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1 The Jones Polynomial

1.1 Preliminaries

The material in the first two subsections is quite standard. A good reference
is [BZ85]. The third subsection is part of the well known folklore of the field.
It is implied by the stronger results of [Tur].

1.1.1 Links and Knots

We will work in the piecewise-linear category unless explicitly stated other-
wise.

Definition 1 A link is a one dimensional submanifold of S3 (i.e., a disjoint
union of circles). Two links are equivalent if there is an isotopy of S® which
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takes one to the other. That is, there is a map fi(z), forz € S® andt € [0, 1],
such that for each t the map f; is a homeomorphism of S® to itself, fy is the
identity and f, takes one link homeomorphically to the other.

There are two other equivalent definitions of link equivalence, as is proven
in [BZ85, Prop. 1.10] (the proposition is stated for knots, but applies as
well to links). The first is that two links are equivalent if there exists an
orientation preserving homeomorphism of S® which takes one to the other.
The second is that two links are equivalent if one can get from one to another
by a sequence of A moves and their inverse. A A move replaces a straight
segment AB of the link with two line segments AC and C B, where C is such
that the triangle ABC does not intersect the link except along AB.

Notice one can remove a simplex which does not intersect the link (after
taking a subdivision if necessary) and identify the remainder with R3. Thus
in its most concrete form, a link is a collection of polygons in R3 modulo the
A*! moves.

A knot is a link with one component. The unlink is the unique link with
no components. The unknot is the knot which bounds a disk. The distant
union of two links L, and Lo, written L; IT Lo, is their union in the connect
sum of their two respective copies of 5°.

An oriented link is just one in which the one dimensional manifold is
equipped with an orientation, and equivalence is the same except the isotopy
/ homeomorphism / sequence of moves is required to take one link to the
other in an orientation preserving fashion.

A link L is the connect sum (or product) of two links L; and Lo, written
Ly#L,, if there is a plane which intersects it in two points, and the link
on one side of the plane (connecting those two points along the plane) is
equivalent to L;, and the link on the other side is equivalent to L,. One can
form the connect sum of two oriented links in only one way if one chooses a
component of each to connect sum along, two ways if they are unoriented.

1.1.2 Link Projections

Consider a link as a polygon in R?, and consider a plane through the ori-
gin. The projection of the link onto the plane is called regular if all but
finitely many points have a one point preimage, and those that don’t have
two points in their preimage, neither of which is a vertex. Given such a
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regular projection and a choice of normal directions to the plane, the image
of the projection plus an indication at each double point (called crossings)
of which line segment goess over the other completely determines the link
equivalence class. We draw these as in Figure (1), where the lower strand at

each crossing is indicated by a short gap. Orientations are indicated by an
arrow on each component.

&/

Figure 1: A typical link projection

Theorem 1 (Reidemeister) [BZ85, Prop. 1.12, 1.14] Every projection
can be rotated by an arbitrarily small amount to become a regular projection.
Two regular projections are of equivalent links if and only if they can be con-
nected by planar isotopy and a sequence of Reidemeister moves I-III pictured
below in Figure (2) and their mirror images.

T 0 |
Tyl
ISR

Figure 2: Reidemeister moves

Pf: (Sketch) The set of projections with normal direction can be identified
with S2. It is easy to see that the set of nonregular projections corresponds
to a finite collection of curves on S%. Thus the first statement is clear.

The if part of the second statement is also clear. Now two different
projections of the same link can be connected by a path in S? crossing the
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bad curves transversely. Each such crossing amounts to one of the moves
I-II1, and the rest of the movement is planar isotopy. Going from one link to
another with the projection fixed involves a sequence of A*! moves, which
look like planar isotopy and moves II and III on the projection. ]

1.1.3 Framed Links

A framed link is defined just like a link, except it is homeomorphic to a union
of copies of S! x I rather than of S!. The underlying link of a framed link
is the image of all copies of S! x {0} under such a homeomorphism. Given
a regular projection of the underlying link and an explicit homeomorphism
of each component with S! x I, one can clearly isotope the framed link so
that {0} x I is parallel to the plane for all § of each component but a little
segment, which looks like Figure (3). Thus a framed link is determined by a

Figure 3: A projection of a framed link with the twist confined

projection of the underlying ordinary link together with the winding number
for each component with respect to the normal to the projection. Since a
type I Reidemeister move changes this winding number by +1, it is always
possible to find a projection for which this winding number is zero. Such a
projection is called a regular projection of the framed link.

Theorem 2 Two reqular framed link projections come from the same framed
links if and only if they can be connected by planar isotopy and a sequence of
the three mowves framed Reidemeister pictured in Figure (4) and their mirror
images. The same applies as before to oriented framed links.

Lemma 1 Let L be a link projection with two pieces A and B as pictured
in Figure (5) and let L' be the same projection with A and B interchanged.
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Figure 4: Framed Reidemeister moves

Then L and L' can be connected by a sequence of framed Reidemeister moves
(in fact by a sequence of moves II and III).

—— S
/9 \ f__//’J
< A ‘B

Figure 5: Interchangeable pieces of a framed link projection

Lemma 2 The move pictures in Figure (6) and its mirror image are the
composition of a sequence of framed Reidemeister moves (in fact, of moves

\

Figure 6: Canceling opposite twists

Proof of Lemmas: an ezercise.

Pf:(of the Theorem)

The if part is clear. For the other direction, consider two projections of
the same framed link. They are in particular projections of the same ordinary
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link. Thus they are connected by a sequence of ordinary Reidemeister moves.
Choose such a sequence from one to the other. Replace each application of
move I which creates a twist with an application of Lemma (2) creating
two twists. If an application of move I would delete a twist, do not do it.
The result is a sequence of framed Reidemeister moves going from the first
projection to a projection which looks just like the second except that it has
some additional twists. But this projection with the additional twists has the
same framing as the first projection (being connected by a sequence of framed
Reidemeister moves) which is in turn assumed to have the same framing as
the second projection, so therefore the number of extra positive twists (those
corresponding to a counterclockwise rotation) minus the number of negative
twists must be zero.

Now, if there is at least one extra positive twist, then there is at least
one extra negative twist, so an application of Lemma (1) can put them next
to each other. An application of framed Reidemeister move I if necessary
can make them look as in Figure (6), and an application of Lemma (2) will
cancel them. Repeating this until there are no more twists gives a sequence
of framed Reidemeister moves connecting the first and second projections. m

1.2 The Bracket and Jones Polynomial

The Kauffman bracket was introduced by Kauffman in [Kau]. All of the
material in the first subsection appears in [Kau88]. The Jones polynomial
appears first in [Jon85].

1.2.1 The Kauffman Bracket

Given a projection £ of a framed (unoriented) link L, a state is a replacement
of each crossing in the projection with two parallel strands in one of two
possible ways. That is, replacing X with H or V in Figure (7)

Thus a state is a projection of a distant union of unknots. If s is a
state, let n(s) be the number of such unknots, and let m(s) be the number
resolved into horizontal strands (labeled H in Figure (7)) minus the number
of crossing resolved into vertical strands (labeled V in the figure), where
horizontal and vertical are defined with respect to a viewpoint that makes
the upper strand go from the upper left to the lower right. Now define the
Kauffman bracket of a projection, (£), to be a polynomial in variables A and
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where the sum is over all states of L.

Proposition 1 The Kauffman bracket satisfies the equations below, where
they are understood to relate the bracket of projections which are identical
except in a small disk, where they look as pictured in Figure (7).

(X) = A(H) + A7(V) (2)
(0) = (A% — A7%)(U) (3)
— A7(Ty) = (I) = —A¥(T.) (4)

Pf:To prove Equation (2), there is a one-to-one correspondence between -
the states of the left hand projection and the union of the states of the two
right hand projections. Specifically, a state which resolves the pictured cross-
ing horizontally gets sent to the state of the first right hand projection with
all the same resolutions outside the dotted circle. A state which is resolved
vertically gets sent to the corresponding state of the second projection. This
map preserves n(s) and changes m(s) by £1, depending on whether it’s going
to the second or first projection. From this the result follows.

For Equation (3) the one-to-one map sends a state of the left side to the
state of the right side with the same resolutions. The map preserves m(s)
and decreases n(s) by 1. From this the result follows.
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Equation (4) follows by applying the above two equations to the crossing
shown.

Proposition 2 The Kauffman bracket is the unique function on framed link
projection satisfying Equations (2) and (3) of the previous proposition whose
value on the unlink is 1. In particular, these facts give an effective procedure
for computing the bracket of any framed link projection.

Pf:By induction on the number of crossings. If there are no crossings,
it is a standard projection of a distant union of unknots, and thus its value
can be computed from Equation (3) and the value of the unlink. If the
projection has n + 1 crossings, choose one and apply Equation (2) to relate
its bracket to the bracket of two projections with n crossings. By induction,
this determines its bracket. u

Theorem 3 The Kauffman bracket has the same value on all projections
of a single framed link L. Thus it is a framed link invariant, and we shall
henceforth use (L) to refer to this value common to all its projections.

Pf:We shall use Theorem (2), and show that this quantity does not change
under one of the three framed Reidemeister moves. Of course, it does not
change under planar isotopy.

To prove invariance under move I, simply apply Equation (4) to both
sides of the equation.

To prove invariance under move II, apply Equation (2) to both crossings
on the left hand side to get four projections, one of which has an extra
component. Apply Equation (3) to this projection, and then notice that all
the projections cancel out except the one which corresponds to the right hand
projection.

To prove invariance under move III, apply Equation (2) to resolve the
bottom crossing on one side and the top crossing on the other. The equality
of the two sides now follows from the invariance under move II. [ ]

Proposition 3 If L and L' are mirror images, then (L) is (L') with A™?
substituted for A.



