
Dr. D. B. Wallace

Basic Stress Equations
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Note:  The maximum shear stress for common cross sections are:

Cross Section: Cross Section:

Rectangular:

     

τmax = ⋅3 2 V A Solid Circular: τmax = ⋅4 3 V A

I-Beam or
 H-Beam: webflange τmax = V Aweb

Thin-walled
tube: τmax = ⋅2 V A
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Torque or Torsional Moment:

Solid Circular or Tubular Cross Section:

r = Distance from shaft axis to point of interest
R = Shaft Radius
D = Shaft Diameter

J
D R

J
D D

for solid circular shafts

for hollow shafts
o i

=
⋅

=
⋅

=
⋅ −

π π

π

4 4

4 4

32 2

32

e j
Torque

z

x

y

T

"Cut Surface"

ττ

τ =
⋅T r

J

τ
π

τ
π

max

max

=
⋅

⋅

=
⋅ ⋅

⋅ −

16

16

3

4 4

T

D
T D

D D

for solid circular shafts

for hollow shaftso

o ie j

Rectangular Cross Section:
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a > b

Cross Section:

Method 1:   

τ τmax .= = ⋅ ⋅ + ⋅ ⋅1
2 23 1 8T a b a bb g e j ONLY applies to the center of the longest side

Method 2:

τ
α
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a b

a/b αα1 αα2
1.0 .208 .208
1.5 .231 .269
2.0 .246 .309
3.0 .267 .355
4.0 .282 .378
6.0 .299 .402
8.0 .307 .414

10.0 .313 .421
∞ .333 ----

Use the appropriate αα from the table
 on the right to get the shear stress at
 either position 1 or 2.

Other Cross Sections:

Treated in advanced courses.
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Bending Moment
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where: Mx and My are moments about indicated axes

y and x are perpendicular from indicated axes

Ix and Iy are moments of inertia about indicated axes

Moments of Inertia:
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Parallel Axis Theorem:
I = Moment of inertia about new axis

I I A d= + ⋅ 2

centroid

d

new axis
Area, A I  = Moment of inertia about the centroidal axis

A = Area of the region
d = perpendicular distance between the two axes.

Maximum Bending Stress Equations:
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The section modulus, Z, can be found in many tables of properties of common cross sections (i.e., I-beams,
channels, angle iron, etc.).

Bending Stress Equation Based on Known Radius of Curvature of Bend, ρρ.

The beam is assumed to be initially straight.  The applied moment, M, causes the beam to assume a radius of
curvature, ρρ.

Before:

After:

M Mρρ

σ
ρ

= ⋅E
y

E = Modulus of elasticity of the beam material

y = Perpendicular distance from the centroidal axis to the
point of interest (same y as with bending of a
straight beam with Mx).

ρρ = radius of curvature to centroid of cross section

3



Basic Stress Equations Dr. D. B. Wallace

Bending Moment in Curved Beam:

Geometry:
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A = cross sectional area

rn = radius to neutral axis

r  = radius to centroidal axis

e = eccentricity
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Area Properties for Various Cross Sections:
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Bending Moment in Curved Beam (Inside/Outside Stresses):

Stresses for the inside and outside fibers of a curved beam in pure bending can be
approximated from the straight beam equation as modified by an appropriate
curvature factor as determined from the graph below [i refers to the inside, and o
refers to the outside].  The curvature factor magnitude depends on the amount of
curvature (determined by the ratio r/c) and the cross section shape.  r is the radius
of curvature of the beam centroidal axis, and c is the distance from the centroidal
axis to the inside fiber.
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