DAWright

40t | at U of

I XVesttelrp

straight ustralia

- 50|‘J curved !
50 [

cormpressive  tensile
The stress distribution:
1) is hyperbolic, rather than linear for a straight beam,
2) passes through zero at the neutral axis rather than at the
centroid,
3) has the highest stress at the inside radius.

21
Stresses in Curved Beams
Calculate and compare 'V'=1_03g > M
the stresses on a 2” n
diameter bar with an
applied bending
moment of 1000 in-Ib
for these cases:
1) A straight bar
M
2) A curved bar with
R =3in.
J R+{R* =1’ 0'2% __Mc,
4 a 2 " Aer, Aer,
22
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Transverse Shear

Hamrock Fig. 4.19 shows ‘;—;E:_T_:E:_E_—J_j
difference between L T
behavior of boards not glued
together (top) and boards .
glued together (bottom).
—_ I
| e e
Solid beams behave like ——————
boards glued together, and il =sinie
the interior layers see shear ®
stress along them.
The outside surfaces have nothing to constrain
them, and therefore see no shear stress.
Hamrock
Section 4.6
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Transverse Shear

is just the average shear. In reality, it has a distribution that

depends on the actual beam shape:
shear shear
stress stress

neutral |
axis

Even though we usually write transverse shear as t = P/A, that

shear
stress

-—-fx

7 3V 4v
7 — = -
// Timax 2 A @ Tmax 34

74

(a) rectangular beam (b) solid round beam

extreme fibers, is maximum on the neutral axis, and has a parabolic
distribution through the thickness.”

(c) hollow round beam

As Hamrock says below Eqgn. 4.66: “In all cases, shear stress is zero on

From http://users.wpi.edu/~cfurlong/me3320/lect06-07/Lect06-07.pdf

24
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Notes on Power

Power is the rate at which work gets done, so has units of
(Force x Distance) / Time = Work / Time.
Example: 1 HP =550 Lb x Ft/ Sec

This can also be looked at as
Force x (Distance / Time) = Force x Velocity.

If a motor is involved, it can also be viewed as
Torque x Rotational Velocity = (Force x Distance) x (Radians / Time)

1HP=550RXLbK121nj(6O%J IReV VL 63025 1n- Lb- RPM
Set k\R{ min N 27 Rad

In the Sl system, it is simply
Power (Watts) = Tw = Torque (Nm) x Rotational Speed (Radians/Sec)

Note the orderly
unit conversion.

For conversion, 1 HP = 745.7 Watts
Hamrock
Section 4.4.2
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Power Example

Horsepower: 1-1/2

Frame: 56

Shaft Diameter: 5/8"

Volts: 115 volt

Full load amps: 14.2
Phase: single

Enclosure: Open dripproof
No load speed: 3600 RPM
Reversible: yes

Service factor: 1.0
Weight: 29 Ibs.

A. If this motor didn’t slow down when delivering its full rated
power (it does), what torque would it be delivering?

B. What would the maximum stress in the shaft be then?

C. What is the efficiency (mechanical power/electrical power)
of the motor?

26
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Motor Calculations

» Torque = Power / Speed

» Electrical power (W) = Volts x Amps

27
For a NEMA D Frame motor, the frame number is how many 1/16ts of
an inch from the shaft center to base (the “D” dimension).
A size 56 frame is P vt .
56/16 = 3.5”. e P
RIGID :,lmrﬁ,:j ’ FW ¢ %\
BASE T T QAN
The standard controls u _J T
mostly the motor H?ﬂiﬁ_ Mo comaursin T L
mounting details, not £oE
the motor body R S
. . Single Phase Onfy
dimensions e
C FACE :I: -
-
ey
28
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Simple Stress Distributions

. P
* Axial load on A

a uniform bar
_P
o=t/

Describe the maximum stress: ’

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is uniform over the whole section.

3. What is the value?
Answer: ¢ = P/A

Note that all material is equally stressed.
What about E?

29
Simple Stress Distributions
 Torsional load (torque) on a uniform round bar
Tr
Tmax = 7
J = z rt
2
Describe the maximum stress:
" Note that the
1. What position along the beam? material in the
Answer: Everywhere along its length. center of the bar
2. What location in the cross section? (along its axis)
Answer: It is maximum at the outer surface. | isn't loaded very
much.
3. What is the value?
Answer: T =Tr/J
30
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Simple Stress Distributions

» Torsional load (torque) on a uniform tube

- _ T,
max J J=£(r4—}’.4)
2 o 1

Describe the maximum stress:

Removing the

1. What position along the beam? material in the
Answer: Everywhere along its length. center of the bar

2. What location in the cross section? (along its axis)
Answer: It is maximum at the outer surface. saves weight

. ) and $ without
3. What is the value~ too much loss.
Answer: t=Tr/J

31

Simple Stress Distributions

 For a uniform beam in pure bending

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

o . Note that the
2. What location in the cross section? material in the
Answer: It is maximum at the center of the bar
top & bottom surfaces. (along its axis)
) isn’t loaded very
3. What is the value? much.

Answer: ¢ = Mc/I

32
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Simple Stress Distributions

« For an “I” beam in pure bending

t

Describe the maximum stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum at the
top & bottom surfaces.

3. What is the value?
Answer: o = Mc/I

2 M
_ Mc
O max a

Removing the
material in the
center of the bar

(along its axis)
saves weight and
$ without too
much loss.