Pf:If we define a new invariant (L)' to be (L'), Notice that (-)’ is one
on the unlink. Furthermore, the fact that (-) satisfles Equations (2) and
(3) means that (-)’ satisfies these equations with A~! substituted for A. By
Proposition (2), this means (L)’ is (L) with A~! substituted for A. ]

Proposition 4 (L; IT Ly) = (Ly) - (Ls).

Pf:We shall prove that the bracket is multiplicative on projections which
are disconnected as graphs, by induction on the number of crossings in one
of the components.

If £, has no crossings, it is a projection of a distant union of unknots,
and by Equation (3) and the value of the bracket on the unlink the result
follows. If £, has n+1 crossings, use Equation (2) to resolve one. The result
follows by induction. ]

Proposition 5 If L can be written in some way as the connect sum of links
Ly and Ly, then (L) = (L) - (La)/(—A? — A72).

Pf:Choose a projection of L so that there is a line which crosses the
projection in exactly two points and divides it into a projection of L; and a
projection of L,. As above we shall proceed by induction on the number of
crossings in the projection of L.

If it has no crossings, L, is a distant union of unknots, and the result
follows from Equation (3) and the normalization of the unlink. If L; has

n + 1 crossings, apply Equation (2) to one of them. The result follows by
induction. "

1.2.2 The Definition of the Jones Polynomial

Let L be an oriented link, and let £ be a projection of L. Of course £
determines a framing on L. Every crossing of £ can be labeled as positive or
negative according to whether it looks like L, or L_ respectively in Figure
(8). That is, a crossing is positive if one strand is pointed counterclockwise
with respect to the other. We define the writhe of £, w(L), to be the number
of positive crossings minus the number of negative crossings. The reader may
check that the writhe is unchanged by any of the framed Reidemeister moves,
and thus is a framed link invariant.
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Figure 8: Fragments of projections occurring in the Jones skein relation

Theorem 4 The quantity (—A)~3*E)(L) is an invariant of L, where (L)
means bracket of the unoriented projection.

Pf:Since the bracket and the writhe are framed link invariants, so is this
quantity. Thus we only have to check invariance under the first unframed
Reidemeister move. The left hand side as pictured in Figure (2) has writhe
one more than the right hand side, but by Equation (4), the bracket of the
left hand side is —A3 times that of the right. The combined quantity is thus
unchanged. The same argument applies to the mirror image. ]

Definition 2 The Jones polynomial of a link L, V;(t), is the polynomial in
tY/% and t=Y/* given by substituting t/* in for A in (—A)=3 (L)

Corollary 1 The Jones polynomial is an invariant of oriented links.
Proposition 6
(a) The Jones polynomial satisfies the skein relation
WL -tV = (2 — T, (5)

where Ly, L_, and Lo have projections as pictured in Figure (8) and
are identical outside the dotted circle. Also it satisfies

Vu = 1
VO - —t1/2—t—1/2 (6)

where U 1s the unlink and O is the unknot.

(b) The above skein relation and normalization conventions, Equations
(5) and (6), completely determine the Jones polynomial and give an
effective algorithm for computation from a link projection.

11



Pf:

(a)

(b)

By taking a linear combination of Equation (2) and Equation (2) ro-
tated 90°, we see the Kauffman bracket satisfies

—ATMLL) + A(Ly) = (A% — A%)(Lo).
hence '

—ATH (=4O L) + A(—A) (o)L, )
= (4% - A7) (-A)* P (L)

or

ATH=A)TOUENE, ) — A% ) ST
= (47— A7)(—4) (L)

Substituting t1/* gives the correct equation.

Equations (6) follow from the definition.

We will first argue that there is an algorithm to turn any projection
of any link into a projection of a distant union of unknots by changing
a subset of the crossings. To do this, start at some point on some
component, and travel along the component until you return to that
point. Then move to a point on a different component and travel along
it. Repeat this until you have traveled along the entire link. Each
time you come to a crossing for the first time, change the sign of the
crossing if necessary to make the strand you are on go under. When .
you are done, the link projection will be layered. In particular, the link
of which it is a projection may be isotoped so that each component gets
monotonically closer to the viewer in the direction you traveled, except
for immediately before each starting point, and so that each succeeding
component is closer to the viewer than all of each preceding component
(in the order in which they were traveled). Thus the link is a distant
union of unknots.

Define the unlinking number of a projection to be the least number of
crossings which must be changed to make it a projection of a distant
union of unknots. Define the complexity of the projection to be the
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unlinking number plus the square of the number of crossings. We shall
prove the claim by induction on the complexity of a projection.

If a projection has unlinking number zero (which includes the base case
when the complexity is zero), it is a projection of a distant union of n
unknots. But if Oy, is the distant union of n unknots, and O, O_, and
Oy are the projections of O,, O, and O, shown in Figure (9), then
the skein relation Equation (5) says t™'Vo, —tVo, = (¢/2—t"Y%)Vo .,
so Vo,,, = (=t¥/2 =t7¥/%)Vg,. Thus by induction (using Equation (6)
as the base case), Vo, = (—t/? —t~/2)",

If the complexity is nonzero and the unlinking number is zero, apply
the previous paragraph. If the complexity is nonzero and the unlinking
number is nonzero, there is a crossing which when changed reduces the
unlinking number. Call this link Ly, call the link with this crossing
reversed Lz, and call the link with that crossing smoothed to parallel
strands Lo. Then the skein relation, Equation (5), says

Vie = FEFVy, F 2 — 7/, 7)

Therefore Vi, is determined by Vi_ and Vi,. The first of these links
has smaller complexity because it has the same number of crossings and
smaller unlinking number, the second because it has one fewer crossings
and certainly its unlinking number is less than its number of crossings.
Thus by inductive hypothesis their Jones polynomials, and hence V7,
can be computed from these relations.

AEADQO 0.0 = ~/3'/C\’) 0.0 +AC0H0..0

n - -1
Figure 9: Inductive computation of Vo

1.2.3 Properties of the Jones Polynomial
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Proposition 7 The Jones polynomial is of the form (tY/2)"P(t,t~1), where
n is the number of components and P(t,t™!) is a polynomial in t and t~1.
Thus Vi,(t) is ‘almost’ a Laurent polynomial in t.

Pf:Again, by induction on the complexity of the projection. If the un-
linking number is zero, the link is a distant union of n unknots, and as noted
above, its Jones polynomial is t*/?(—1—¢=1), so it is of the correct form. If
the unknotting number is not zero, pick a crossing which will reduce it and
apply the skein relation. Both the resulting projections have lower complex-
ity and thus the claim applies to them. Thus writing V;_ = t™/2P;(t) and
Vi, = t"/2Py(t), Equation (7) says

Vi, = FE/2%2P (4) 5 2t D/2[eF (] — =1 By (o).

Since L= has the same number of components as Ly, n = ny, and since L,
F =+, )

has one more or fewer, n = (ny + 1) mod 2. Thus V, is of the correct form.
n

Proposition 8 Vi, (t) = Vi, (¢) - VL, (%).

Pf:The Kauffman bracket is multiplicative under distant unions by Propo-
sition (4) and the writhe is additive. u

Proposition 9 If L can be written in any way as a connect sum of L, and
Ly then Vi(t) = Vi, (t) - Vi, (t) /(=2 — t=1/2),

Pf:By Proposition (5) and the additivity of writhe under connect sum. m

Proposition 10 Reversing the orientation of every component of L does not
change VL(t).

Pf:Let L' be L with every component reversed. Considering V1/(t) as
an invariant of L, notice that the skein relation and the two normalization
relations hold true. Thus by Proposition (6b), it is equal to V(¢). n

Proposition 11 If L' is the mirror image of L, Vi(t) = Vi, (t71).

Pf:By Proposition (3) and the fact that the mirror image of a projection
has the negative of its writhe. ]
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2 Tangle Representations

2.1 Tangles
Tangles are discussed in [FY89] and [RT90].

2.1.1 Tangles and Their Projections

Let the variables 7 and 7 represent arbitrary sequences of + and —, let D
be the unit disk in C, and let Dj be the unit disk with a sequence of evenly
spaced distinguished points along the z-axis from —1 to 1 with orientations
corresponding to 7. An (f,7) tangle is an oriented one dimensional sub-
manifold with boundary of the cylinder D x I, which intersects D x {0}
and D x {1} exactly at the boundary points, and such that D x {0} and
D x {1} with these boundary points distinguished are exactly D; and Dy
respectively. The distinguished points on D; and D, are called strands. Two
(R, ™) tangles are considered the same if an isotopy of D x I takes one in an
orientation preserving fashion to the other, such that it continues to be an
(n, ) tangle throughout the isotopy.

Unoriented tangles are defined the same way, except that 7 and 7 rep-
resent nonnegative integers and D; contains just an evenly spaced sequence
of unoriented points. Framed tangles are also defined the same way, except
that the components are homeomorphic to S* x I and I x I, and {0} x I and
{1} x I are required to lie on the z-axis at the top or bottom (with {0} x [0, 1]
and {1} x [0, 1] imbedded positively into the z-axis).

Tangles form a category. Recall that a category consists of a set of objects
and a set of morphisms. Each morphism has associated two objects called its
domain and range, and if domain(A) = range(B) there exists a composition
morphism A o B with domain that of B and range that of A. Composition
must be associative, i.e., (Ao B)oC = Ao (B o () where defined, and to
each object a there must correspond an identity morphism 1,, with domain
and range a and 1, 0 A = A, B o1, = B where defined.

The objects for the tangle category are sequences #, morphisms are tan-
gles (up to equivalence). The domain of an (#,7) tangle is 7, the range is
m. The composition Ao B is formed by mapping B’s D x I into D x [0, 1/2]
and A’s into D x [1/2,1]. It is easy to check that this product is well defined
and associative, and that Dj x I is 1;. We will draw tangles with [0, 1] going
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from the bottom of the page to the top, so that Ao B has A on the top, and
if 7 and 77 have all positive entries, then an (7, 77) tangle has all strands
going up.

