Curved Beam Stress Analysis

1) Draw a very good picture.

- Show $\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{o}}$, Area
- Show the applied Force, F

2) Calculate the centroidal radius, R, based on the section type.

(Hamrock § 4.5.3)
Rectangular: $R=\frac{r_{i}+r_{o}}{2} \quad$ Circular: $R=r_{i}+r_{c}$
3) Compute the neutral radius, r_{n}, based on the section type.

Rectangular: $\quad r_{n}=\frac{r_{o}-r_{i}}{\ln \left(r_{o} / r_{i}\right)} \quad$ Circular: $\quad r_{n}=\frac{R+\sqrt{R^{2}-r_{c}^{2}}}{2}$
4) Compute the eccentricity, $e=R-r_{n}$
5) Compute the moment about the centroidal radius, R. Here $M=F \times L$, not $F \times R$, because the force is not through the center of curvature.
6) Calculate the distances from the neutral axis to the inner and outer surfaces:
$C_{i}=r_{n}-r_{i}$ and $C_{o}=r_{0}-r_{n}$.
7) Calculate the stresses at the inside and outside surfaces:

$$
\sigma_{i}=\frac{M c_{i}}{A e r_{i}} \quad \text { and } \quad \sigma_{o}=-\frac{M c_{o}}{A e r_{o}} \text {, where A }=\text { the section area }
$$

8) Add or subtract any P / A stresses (using superposition).

Rectangular: $\sigma=\frac{F}{\left(r_{o}-r_{i}\right) b} \quad$ Circular: $\sigma=\frac{F}{\pi r_{c}^{2}}$
9) As a check, compare the answer to MC / I for a straight beam with neutral axis on the centroid and see if it makes sense.

