Spectral Graph Theory - Problem Set 2

- 1. Suppose that G is a graph with an even number of vertices and with a *Hamiltonian cycle*, a path of edges that visits every vertex once except it ends where it started). Prove that the largest eignevalue of the Laplacian of G is at least 4. Hint: use the Udell notes Sect. 3.3
- 2. If A is a matrix with the entries in each column summing to 1 and \mathbf{w} is a probability vector show that $A\mathbf{w}$ is a probability vector.
- 3. Suppose \mathbf{w} is an eigenvalue for the *connected* graph Laplacian of graph G with eigenvalue 0. Show that \mathbf{w} has all entries equal by considering the vertex with the largest entry and looking at what the effect of the Laplacian is on its value.
- 4. Prove that every connected graph has a one-dimensional eigenspace with the 0 eigenvalue, and that there is always an eigenvector which is a probability vector (all entries are ≥ 0 and they sum to 1).
- 5. Suppose $\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdot + c_n \mathbf{v}_n$ where the c_i are scalars and each \mathbf{v}_i is an eigenvalue of the Laplacian with eigenvalue λ_i . Show that the solution to the heat equation for \mathbf{w} with parameter α is

$$c_1 e^{-\alpha \lambda_1 t} \mathbf{v}_1 + c_2 e^{-\alpha \lambda_2 t} \mathbf{v}_2 + \dots + c_n e^{-\alpha \lambda_n t} \mathbf{v}_n.$$

- 6. Show that for **w** as in the previous problem the limit as $t \to \infty$ of the solution of the heat equation with initial condition **w** is $c_1 \mathbf{v}_1$.
- 7. If **w** is a vector and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is a complete set of orthogonal eigenvectors for the Laplacian (remember we can always choose eigenvectors orthogonal because it is symmetric) show that we can write $\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ where each $c_i = \langle \mathbf{w}, \mathbf{v}_i \rangle / \langle \mathbf{v}_i, \mathbf{v}_i \rangle$. Hint, observe you can write **w** in terms of the \mathbf{v}_i and then take the inner product.