Tangles in fact form a strict monoidal category. That is, they admit a
tensor product functor. The tensor product of 7+ and 7 is the composition
7 followed by . The tensor product of two tangles A and B is formed by
gluing A and B into X x I and Y x I respectively, where X and Y are tangent
circles in D with centers on the z-axis, sized so that the distinguished points
are equally spaced. See Figure (10).

S e o

&

\

Figure 10: An example of the tensor product functor

As before it is easy to check that the tensor product is well defined and
associative. Also, (A® B)o (C® D) = (Ao C) ® (B o D) when both sides
are well defined. The empty object 0, and the empty (0,0) tangle are the
identities for tensor product.

Links in $° can be naturally identified with (f), f)) tangles, by imbedding
D x I in S%. Tensor product and composition both correspond to distant
union.

We will find it convenient to consider labeled tangles. These are tangles
which have an element of some label set A associated to each component |
(closed or open). Labeled tangles form a strict monoidal category, with
objects being sequences of labeled oriented points and composition and tensor
product working as before.

Imbedding D x I in R3, one can project a tangle onto any plane, except
that we require that the normal chosen have positive inner product with the
vector (7,0) in D x I, and that the image of the tangle lie between the image
of the z-axis x{0} and the z-axis x{1}. A regular projection is defined as
before.

Theorem 5 Any tangle projection can be rotated slightly to a regular projec-
tion. Two regular (oriented, unoriented, framed oriented, framed unoriented)

16



tangle projections come from the same tangle class if and only if they can be
connected by a sequence of (oriented, unoriented, framed oriented, framed
unoriented) Reidemeister moves of Figures (2) and (4) and their mirror im-
ages, as well as planar isotopy which keeps the image of the tangle between
the images of the two x-azes.

Pf: (Sketch) The argument is the same as in Theorem (1). The one differ-
ence is the allowable projections do not form a sphere, they form a subspace
of it which is topologically a disk. ]

2.1.2 Generators and Relations

Viewed as projections modulo the Reidemeister moves, it is clear that every
tangle can be written as a composition of very simple tangles, which are
tensor products of finitely many generating tangles. Furthermore, a complete
set of relations can easily be written. Let A through £ be the projections of
unoriented tangles shown in Figure (11).

N A
LB s p £

Figure 11: Generating tangles

Theorem 6

(a) Every (framed or unframed) unoriented tangle is a composition of
tangles of the form X @ Y ® Z, where X and Z are tensor products of
some number of factors € and'Y is one of A through £.

(b) Two products of generators are in the same unframed tangle class
if and only if they can be related by a sequence of the following mowves,
where the moves are understood to apply if both are tensored on the left
and right by any number of factors £.

R
N
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IVXolL =X = 12 o X where X is any generator and Iyandl, are
the identities of its domain and range respectively. (X ®I1)o(I,®
W)= (I3 W)o(X ®1) if I, and I3 are the identities of X’s
domailand range and Iy and I are the identities of W's domain
and ranges.

WS )

w2 N A

(c) The above claim applies to unoriented framed tangles if I 1s replaced
by

(d) replacing A through £ with the fourteen oriented tangles gotten by
giving each of them orientations gives a set of generators for (framed
or unframed) oriented tangles. The above relations for framed and un- -
framed unoriented tangles gives a complete set of relations for framed
and unframed oriented tangles if in each one every possible orientation
is substituted.

Pf:

(a) Consider a projection of a tangle, and view it as sitting inside I x I, with
the top and bottom boundaries identified with the range and domains
of the tangle respectively (just as we always draw it). Suppose the
projection has the property that each vertex and crossing occurs at
a different height. Separating the projection along a horizontal line

18
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Figure 18: Definition of X and Y

as is Equation (10), and the last equation of Relation III now translates easily
to Equation (12). =

Remark 1 The identification of V_y with VI, is convenient for computation,
but it should not be mistaken for a canonical identification. In particular, One
could have chosen the bilinear form which gives that identification to be F(D)
instead of F(C) (in this case the operator associated with F(C') would have
been qb;l ). One may take ¢y to measure the failure of these two identifications
to agree.

2.2.3 Extending the Label Set

Let F be a tangle representation with label set A and let A’ be another label
set. Suppose G is a function which takes each sequence of signed elements
of A’ to a sequence of signed elements of A in such a way that 0 goes to 0
and tensor products are preserved, and takes each tangle labeled by A’ to a
tangle labeled by A whose domain and range are the image of the domain and
range of the original tangle, in such a way that G(T' 0 S) = G(T') o G(S) and
G(T®S) =G(T)®G(S) and G(1,) is the appropriate identity morphism (i.e.,
it is a functor between these two monoidal categories). Then it is immediate
from the definition that FG is a tangle representation with label set A’.

For example, Let A’ be A together with a new label 1, and let G take
a tangle T labeled by A’ to the tangle formed by deleting every component
labeled by 1. It is clear that this is well defined on tangle classes and is a
functor. See Figure (19) for an example. The label 1 is called the trivial
label. One can check that Vi =F.

Similarly, let A’ be a label set which contains every label in A as well as
a new label \* for each label A € A. Let G send each tangle T labeled by A’
to the tangle formed by reversing the orientation of each component labeled
by A* and relabeling it by A. See Figure (19) for an example. Again this is a
functor and produces a tangle representation labéled by A’. The label A\* is
called the dual label to A. Notice that Viy. = Vay.
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between each of these heights, we have written the tangle as a product
of tangles each one of which clearly corresponds to one of the generators
given. But any projection which does not have this property can clearly
be isotoped slightly so that it does (by an argument similar to that used

in Theorem (1)). Thus every tangle is equivalent to a product of the
generators. -

If T is a product of tangles, than it is clear that we can find a projection
of T with every crossing and vertex at a different height, and such that
the product of generators gotten from this projection is exactly the
product of generators started with, perhaps with copies of the identity
tangle interposed. So we need only show that one can connect any two
projections of a given tangle class by a sequence of the given relations,
where they are interpreted as saying that there is one vertex between
each dotted line. This involves showing that these relations generate
all planar isotopy, and that they generate all Reidemeister moves.

A planar isotopy will only change the sequence of generators if a vertex
is added or removed from a straight line segment or the order of the
heights of two consecutive vertices or crossings is switched. A vertex
being added or removed corresponds to adding or removing the identity,
which is the first half of relation IV. If the two points passing each other
do not share a common line segment, then the change in generators is
just the second half of relation IV (see Figure (12) for an example).
If they share a common line segment, then that segment must be flat

‘_( I'n Fl -- N
S - o
Figure 12: Commuting generators being moved past each other

at that point. Thus it corresponds to a line segment moving from
downward to upward or vice versa, as pictured in Figure (13). This is
easily seen to be a composition of relations V and VI.

Given any Reidemeister move, it is clearly possible by planar isotopy
to make the two projections it connects look like two of the products
of generators pictured in relations I-III. This completes the proof.
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Figure 13: A line segment going from downward to upwards

(c) Immediate from the definition.

Corollary 2

(a) The tangles A and C-E form a minimal set of generators for the
unoriented tangle category, with the following relations, I replacing I
in the framed category.

II

I

IV Xol, =X = 1,0 X where X s any generator and I andl, are
the identities of its domain and range respectively. (X @ I) o (I3 ®
W)= (I3 W)o (X ®I) if I, and I3 are the identities of X'’s
domail and range and I, and Iy are the identities of W's domain
and ranges.
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VI

(b) The tangles given in Figure (14) are a minimal set of generators for
the oriented tangle category, with the following relations, I' replacing
I in the framed category.

I

T

IV X oI, = X = I 0 X where X is any generator and Iandl, are
the identities of its domain and range respectively. (X @ I1)o (I, ®
W) = (I3 W)o (X ®I4) if I and I3 are the identities of X'’s
domail and range and I and I, are the identities of W's domain
and ranges.

VI
Pf:

(a) Notice B is equal to either of the products of minimal generators oc-
curring in relation VI. It is the easy to check that relations V and VI of
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A B ¢ Dp & F & H

Figure 14: Minimal generators for oriented tangles

Theorem (6a) follow from relations V and VI here. Thus these relations
suffice to show the equivalence of any product of minimal generators
related by planar isotopy. Now it is easy to show that relations I-I1I of
the theorem follow from relations I-1II above and planar isotopy. The
one special case is the second equation in relation III, which follows
from the first by a rotation and an application of relation II.

(b) In Figure (15) each of the generators not given in Figure (14) is ex-
pressed in two different ways in terms of the minimal set of generators
(mirror images are defined by the mirror image of the corresponding
definition). The equality of those expressions follows from V and VI
With this in hand, Relations V and VI of Theorem (6b) follow from
V and VI above. Thus these relations suffice to show the equivalence
of any product of minimal generators related by planar isotopy. But
now any relation in part a. of this corollary with any orientation is
equivalent to one of these relations under planar isotopy.

Figure 15: Expressing the other generators in terms of the minimal set

2.2 Tangle Representations

Tangle representations are mentioned in [FY89], but not much of what we
do with them appears there. The material here is quite standard as applied
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to the specific tangle representations coming from quasitraingular Hopf alge-
bras. The best source for this is one of the originals, [RT90]. The notation
used here is meant to dovetail with the language of quasitriangular Hopf al-
gebras (i.e., of quantum groups), and thus is sometimes slightly awkward in
itself.

An approach more like the one done here in technique is used in [Wen90,
Wen93|, except he works with braids instead of tangles, and only uses the
subalgebra of the commutant spanned by tangles.

