Curved Beam Stress Analysis

- 1) Draw a very good picture.
 - Show r_i, r_o, Area
 - Show the applied Force, F
- Calculate the centroidal radius, R, based on the section type. (Hamrock § 4.5.3)

Rectangular: $R = \frac{r_i + r_o}{2}$

Circular:
$$R = r_i + r_c$$

3) Compute the neutral radius, r_n , based on the section type.

Rectangular:
$$r_n = \frac{r_o - r_i}{\ln(r_o/r_i)}$$
 Circular: $r_n = \frac{R + \sqrt{R^2 - r_c^2}}{2}$

- 4) Compute the eccentricity, $e = R r_n$
- 5) Compute the moment about the centroidal radius, R. Here $M = F \times L$, not $F \times R$, because the force is not through the center of curvature.
- 6) Calculate the distances from the neutral axis to the inner and outer surfaces: $C_i = r_n - r_i$ and $C_o = r_o - r_n$.
- 7) Calculate the stresses at the inside and outside surfaces:

$$\sigma_i = \frac{Mc_i}{Aer_i}$$
 and $\sigma_o = -\frac{Mc_o}{Aer_o}$, where A = the section area

8) Add or subtract any P/A stresses (using superposition).

Rectangular: $\sigma = \frac{F}{(r_o - r_i)b}$ Circular: $\sigma = \frac{F}{\pi r_c^2}$

9) As a check, compare the answer to MC / I for a straight beam with neutral axis on the centroid and see if it makes sense.