
Sampling

If you have a large population and a variable that you want to explore, you can think of
picking an individual at random out of the population as a probability experiment and the
variable that you measure as a random variable. This is not what we are going to do here.
Instead, we will take a sample. That is, we will consider a probability experiment which is to
pick n individuals at random from the population, so that our sample space is in fact the set of
all possible samples. Our random variable will be the average value of the quantity of interest
on all the individuals, or sometimes some other statistic for the sample. The distribution of
this random variable is called the “sampling distribution.

1 The Mean

If we take a sample of n individuals chosen at random from the population and average the
value of some variable X for these n individual, where X has a mean of µ and a standard
deviation of σ, the resulting random variable X

• has mean µX = µ

• has standard deviation σX = σ/
√
n

• looks more like a normal curve than the distribution of X, and approaches the normal
curve as n gets larger.

So if n is large enough we can assume that the sampling distribution is normal. How large is
large enough?

Rules of Thumb to Assume Normality
The distribution X may be assumed to be approximately normally distributed if either

• X itself is normally distributed OR

• the distribution of X is symmetric and n ≥ 15 OR

• n ≥ 40.

Some people prefer n ≥ 30 in the last case, and standards for judging a distribution normal
vary widely.

2 Proportion

Suppose instead of a random variable, we have an event. That is, instead of a quantity that
we can measure for each individual in the population, we have a something which is either
true or false for each individual. Then we can take a sample of n individuals and count how
many of them have this property. Or we could divide that number by n to get the proportion



of individuals in the sample with that property. The distribution of the counts as we run over
all samples is a binomial distribution. If p is the proportion of the whole population with this
property, we have the count of successes in the sample

• has mean np

• has standard deviation
√
p(1− p)n

• approaches a normal distribution as n gets larger.

The distribution of p̂, the proportion of successes in each sample then

• has mean p

• has standard deviation
√
p(1− p)/n

• approaches a normal distribution as n gets larger.

How big does n need to be? Not very if p is close to 0.5, but larger if p is close to 1 or 0 the
usual rule is

Rules of Thumb to Assume Normality
The distribution p̂ may be assumed to be approximately normally distributed if both

• np > 5 AND

• n(1− p) > 5.

3 Finite Population Correction Factor

All of the above discussion assumed that when you sample you do it with replacement. That
is, once an individual is chosen to be in the sample once, they can just as well be chosen again
later. This would be like dealing out a poker hand by dealing a card, writing its value down,
putting it back in and shuffling, dealing another card, writing .... This is not what generally
happens in real sampling, which is usually done without replacement. Just like when you draw
an Ace it lowers your chance that the next card will be an Ace, when you pick one individual
out of a population without replacement it changes the probabilities for the next choice. In
fact the only effect this has on the above formulas is that we multiply the sample standard
deviation in each case by √

N − n
N − 1

where N is the size of the population. If the population is much larger than the sample size
(say 100 times as large) this ha no noticable effect. This is the situation we will almost always
be in. If the population is small however, you should add this factor into your formulas.