2.2.1 Definition

The category with vector spaces as objects and linear maps as morphisms is
also a strict monoidal category, with the obvious sense of tensor product. It
is thus natural to look for functors from labeled tangles to vector spaces.

Definition 3 A tangle representation with label set A is a map which sends
each object 1 to a finite dimensional vector space V; in such a way that
tensor product is taken to vector tensor product and V; is explicitly identified
with ¥, and which sends each (1, 7) tangle T to a linear map F(T) from
Vi to Vi, such that F(T o S) = F(T)F(S), F(T ® S) = F(T) @ F(S),and
f(lﬁ,) = idvﬁ.

Of course, if T is a (0,0) tangle, i.e. a link, then F(T) is a linear map
from the ground field to itself, and thus can be identified with an element of
the ground field. This is then a numerical link invariant, and we may think
of tangle representations as a generalization of link invariants.

It is clear that the value of an oriented tangle representation on objects
is determined by the vector spaces Vi, for each A € A. Specifically, if 7 is
the sequence (ny,...,nt) and each n; is £ for some A, then Vi = %, V..
Similarly, an unoriented tangle representation on objects is determined by
the vector spaces V), for A € A, and if A = (A\q,... A¢) then V; = ®f=1 Vi

An unoriented tangle representation F can be turned into an oriented
tangle representation with the same label set as follows. Defining Vi, =
Vi, let T be an oriented (7,7) tangle with labels in A, and let 77 be the
labeled unoriented (#/,77") tangle gotten by removing the orientations from
T. Clearly we can identify V; and Vi with Vi and Vi respectively in a
canonical way. Then F'(T) = F(T") as a linear map from V; to V3 is easily
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seen to be an oriented tangle representation. Thus from now on we will deal
only with oriented tangle representations.

Suppose F is a tangle representation on A, and consider vector spaces
W4y and invertible linear maps fiy : Wiy — Vi for each A € A. Define
Ws = ®f=1 Wi;, and define f; : Wi — Vi by fi = ®f+1 fn;- Then it is easy
to check that the assignment of the map f;'7F(T)fs to each tangle T gives
a new tangle representation which may be considered a simple renaming of
the first. This is said to be a conjugate tangle representation to F.

Finally, let A,y € A be two labels for a tangle representation F, and
let fi : Vin — Vi, be invertible maps. Let T be an (7,7) tangle with a
component ¢ labeled by A and let 7" be the (7', ') tangle gotten by changing
the label on ¢ to v (of, course, one or both of #/, 7’ may be the same as
1,  respectively). Let f; : V43 — Vi be defined by putting the identity in
every tensor factor in which # and 7/ have the same entries and f. in every
factor in which £\ changes to £. Define fy similarly. Then f. is said to be
an isomorphism if for every such T we have F(T) = f7'F(T") fa. We say A
and v are equivalent, written A ~ +, if there exists an isomorphism between
them.

Of course, equivalence just means that one can replace any A labels by «
(or vice versa) and no information is lost. If one eliminates all but one label
in A for each equivalence class, and restricts the tangle representation to this
smaller label set, one gets a tangle representation in which no two labels
are equivalent. Such a tangle representation is called reduced, and we will
reduce any tangle representations we encounter before working with them.
Of course, the value of the original tangle representation on any tangle is
determined by the value of the reduced tangle on the appropriately relabeled .
tangle.

2.2.2 Minimal Data and Relations

Let F be a tangle representation and let {Vi)}a be the associated vector
spaces. Consider the named tangles in Figure (14). If the upper component
of A is labeled by A and the lower component is labeled by 7, then F(A) is
a map from Vi, ® V., to Vi, ® V,. If P is the map from V,, ® Vj, to
Via®V,, given by P(v®w) = w®w, then define the operator Ry , = PF(A)
on the space V1, ®V,,. This is sometimes called the R-matrix. The first part
of Relation II of Corollary (2b) then implies that F(B) is the map R} ,\P
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if the upper component is labeled by A and the lower by ~.

If C is labeled by A, then F(C) is a linear functional on V,,®V_y. Thus it
may be thought of as a bilinear form on these two spaces, (-, ). If F is labeled
by A, then F(E) may be thought of as an element 3, a; ® b; € V_\ ® Vi,
(namely, the element that 1 € F gets mapped to). Relation V of Corollary
(2b) forces two relations among these. Namely, for all z € V) we have
iz, a:)b; = z, and for each y € V_, we have Y ;(b;,y)a; = y. The first
equation in particular says that for no nonzero z is the linear functional on
V_, given by (z,-) identically zero, and the second says that for no nonzero
y is the linear functional (-,y) on V., indentically zero. Thus (-,-) is a
nondegenerate bilinear form and the map from V_j to V}, given by the
bracket is a linear isomorphism. With this identification F(E) corresponds
to the element of V!, ® V., given by 3, a; ® a;, where a; is any basis of V.,
and a} is its dual basis of V', (it is a worthwhile exercise to check that this
element of the tensor product space does not depend on the basis chosen).

The same argument applies to give a linear functional on V_) & V.,
corresponding to F(D). This may be interpreted as a map which sends
each element of V., linearly to an element of the dual of V_,. But using
the bilinear form of the previous paragraph to identify V_, with V},, we
have a linear map from V., to its double dual, which since V., is finite
dimensional is just V., again. That is, there is a map ¢, on V., such that
F(D)(y ® ) = (¢x(z),y). An application of relation V of Corollary (2b)
shows that ¢, must be invertible and F(F') as an element of Viy ® V, is
just ¥; 65 ' (a;) ® a}, where a; and o are as above.

All of these identifications are summarized in Table (1), where a; is any
basis of V) and a! is its dual basis of V_, under the bilinear form given by
(-, ).

We will need some notation dealing with linear maps among tensor prod-

uct spaces. Let Ay, Ay, ..., Agand By, B,. .., B; be finite dimensional vector
spaces and let

be a linear map. Let 1p, be the identity map on B;, let B be the set on
linear maps from B; to the ground field F, let v, be a basis for A; and v be
the dual basis for A} (so that v* (v,) = dnm) and let w,, w} be dual bases
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F of | takes to

A TQYEV®Viy | P-Ryy(z®y) € Viy ® Vi
B $®']J€V+,\®V+q ;,];\'PEV+'Y®V+,\

C TQYeVLAQV.o| (z,y) €F

D yQ®xz € Vor®Vin | (da(z),y) €F

E ceF cyai®a; € Vo, Vi

F ceF cyid M a;) ®ar € VA ® V_y
G z € Vi z € Vi

H yeV_y y e V_,

Table 1: Identifying tangle generators with linear maps

for Ay and Aj. Then define maps
ffiA® - ®A®B;
"fiBiQAI® - ® A
flrae- @4
FiA® @ Ap

defined by the following formulae:
fb(a,1®"'®ak:®b;
"f(b*{®a1®-~-®ak

Ll

Bl®...®Bj_1
By, ®---® B,
A'® B ® - ® B,
Bi®---®B;® Al

= (181®"'®1BJ._1®b;)f(a1®...®ak)
(b1 ®lp,®  ®1p,)fla1® - ® ax)

)
)

Mar1® - ®ak-1) = D fla1® - Qap1 @uwn) ®w),
)

uf(a2®...®ak

=S Zv2®f(vn®a2®---®ak).

Notice that *(*f) =F (°f) = f = (/)" = (/)"

Lemma 3 Let T be a tangle and T°, °T, T*, and *T be as pictured in Figure
(16). Then the following equations hold:

) = F(T)
°T

Y MY

bT VF(T)

26

(

(T) = " ®1e- - ®1)F(T)
(T = FOe--®1046)]
('T)



Figure 16: Rotating one strand on a tangle

Given an operator f : Vix — Vi, define the quantum trace of f, qtr(f) to
be T;(éxf(ai),al), where a; and af are as above. Define the inverse quantum
trace, iqtr(f), to be (#7'f(a:),al). If f is instead a map from Vi, ® A to
V.a® B, write it as 3°; f; ® f*, where each f; is an operator on Vi, and each
f* is a map from A to B, and define (qtr ® 1)[f] to be the map from A to
B given by ¥, qtr(f;) f*. Similar definitions apply to 1 ® qtr, iqtr ® 1, and
1 ® iqtr.

Lemma 4 Let Tbe a tangle and °T, and T° be as pictured in Figure (17).
Then

F(°T) (gtr® 1)[F(T)]
F(T) = (1@ igtr)[F(T)]

T

/CT ¢ Tc

Figure 17: Partial closures of tangles

Pf:(of the lemmas) From the definitions above and Table (1). n

Finally, if R, is as defined above, then we can define Ry, Ry and Ry s
on the space VA® V, ®V; by R\, ®1, 1Q R, s and (1®@ P)(R\s®1)(1® P)
respectively.

Theorem 7 Any tangle representation with a label set A yields invertible
linear operators ¢ and Ry, for every A,y € A satisfying the following equa-
tions:

RA,7(¢A ® ¢'y) = (d”y ® ¢/\)R,\,7 (8)
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(¢tr® 1)[PRy)] = (1® igtr)[PRyx] (9
Ryy = (Bay)™ (1
R,Y,gR,\ﬁR,\ﬁ = R,\NR,\’gRY,g on Viy® V+’Y ®Vis
Rs Ry sRx~ RynRosBRsy on Viy® Vo, ® Vi (1

~—~

—
N =
e S N

where
Ry, =P[(4»® )R LP1® ¢35 1)
and
Ry, =! (PR\,)°P.

Furthermore, any set of vector spaces {V.Q}rea and maps ¢x and R, 4 sat-
isfying these equations yields a tangle rébresentation defined by Table (1),
where V_y 1is taken to be V', and the pairing mentioned in the table is the
pairing of a space with its dual.