33
Non-Simple Stress Distributions
* For a cantilever beam with an end load L
F
Describe the maximum bending stress:
1. What position along the beam? W?ritnz?/gl:stéhe
Answer: At the left end of the beam. shear?
2. What location in the cross section?
Answer: It is maximum at the top and bottom faces.
3. What is the value?
Answer: ¢ = Mc/I
34
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Non-Simple Stress Distributions

lF
It is best to map out the Shear, V, M=FL@?€
and Moment, M, distribution when T
F

they vary along the beam.

!

1

| |
The Transverse Shear, for this r \F
rectangular cross section beam, is 1 l
parabolic, with a max of 1.5 X 1,4 C@q — x
shear M,
stress tRl
v
neutral |} |
daxi1s .
+
X
3V M This is why max bending
i =5 stress is at the left end.
2 A
X
(a) rectangular beam /

35

Non-Simple Stress Distributions

* For a cantilever beam with an end load F

MeFL FT&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 4

Describe the maximum transverse shear stress:

1. What position along the beam?
Answer: Everywhere along its length.

2. What location in the cross section?
Answer: It is maximum on the neutral axis (and zero

at the top and bottom faces).

3. What is the value?
Answer: t=15V/A

How do | (or do I) combine
the bending and the
transverse shear?

36
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Dealing with Several Stresses

Considering:
1. Superposition
2. Mohr’s circle

propose how to handle the bending plus shear stresses.

37

Summary

A Type of — Stress Stress
Case Loading lusteation Distribution Equations
T F
| Direct ‘F‘E”F Uniform o=1 ©
tension A
-0
F Fp
M My
2 Bending 6 =12 =+ an
%i E(M ; g Z°7
X +0
Bending moment diagram | Neyral plane
For beams ol rectangular
cross-section:
3V
T=— (12)
24 ‘
4 ‘
For beams of solid circular
cross-section:
3 Bending A
i e = 4V
% 1=+ (13)
& 3A
For wide flange and I beams
Neutral plane (approximately):
Shearing force diagram v
T=- (14)
a
£
Direct . F
] = -
4 Shear tm@ Uniform T 1 (15)
F'
1@ T _Te
5 Torsion T=z-=— (l6)
sic % Zp =7

38
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“Example Beam Loading

20 inch long
beam with
two 100lb N //%/B
loads
Beam cross Gy o 4. — 16 20
section is 1 [m = Toots ] Fisaot =l
inch square_ Click ot at area/for more details
100.00 100.00
Shear, V oo oh
(Lb) 0.00
-100.00
dv _ -100.00
ax )
Ib ~ Shear Diagram ﬂ
<400.00 400.00
Moment, M
(In.Lb.)
0.00
ar_y, ) 0-0200 o
dX [on =] Moment Diagram o
[ What stresses are where? ]
39

Calculate Amongst Yourselves

1. Show the location (along the beam) of the max stresses.

2. Show the position (in the cross section) of the max stresses
3. Calculate the max stress values.

4. Do they combine in any way? Describe.

Py Py

l l

AN _o0
aar v
X
(ny O 4. 16. 20,

40
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Stresses in a Crank Arm

Break it into pieces and
look at the FBD.

300 Ib

1800 in.lb
Moment

1200 in.lb 1200 in.lb

6 in Rod
Toraje Moment

‘\ 1 C 4in Rod

This piece hasa | | Note that the 50016 [———

bending Moment moment ‘turns This piece has a

and a twisting into a* torque bending Moment.
where the arm
Torque. bends the
corner.

41

Stresses in a Crank Arm

We already know how to do a tip-loaded cantilever. Let’s take a
look at the piece that bends and twists. Let’s slice off a thin section

near the wall:
300 Ib

Shear
300 Ib

1800 in.lb
Moment

1200 in.lb

6in Rod
Torque

enbio) 1y ooz,

300 Ib ‘

42
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Stresses in a Crank Arm

Now let’s get the stresses. At "A": Bending M = 1800 in.lb.
Torsion T = 1200 in.lb.
300 Ib [Shear V = 300 Ib, but is at neutral axis,
not on top surface.]

Shear

A
A
. Me _ (1800)(0;375) = 75 43460 psi
<>\ YT m0.75%/64  0.01553
_Tr_(20000375) 450 e

T, = =
=7 20757 /32 0.03106

X
_W @00 1200 g0

T = = =
U BENDING 34 37(0.75)% /4 1.325
Qrﬁ Trorar = T — Tamnoive = 13,582 psi

— Pure Shear

i .
i N B
At “B": Torsion T = 1200 in.lb.
Shear V =300 Ib
[Bending is at top and bottom only, not at

enbio) q;y; 00z1
N
>—l<

Shear ;

neutral axis.]
Note that at location “C”, the two shears
would ADD to 15,392 psi.

43

Stresses in a Crank Arm

For Xstress = 43.5, Ystress = 0.0, XY Shear =-14.5,
47.85, Stress2 = 0.00, Stress3 =-4.39, ShearMax = 26.12

Angle = -16.85, Stress1 =

These stresses occur at

the same point, so can

use Mohr.

A
.
A <>§
O'XI

y »
/k Me _ 43460 psi £
¢
z I
o =T ygagrps E
%=
The Mobhr circle gives:
G, = 47.846 ksi
6, = 0.000 ksi
G5 = -4.386 Ksi 30~
Face Stresses

Tyax = 26.116 ksi
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