MEEG3311 Homework 3 - Chapter 5
3.1

A $3 / 4$-inch diameter round bar is bent into the shape shown here and fixed to a wall. It is loaded at the tip with a force, F, of 100 lbs .

A. Show your Free Body Diagram with the reactions at the wall.
B. Compute and show the tensile and shear stresses at points "a" and "b".
C. Combine the stresses at each location and give the maximum principal stress at each.

You don't have to draw a Mohr circle, but it would be a good idea.
D. If the bar is aluminum ($E=10.1 \mathrm{Msi}$, Poisson $=0.33$) what is the vertical deflection at the end where F is applied? Hint: There are 3 components.
3.2

The cantilevered beam shown above has both a concentrated force, $F=4000 \mathrm{~N}$, and an end moment, $M=2500 \mathrm{Nm}$, acting on it.

The beam has a rectangular cross section with a height of 100 mm and a width of 40 mm . It is made of steel, with a modulus, $\mathrm{E}=207 \mathrm{GPa}$.
A. Using superposition, find the total deflection 1) at the tip and 2) where P is applied.
B. Calculate how large the moment, M , would need to be to have zero deflection where P is applied.

Hint: Use the Beam Deflection Tables in Hamrock Appendix D and superposition.
Hint 2: Deflection is directly proportional to the load.