Pf:First note that the identifications of Table (1) are forced on us by the
definition of a tangle representation. The values of G and H follow immedi-
ately from the definition, the value of B comes from Relation II of Corollary
(2), and the values of E and F follow from Relation V. It is clear that the be-
havior of tangle representations under tensor products then determines the
value on generators, and that the behavior under composition determines
its value on compositions of generators. Thus all that remains in order to
prove both halves of the theorem are that the above equations imply and
are implied by the relations given in Corollary (2) translated to the tangle
representation. _

Relation I is exactly Equation (9), by Lemma (4). The first two equa-
tions of Relation II are equivalent to the definition of B. The first part of
Relation III is exactly Equation (11). Relation IV is satisfied automatically,
and Relation V is equivalent to the definition of E and F'. Relation VI re-
quires that *[((¢y ® ¢x)PRaq(9r—1 ® ¢51))*]F =* F(PR,,)']". But an easy
calculation shows that if f and g are maps between A ®@ B and C'® D, then
b f4]¢ =* [*g"]" if and only if f = g. From this it is easy to see that Relation
VI is equivalent to Equation (8).

Finally, notice that if X and Y are as pictured in Figure (18), then by
Lemma (3) we have F(X) = Ry, and F(Y) = Ry,. Clearly the last two
equations of Relation II are saying exactly that these two maps are inverses,
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Finally, let A’ contain every label in A as well as a new label A®-y for each
pair of labels A\, v € A. Define G(T) to be the tangle gotten by replacing each
component labeled by A ® v by its 2-cabling, with the cabled components
labeled by A and « respectively. That is, if a component labeled by A ® «y is
identifed with I x I (or S* x I respectively), erase the image of I x (1/3,2/3)
(or S x (1/3,2/3) respectively) to leave two components, and label one with
X and the other with . This is illustrated in Figure (19). Once again this
gives a functor. The label A ® is called the tensor product label of A and 7.
Of course it only makes sense when dealing with framed tangles. One may
check that Vizgy = Vir ® Vi, and V_,\®., = V—'y ® V_y.

sl WS

Figure 19: Adding new labels to the label set

We will also define a nontopological operation on the label set. Let F be
a tangle representation with label set A, and let A’ contain every label in A
as well as a new label A @ «y for each A,y € A. Define Vizgy = Vi @ Vi, to
Vi@ V,. If 7 is a sequence of signed labels in A’, identify Vi with @, V4.,
where a runs over every way of replacing each direct sum label A®~ occurring
with sign in the sequence by either A or ¥ with the same sign, and 7, is the
sequence gotten by such a replacement. If T is a tangle with labels in A/,
let o run through all the ways of replacing any label A @ « of a component
of T by either A or 7, let T, be the resulting tangle with labels in A, and
let 7, and 7, be its domain and range respectively. Then F(T,) is a linear
map from V;, to Vi, and may be thought of as a linear map from V;; to Vj,
by making its value zero on the other direct summands. Define G(T') to be
Yo F(Ty). This is easily seen to be a tangle representation.

Proposition 12 The following equivalences of labels hold in the appropriate
label sets: 1* ~ 1, (A*)* ~ X, A ®@Y)* ~ N 7", A®v)* ~ X~
AV ®F~ AR (YR®Y), N®VN®E~AD (YD), A®7 ~ 18 ),
ABY~YBN 1RA~ A and AR (YD ~AQRYDARS.
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Pf:In each case the isomorphism is the obvious map between the two
representations, and the fact that it is an isomorphism follows easily from
the definitions. The one exception is the commutativity of tensor product.
Here define f, to be PR,, and f_ is F of the tangle which is a negative

crossing with all strands oriented downwards. This is easily seen to be an
isomorphism. : n

Definition 4 A tangle representation on a label set A is called closed if it is
reduced and if there exists the following: an element of A equivalent to 1, for
each A € A an element of A equivalent to \*, and for each A,y € A elements
equivalent to A ® v and A @ . By abuse of notation we will refer to these
unique elements of A as 1, A*, A ®~ and A @ v respectively.

Proposition 13 For every reduced tangle representation F with label set
A there is a closed tangle representation G with label set A’ D A such that
F(T) = G(T) for every tangle labeled by A.

Pf:Apply the four constructions of this section to extend the label set.
Apply them to the resulting enlarged label set. Repeat this process and take
the union of all the label sets and the tangle representation defined on it.
This will be closed under all the given operations. Now reduce the label set
to eliminate equivalent labels. This is now a closed tangle representation. =

Corollary 3 The label set of a closed tangle representation satisfies the az-

toms of a commutative ring with identity with an involution, except addition
has no nverse.
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2.3 The Category of Intertwiners

This material continues to follow [RT90] in spirit and [Wen90, Wen93] in
technique. The decomposition according to the commutant (which is simply
the decomposition into stable subspaces) and the category of intertwiners is
the central idea that makes the quantum field theories of the next chapter
work in this general context. Irreducible representations are deemphasized in
favor of what are called here nonreducible representations, at the cost of some
very strong structure for the sake of generality and simplicity. The notation
of relevant and irrelevant labels is highly nonstandard and should be taken
with a grain of salt. As far as I know the observations about irrelevant labels
do not occur eleswhere.

2.3.1 The Commutant Algebra

Fix a tangle representation F with label set A, and choose a A € A.

Definition 5 The commutant algebra of A, C,, is the algebra of all operators
z on Vi which commute with ¢) and such that (x ® 1)Ry, = Ry4(z ® 1)
and (1® z)R, = Ry,y(1® z).

The point is that, since ¢, and the R-matrix determine the tangle repre-
sentation, x commutes with every tangle in a sense which we will now make
more precise.

Let T be a tangle and let ¢ be an open component of T'. The component
c can lie in T in four essentially different ways.

(a) It intersects the top and bottom of the tangle at positively oriented
strands: i.e., ¢ goes from bottom to top.

(b) It intersects the top and bottom of the tangle at negatively oriented
strands: i.e., ¢ goes from top to bottom.

(c) It intersects the bottom in two strands, one positively and one nega-
tively oriented.

(d) It intersects the top in two strands, one positively and one negatively
oriented.
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Let = be an operator on V), and let (-, -) be the bilinear form associated
with F(C). Since it is nondegenerate, we can define z' to be the dual operator
to £ on V_,. That is, z! is the unique operator on V_, such that (zv,w) =
(v, z'w), for every v € Vi and every w € V_,.

Now let T be an (7, ) tangle and ¢ be an open component of T labeled
by A. If ¢ is of type (a) above, define z; to be the operator on V; which is the
identity on every tensor factor except the one corresponding to the strand
where c intersects the bottom, where it is . Define z the same way, except
it is an operator on V5 and z goes in the tensor factor corresponding to the
strand where ¢ meets the top of c. If ¢ is of type (b), define z} and z}, the
same way, with all factors having the identity except the one corresponding to
the appropriate end of ¢, which has z'. If ¢ is of type (c), define the operator
T4 on Vj; to be the identity in each tensor factor except the one corresponding
to the positively oriented strand of c. Define z, likewise except that an z! is
put in the factor where c is oriented negatively. If ¢ is if type (d), define z
and xIn in the same manner. In short, define the operators so that they can
be multiplied on the left or right by F(T).

Proposition 14 Suppose z € Cy, = is as above, and T is an (A, ) tangle
with an open component ¢ labeled by A\. We have the following relationships,
depending on which of the four cases above applies:

(a) F(T)zs = z:F(T)
(b) F(T)zl =z}, F(T)
(c) F(T)zy = F(T)z}

(@) =& F(T) = =k F(T).
Conversely, if x satisfies the equations (a) — (b) for all tangles, then z € C,.

Pf:The converse is quite straightforward. If T is the tangle labeled by A
in Figure (14), then the equation in (a) says exactly that r® 1 and 1 ® z
commute with R, ., and R, respectively. If T is the tangle labeled by D,
then (c) gives immediately that z commutes with ¢. The first statement
requires a little more work.

First we note that the proposition is true if T".is one of the tangles ap-
pearing in Figure (14). A and B follow from the fact that z commutes with
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the R-matrix, C' and E are immediate, D and F follow from the fact that
x commutes with ¢,, and G and H are trivial. Also, it is clear that if this
statement is true of a tangle, it is still true of the tensor product of this
tangle with any other. Thus it is true on generators, and we have only to
show that it is true on products of generators. We do this by induction on
the number of generators. ;

Suppose (a) — (d) are true of all products of n generators and let T be a
product of n + 1 generators. Write T' as 7} o T,, where T is a generator. If
the component ¢ of T does not pass though the part of T} which looks like
A — F in Figure (14) then the conclusion is obvious, so assume it does. If
that part looks like A or B, then the component ¢ must be of type (a), and
we conclude

F(Tl).F(TQ)xﬁ_ = f(Tl)iL'k]:(Tz) = CEﬁ,,f(Tl)f(Tz),

assuming T} is a (7, k) tangle and T; is a (k, ) tangle.

If the interesting part of T} looks like the generator labeled by C, then the
component c is either of type (a) or (c). If it is of type (c) then T; contains
components of type (a) and (b). Then we have

= F(T\)zlF(Ty)
= F(T)F(Ty)zk.

If the component c is of type (a), then it is made up of a component ¢; of
type (a) in T5, the tangle C in T3, a component c¢; of type (d) in 75, and the
tangle G in 77. Then we have

f(Tl)f(Tz).’L'n

T
Bl
for [

\—/\8/\_/
&=+ X

where the first occurrence of z; above refers to that associated to ¢; and the
second to that associated to c;. A more visual but less precise argument is
illustrated in Figure (20), where an = at point 1 is moved to an z at position
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2 by (2), then to an z! at position 3 by (c), then to an z at position 4 by
(d), and then to an z at position 5 by (a).

If 71 contains the tangle D, the argument of the previous paragraph
applies exactly. If it contains E or F', then T is of type (d) and we are done.

= _ _ o = w5
& : DR
@/‘Y@ O x* r; - g CLoX = /}/‘\

@ L;)-* FEE = 27T 7 == =

)( Figure 20: Commuting an operator through a product of tangles

Corollary 4 Ifz € Cy, then zt € Cy». In fact, Cy- = (Cy)T.

Proposition 15 Let A = (+A1,...,+A), and let T be an (7,7) tangle.
Then F(T) € Cx, where A = @; \;.

Pf:Geometrically obvious by the above proposition once you have ob-

served that F(T)! is just F(T"), where T is T rotated in the plane 180°.
n

Proposition 16 C, contains the semisimple and nilpotent parts of every
operator it contains.

Pf:Let v € V., and w € V_,, and write Ry, as ; fi ® f*, where each
fi and f* is an operator on V., or V., respectively. Then an operator z
commutes with the operator ¥;(f*(v), w) f; on Vi for all v and w if and only
if z® 1 commutes with R).. Likewise one can construct a set of operators
on Vi, such that z commutes with these if and only if 1 ® z commutes with
R, . Thus C, is literally the set of operators which commute with all these
operators and with ¢,. But anything which commutes with an operator
commutes with its semisimple and nilpotent parts, by [Hum?72, p. 17]. [

Proposition 17 Cy contains a set of idempotents p; such that p;p; = 6; jp;,
> pi = 1, and p;C\p; consists only of multiples of p; and nilpotent operators.
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Pf:Consider the set of all idempotents in Cy, and order them by p < ¢
if Range(p) C Range(g). Choose a minimal p. The operator 1 — p is also
in C,, so choose a minimal projection less than 1 — p. Repeating, we get a
resolution of the identity into minimal idempotents, which thus satisfy all
the conditions but the last.

Let p be one of these minimal idempotents and let x € pCyp. Let z, be
its semisimple part. Since z commutes with p (in fact zp = z = pz), so does
z,. But if z, is in Cy, so are the idempotents onto its eigenspaces. If any
eigenspace is a proper subspace of the range of p, its idempotent would be
a smaller idempotent than p. Thus there is only one eigenspace, namely the
range of p, and z, is a multiple of p. ]

Let p be an idempotent in Cy, and let V,, be the range of p in V.
Likewise let V_, be the range of the idempotent p! in V_,. Define ¢, = ¢,p.
Notice that this equals p¢y and thus its range is contained in Vi,. Define
R,, = Ry,(p®1), Ryp = Ry7\(1®p), and R, , = R (p®p). Notice in each
case the commutation relations guarantee that the range of the operator is
what it should be.

Proposition 18 If the label p is added to the label set A and the tangle
representation F is extended by the definitions given above, the result is a
tangle representation.

Pf:All that is required is to prove that every instance of Equations (8 -
12) with one or more of the labels replaced by p still holds. For example,
Equation (8):

Roy(p®dy) = Ray(p@1) (92 ® $,)(p®1)
= Ray($r®8,)(p® 1)
(oA ® dy)Raq(Pp® 1)
(62 ®d,) PO 1) Rr4(p®1
= ¢ ® ¢y)Rpyy.

Each equation follows this pattern. Namely, the left hand side can be written
as a product of the same generators with A replacing p, interposed with op-
erators which are a tensor product of identity operators, except with p or p
in factors of V.., or V_, respectively. By the fact that p commutes with the
generators, these can be written as a simple product of generators, preceded
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(and if necessary followed) by an operator which is a tensor product of iden-
tity operators and powers of p and p'. But since these are both idempotents
we may take the exponents to be all ones. The product of generators is now
the left hand side of the original equation with p’s replaced by A’s, and thus
can be replaced by the left hand side. Reversing the procedure, p’s and p'’s
can be interposed wherever necessary to replace each generator by the same
generator with p instead of A\. The reader should try an example or two to
convince herself that all the equations follow in this way. ]

Proposition 19 Let p be an idempotent in Cy, and let ¢ = 1 —p. Then
pHg~ A

Pf:Clearly the isomorphism is f; : Vip @ Vg — V; defined by fi(z @
y) = £+, thinking of V,, and V., as the ranges of p and ¢ respectively and
thus already sitting inside of Vi, f- : Vo, ® V_4 — V_, is defined similarly.
Now p+¢q =1, 50 ¢y = ¢»(p+ q) = ¢p + ¢q. Similarly, Ry, = Ry + Ry,
with the obvious identification of the spaces on which they act. Also, if z is
in range of p and v is in range of ¢!, then (z,y) = (pz, q¢'y) = (gpz,y) = 0.
Similarly if z is in the range of ¢ and y is in the range of p, then (z,y) = 0.
Thus if T is any one of the tangles pictured in Figure (14) with one or
more components labeled by p ® g, T" is the same tangle with some or all
of those labels replaced by A, and f; and fjs are as given in the definition
of isomorphism in Section 2.2.1, then F(T) = f;'F(T") fa. But then this is
clearly also true for tensor products and compositions of these operators, so
it is true for all tangles. [

Definition 6 A label ) is called nonreducible if Cy consists only of nipotent
operators and multiples of the identity. A closed tangle representation is said
to be complete if every label is the direct sum of nonreducible labels.

Theorem 8 Every closed tangle representation can be extended to a complete
tangle representation.

Pf:For each A € A, choose a resolution of the identity into minimal idem-
potents of C,, as in Proposition (17). Make each of these a new label, as in
Proposition (18). Each such V, is nonreducible, because every element of the
commutant of p is certainly an element of the commutant of A, so C, = pCyp,
which is just multiples of the identity and nilpotents by Proposition (17). But
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A is the direct sum of the labels p coming from its commutant by Proposition
(19) because they were a resolution of the identity. Alternating the process
of closing this label set with adding all the new nonreducibles, in the limit
we get a complete tangle representation (actually, this is not necessary: the
reader may check that after closing under direct sum and reducing the tangle
representation is already complete. . [ ]

2.3.2 Intertwiners

Definition 7 An intertwiner between fi and ™ is a linear map f from Vi,

to V_,y such that f(,i))‘ = ¢7f, (f X 1)R,\’5 = R,Y,5(f ® 1) and (1 ® f)Rg,,\ =
Rs,(1® f).

If f is an intertwiner from # to 7, define its dual f' to be the unique map
from V_, to V_y such that (f(z),y) = (z, f1(y)) forallz € V,y and y € V_,.

Proposition 20 Let T be any (7, 7h) tangle with an open component ¢ la-
beled by A\, and let T' be the same tangle with c labeled by v. The map f is
an intertwiner from X to 7y if and only if one of the following holds for all T,
according to which type of open component c is:

(a) F(T")fa = faF(T)
(b) F(T)fi= fF(T")
(c) F(T)fa=F(T)f}
(d) faF(T) = fLF(T")
where f;, fi etc. are defined as in the previous subsection as a tensor product

of the identity map, except in one factor where it is f or f1 respectively, in
such a way that the products make sense.

Pf:The proof is exactly the same as the proof of Proposition (14). 1l

Corollary 5 If f is an intertwiner from.\ to vy, then f' is an intertwiner
from v* to \*. :
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Figure 21: All tangles commute w1th the R- matrix

_— = -

L ARNG:

Figure 22: All tangles commute with ¢

Proposition 21 If T is an (7, 7) tangle, with 7 = (nq,...,ng) and M =
(my,...,m;), then F(T) is an intertwiner from X to -y, where A = @5 A
with \; = 6 if n; = +6 and \; = 6 if n; = =6, and v is similarly defined in
terms of ™.

Pf:The proof is essentially contained in Figures (21) and (22). F of the
crossing on the left side of Figure (21) is clearly PR;s, and F of the right is
clearly PRs,, so the equality implies that Rs(1® F(T)) = (1® F(T))Rs .
Likewise for R,s and Rys. In Figure (22), 7' is meant to be T' rotated in
the plane by 180°, and thus the first equation yields that, for any z € V-
and any y € V_,, (F(T)z,y) = (z, F(T")y), and thus that F(T") = F(T)".
But then the second equation gives that (¢, F(T)z,y) = (¢az, F(T")y). But
since F(T") = F(T), this means (¢, F(T)z,y) = (F(T)$sz,y). Since this
is true for all z and y, it follows that ¢, F(T") = F(T)¢a. n

Proposition 22

(a) If f is an intertwiner from X to vy, and g is an intertwiner from §
to A, then fg is an intertwiner from 6 to .

(b) If f is an intertwiner from A; to y1 and g is an intertwiner from Ay
to v, then f ® g 1s an intertwiner from A\; @ Ay to 11 ® V2.

(c) Intertwiners for a closed tangle representation F form a strict monoidal
category with objects being labels and morphisms being intertwiners.

(d) F gives a morphism from the category of tangles to the category of
intertuiners.

39



Pf:

(a) Ruy(1® fg) =(1® f)Rur(1®g) = (1® fg)R,s. The same argument,
applies to R, . Similarly, ¢,fg = forg = fgds.

(b) Recall that R&,/\1®/\2 . (P@l)(l@R&,\J(P@ 1)(R5,,\1 ®1) and ¢)\1®z\2 .
¢)‘1 &® ¢,\2 with the identification V_+_,\1®,\2 = ‘/_{.,\1 &® V+,\2. Thus

Rsmer,(1® f ®g)
= (POL)(1®Rsx,)(P®1)(Rs5y, ®1)(1® f®g)
= (POL(1®Rsp,)(POL(1® f®1)(Rsx, ®1)(1®1®g)
(1®fRL(PRL(1I® Ry, ) (PO L)(Rsn, ®1)(1®1®9)
1 fRL(PO®L(1® Rsr,) (1010 9)(PR1)(Rsy, ®1)
(1®f®9)(PR1)(1® Rsx,) (PR 1)(Rs», ®1)
(1® f® g)Rsxer-

The same argument applies for R, g, 5. Likewise

¢'71®72(f ® 9) - (¢71 ® ¢72)(f ® g)
(f ® 9)(ér ® b2,)
== (f ® g)¢h®/\2'

(c) The fact that F is a closed tangle representation means that the set of
objects is closed under tensor product and has a unit. Tensor product of
objects is associative by Proposition (12). Associativity of composition
and tensor product of morphisms as well as the fact that (A ® B) o
(C® D)= (AoC)® (BoD) all follow from the corresponding facts
about linear maps. The identity operator on a given V., is always an
intertwiner, and is the identity morphism.

(d) Immediate from Proposition (21).

Proposition 23

(a) Every element of Cy is an intertwiner from X to )\, and every such
intertwiner is in Cy.
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(b) If f+ is an isomorphism from X to vy, then fi is an intertwiner, and

f- = (ffH). Conversely, if f is any invertible intertwiner from A to
v, then fo = f, f— = (f~) is an isomorphism.
Pf:

(a) By definition.
(b) By Proposition (20) and the definition of isomorphisms.

n
Write Ry, = Y; f; ® f* for some operators f; on Vi and f* on V..
Likewise write Ry \ = >_; ¢:® g*. Asin the proof of Proposition (16), Consider
the algebra of operators on V., generated by @, together with 3=;(fv, w) f;
and 3, {g;v, w)g® for allv € V., and w € V_,. That is, the algebra with which
the commutant is defined as commuting. A label is called irreducible if this
algebra consists of all the linear operators on V. Of course, an irreducible
label is also nonreducible. But irreducibility is much stronger.

Proposition 24

(a) If f is an intertwiner from X to vy, with X irreducible, then its null
space (i.e., the set of vectors v such that f(v) = 0) is empty or all of
Vi

(b) If f is an intertwiner from X to -y, with v irreducible, then its range
space is empty or all of V.

(c) There is a nonzero intertwiner between two irreducible representa-
tions if and only if they are isomorphic, in which case all intertwiners
are multiples of each other.

(d) A direct sum of irreducible labels can be written as such in a unique
way. That is, 3; mN = 3, myA; only if m; = ny, where n; and m; are
the multiplicities of each irreducible representation ;.

Pf:

(a) If V is the null space of f, then fav = afv =0forallv € V and a
in the algebra generated by the initial data. Thus av € V, so each a
maps V into V. But the only subspaces of V,, for which this is true
for all operators are the trivial subspaces.
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(b) If V is the range of f, then every v € V' is fw for some w € V, ;. But
then av = afw = faw € V. So again every operator takes V into
itself, and V must be a trivial subspace of V,,.

(c) The if part follows from Proposition (23b). For the only if, notice by (a)
and (b) above any intertwiner is invertible, so by Proposition (23b) it is
an isomorphism. Given two such isomorphisms, the product of one and
the inverse of the other gives an invertible element of the commutant,
which must be a multiple of the identity.

(d) Let fi be an isomorphism between Y, n;A; and Y; mi\;. By part (c)
above, f, must take each direct summand n;)\; in a one-to one and
onto fashion to m;A;. But then their dimensions must be the same and
hence n; = m;.

2.3.3 Nonreducible Labels

Agree to call a label relevant if it is nonreducible and qtr(ly,,) # 0. Call
it irrelevant if it is nonreducible and qtr(ly,,) = 0. If A is relevant, define
qdim, = qtr(ly,, ).

Proposition 25 If L is a link with some component labeled by a direct sum
of irrelevant labels, the F(L) = 0.

Pf:1t is enough to show this for a component ¢ of L labeled by an irrelevant
u, since F(L) is the sum of such things. Write L as the closure of a (+u, +u)
tangle T (that is, L = °T as shown in Figure (17)). By Proposition (15),
F(T) €Cy 50 F(T) = -1, +n, where a € F, 1, is the identity on V,, and
n is a nilpotent. But by Lemma (4), F(L) = qtr(F(T)) = aqtr(1,) + qtr(n).
Since n = F(T') — al, € C,, n commutes with ¢,, so ¢,7 is a nilpotent and
therefore its trace qtr(n) = 0. But qtr(1,) = 0 since u is irrelevant. Thus
F(L)=0. n

Proposition 26 If p is irrelevant, then X ® p 1s a direct sum of irrelevant
labels for each A € A.
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Pf:Let p be a minimal idempotent in Cyg,. We need to show that
Qtryg,(p) = 0. Write this as qtr,((qtry ® 1)(p)), where (qtr, ® 1)(p) is
an operator on V,, as explained in Section 2.2.2. It suffices to show that
this operator is in C,. But it is a product (F(D) ® 1)(1 ® p)(F(E) ® 1) of
intertwiners, by Propositions (21) and (22). Thus it is in C,, and by the
argument of the previous proposition, its quantum trace must be zero. |

Proposition 27 Let L; and Ly be links each with a component labeled by a

relevant label A\, and let Ly# Lo be their connect sum along that component.
Then

Pf:Write Ly = ¢T3 and Ly = “Ty, where T) and T5 are (+A, +A) tangles.
Then Ly# Ly = (T} o Tp). It is geometrically obvious that 73 o Tp = Tp o 7.
But F(T;) = a1, + 7m;, where a; € F and 7; are nilpotents, because A is
nonreducible. The fact that these two operators commute implies that 7,
and 7 commute and hence that their product is nilpotent. Also, F(T;)
commutes with ¢y, so 71, 72, and 772 commute with ¢y. In sum,

F(TioTy) = aooly+oune + com +mne so
F(Li#Ly) = qtr(F(T10Ty)) = ayapqdim,
F(L) = qtr(F(T1)) = qtr(caly +m) = arqdim,
F(Ly) = qtr(F(T2)) = qtr(agly + 12) = asqdim,

since the quantum trace of a nilpotent which commutes with ¢, is zero. The
result is immediate from the last three equations. ]

Proposition 28

(a) If X is nonreducible, there is at least a one dimensional space of
intertwiners from A Q@ A* to 1.

(b) If X and v are irreducible, then there is a nonzero intertwiner from
A® v to 1 if and only if v ~ A\*. In this case, the sapce if intertwiners
s exactly one dimensional.

Pf:

(a) Any multiple of F(C) is such an intertwiner, by Proposition (21).
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(b) Let g : Vixr ® V41 — Via» be the intertwiner g(z,c¢) = cx (this is of
course the canonical isomorphism between these). If f is the intertwiner
from A®+y to 1, the composition (¢®1)(1® f)(F(E)®1) of intertwiners
is thus an intertwiner & from y to A* (see Figure (23)). Since A is

XF

X

Figure 23: An intgrtwiner from « to A*

irreducible, so is A*, and thus this map must be zero or an isomorphism
by Proposition (24).

If p is any intertwiner from A ® A\* to 1, with A irreducible, then the
intertwiner h defined above must be a multiple of the identity. But
then (1 ® p)(F(E) ® 1) is a multiple of (1 ® F(C))(F(E) ® 1). Since
F(C) is nondegenerate, it follows that p is a multiple of F(C).

44



2.4 The Kauffman Bracket Revisited

The decomposition of the Kauffman bracket/Jones polynomial tangle repre-
sentation into irreducible labels is usually done in the context of quantum
groups (where it corresponds to the quantization of SU(2)). It was first done
in [KR88], where every quantity you could dream of computing is calculated
explicitly. A more combinatorial approach, which makes no reference to the
structure of quantum groups, involves working with the Temperly-Lieb alge-
bra, and occurs in many papers, such as [Lic91]. The chief difference between
that work and what follows is that everything there is done in terms of ab-
stract algebras which are not represented on explicit vector spaces. Such an
approach works well for three manifold invariants, but does not appear to be
strong enough to construct Topological Quantum Field Theories, as we will
do in the next chapter.

We work with the Kauffman bracket, for ease of computation, but this
all could just as well be done starting from the Jones polynomial.

2.4.1 The Kauffman and Jones Tangle Representations

Let V12 be the vector space over C spanned by the vectors vi/; and v_ys.
Assign to each product of generators of unoriented framed tangles which is
equivalent to an (n,m) tangle a linear map from V{37 to V37" as follows.

Let an ordered basis for V1,2 ® V12 be v41/2®v41/2, V4172 @V-1/2, V-1/2®
Vy1/2, V=172 ® v_1/2. Then

rAY 0 00
0 A'—A43 A4 0
FA =1 ¢ A 0 0
0 0 0 Al
"4 Q 0 0
0 0 Al 0
FB) = | o 41 a_ 4= g
0 o 0 A
FC) = [0 —iA it 0]



[0
—iA

]:(D) = 'iA_l
L0

10

FE) = |y ;

Define F(1**® X ®1%7) = 1§F ® F(X)®1§/, and F(X oY) = F(X)F(Y).
Proposition 29 For each nonzero A € C, the above association of prod-
ucts of generators to operators is invariant under the relations of Theorem
(6a), and thus gives an unoriented framed tangle representation with a one
element label set. Furthermore, the value of F on a (0,0) tangle is exactly
the Kauffman bracket of the corresponding link.

Pf:First note that if X, X', H, and V are the products of generators
shown in Figure (24), then an easy computation yields

_ — -

- T Y
\ / \/ U C
A Do Al 7
X /
X Figure 24: Tangles occuring in the skein relations

F(X) = AF(H)+ ATF(V)
F(X") = AT'F(H)+ AF(V) (13)="

Also, if Y is a product of generators containing the product of two generators
called O in Figure (24), and Y” is the same product with those two generators
deleted, then

FY) = (=A% - A F(Y). (14)

From these equations it is clear that if F is a tangle representation, it is
equal to the Kauffman bracket.

To discuss the question of whether it is a tangle representation, let the

set of all length n tensor products of vi;/; and v_1/2 be an ordered basis
for Vlg/’;‘ by saying that one product precedes the other if it has v/, in the
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0

—1A

F(D) = iA_l
| 0

10

S = 01

Define F(1%*® X ®1%7) = 1§¥ @ F(X)®1}/ and F(X oY) = F(X)F(Y).
Proposition 29 For each nonzero A € C, the above association of prod-
ucts of generators to operators is invariant under the relations of Theorem
(6a), and thus gives an unoriented framed tangle representation with a one
element label set. Furthermore, the value of F on a (f),ﬁ) tangle is exactly
the Kauffman bracket of the corresponding link.

Pf:First note that if X, X/, H, and V are the products of generators
shown in Figure (24), then an easy computation yields

-

SN AL
)

X Figure 24: Tangles occuring in the skein relations

F(X) = AF(H)+AT'F(V) :
F(X') = A'F(H)+AF(V) (13)

Also, if Y is a product of generators containing the product of two generators
called O in Figure (24), and Y is the same product with those two generators
deleted, then

FY)=(-A* - A FY). (14)

From these equations it is clear that if F is a tangle representation, it is
equal to the Kauffman bracket.

To discuss the question of whether it is a tangle representation, let the

set of all length n tensor products of vy1/2 and v_y/y be an ordered basis
for Vf%‘ by saying that one product precedes the other if it has v/, in the
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Figure 25: The tangles occurring in Relation V

first entry in which they differ (i.e. the lexicographic ordering). With this
convention we have, for example

a b aA bA
[c d]®A_[cA dA}'

Using this we see if 11, T», T3, Ty are the tangles shown in Figure (25), then

00 —iA 0 A7 0 00
ﬂTl):[oo 0 —id O iA“loo] and
- 0 0
—1A 0
A7 0
0 0
F(T) = 0 0 so
0 —iA
0 A7
[ 0 0 |
(1 0]
Likewise ) ]
10

Thus F is invariant under Relation V of Theorem (6a). As usual it is trivially
invariant under Relation IV. But now it is easy. Applying Equation (13) to
the crossings on both sides of Relation VI, it reduces to Relation V. Likewise
relations I, II, and III follow from Equations (13) and (14) and Relation V
exactly as in the proof of the invariance of the Kauffman bracket. ]
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Corollary 6 The ¢ matriz is given by

—A"%2 0
¢1/2 = [ O _A2 jl

Pf:The permutation matrix P is given in this basis by

OO O
O = O O
OO = O
= O OO

so one can check that F(C) = F(C)(#1/2®1) P, or F(C)(y®z) = F(C)(d1/2(z)®
), which is exactly the definition of ¢y /s. |

Proposition 30 IfV,; and V_; are both equal to Vi, defined above then the
following identifications give a one label tangle representation whose value on
links is the Jones polynomial.

—t~12 0 0 0
_4~1 3-3/2 _ 4;-1/2
R..— 0 ol _f 0
’ 0 0 —t 0
0 0 0 —t=3/2

—t~1/2 g
d’z . [ 0 —t1/2 :| d

Pf:These are just the initial data of the Kauffman tangle representation,
with A replaced by t'/4 and the R matrix multiplied by —¢t3/4. This is easily
seen to give another tangle representation, and a simple calculation shows
that it satisfies the Jones skein relation. u

Define the quantum integers

[n] € (A™ — A7) /(A% - A7?) (15)

and notice that [0] = 0, [1] = 1, [-n] = —[n] and lims_,[n] = n. The
following equation will come up frequently, and is easily checked:

A%*[n] — A%k] = [n — K]
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2.4.2 The Generic Case
Call A generic if A % 0 and A is not a root of unity.

Proposition 31 For generic A, There exist vector spaces V; for each j €
1Z2°, spanned by vectors {vl : —j < k < j, j—k € Z}, and maps
f1Vi®Vig— Vi and g: V; @ Viya — Viqiye (if = 0, interpret this to
mean f =0) given by

- . . /2N
fj(”i@’”};;) = (—l)J_kA-J—k—1<[J k] ) i—1/2

25 + 172 ) Yesir
tode) = 4 () L
st o) - 4t (i)
i@l = (s (BEhs) e

satisfying

(a) fft and gg* are the identity on the spaces on which they act and g f*
and fgt are zero, where ft and g* are the transposes of f and g in the
given basis. P % ftf and Q & gtg are idempotents with P+ Q = 1
and PQ = 0.

()

A [25)M2 ¢
=i () 08 FONG om0 (10
and
e (21
fi=1 (W) (9j-12® 1)(1 ® F(D)). (17)

(c) Each V; can be identified with a label in the completion of F in such
a way that the maps f, g, f*, and g* are all intertwiners.

Remark 2 Since we are living in the complex numbers, the square roots oc-
curing in the above formulas need some attention. In fact, since we are look-
ing only at one value of A at a time, and are not concerned with continuity,
it suffices to choose a square root for each [n] once and for all.
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Pf:We will prove the first two points first by computation, and then
prove that the each V; corresponds to a label and that the four maps are
intertwiners by induction.

By a simple calculation

i—=1/2 j— [.7 +k]1/2
AR = AT o @ v
. - k4 1)
_1 j—k+1A_J—k-['-7—. =
+(=1) 3+ 1/ O @)
y [+ k] gl —k+1]
— (AY 2k+2_[-_7—+A 226l ___ 7 1y,
( 27 + 1] SR
-
- /2
and similarly
j+1/2 ki + k12
sl = $A G e
o o i — k 1/2
S A G Y I%Ef—?'“kﬂ“l@“-l/?)
P L o | I | B )
_ (A% wli +E+1] 2j-2k—2 U TRl
( [27 + 1] Pj+ﬂwk”2
_ ’Uj+1§2
- k+1/2"

Also notice

. k]2
G F i) = gyarn LT

[27 + 1]1/2 Uk @ U-1/2
k1 g—jok = K+ 172
+(—1)J A J Wukﬂl ® 'U1/2)
— ((_1)j—kA1—2k: [.7 Sl k]l/z[j —k+ 1]1/2
27 +1]
. | — k+ 1]Y2[j + K]/
+(=1) K+ g1-2 [] . _
( ) [23 == 1] )vk 1/2

= 0.

Thus f;f} =1, g;¢t = 1, g;f} = (f;9})* = 0, and therefore P? = P, Q2 = Q,
and PQQ = QP = 0. This means that P + @ is also an idempotent. We
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also have that f; is a linear isomorphism from the range of P to V;_,/; with
inverse f]'-’, and likewise g; is a linear isomorphism from the range of @ to
Vit1/2, with g;f as its inverse. Therefore, the range of @ is 25 dimensional,
and the range of P is 25 + 2 dimensional, so the range of P + Q is 47 + 2
dimensional. Since all of V; ® Vi3 is 4j + 2 dimensional, P+ @ = 1.

The reader is left to verify that

(1® F(C))g;-1/ov% ® v12

) L [j_k]l/Z -
== ’L(—l)J 5 IA J=k-1 <[2—]]1/—2— U}c-}-i;; and

(1 f(c))95—1/21/i ® v_1/2

c ai—k [j+k]1/2 i—1/2
= —jATTFH <_[2—3]1/2_ 1-1/2

from which Equation (16) follows immediately. Equation (17) is just the
transpose of Equation (16).

We have only to show inductively that each j gives a label and all four
maps are intertwiners. Assume that we have a label j, with vector space
V; for each j < jo, and assume fj, f;, ¢’ and g§ are all intertwiners for
J < jo- But then by Equations (16) and (17), f;, and f} are the products of
intertwiners and hence intertwiners themselves. Thus P and therefore QQ are
in the commutant. Since @ is an idempotent, its range corresponds to a label.
But identifying its range with Vj,41/2 via gj,, we can consider the new label
to be Vj,4+1/2 and then gj, restricted to the range of @ is an isomorphism, so
Jjo, Which is this isomorphism composed with @, is an intertwiner. Then gg.o
is the inverse of this isomorphism, and hence is also an intertwiner. []

Lemma 5 Let V' be a vector space with a basis vy, ...,v,, and let A be an
algebra of operators on V. Suppose A contains an operator ¢ for which
each v; is an eigenvector with a distinct eigenvalue. Suppose A also contains
an operator x with the coefficient of viyy in zv; nonzero for i < m, and

an operator y with the coefficient of v;_1 in yv; nonzero for 1 > 1 . Then
A= End(V).

Pf:If \; is the eigenvalue of ¢ associated to v;, then the operator [;.;(¢—
Ai) is zero on each v; except v; and multiplies v; by some nonzero scalar.
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Thus an appropriate multiple of it is an idempotent u;; € A such that
u;;v; = 0;;v;. Likewise uji1j4127u;; will be zero on every v; except vy,
which it will take to a nonzero multiple of v;;;. Define u; ;41 € A to be an
appropriate multiple of this operator so that u; ;+1v; = 6; jvj41. Also define a
multiple uJ j—1 € A of ui_1;_1yu;; so that uJ - 1V; = 6; jv5-1. Finally, define
Ujp = Hk i Ui+l for £k > j and u;, = Hz—O Uj—ij—i~1. Lhe operators u;pg,
which are all in A, written in this basis are the n? matrices with all zero
entries but one 1. These span End(V).

Proposition 32 For each j we have
(a) $5(v]) = (1P A~*]
(b) PRyj3jPR;1j2 = A¥glg; + A™4~4f1f; and
(c) 7 1is irreducible.
Pf:
(a) By induction. Assume that ¢;(v]) = (=1)¥ A=*. Then
(5 ® b1y2)(vkf @ vyj2) = (—1)¥ A2 (v @ vyya)

and
(65 ® Bry2)(v], ® v-1y2) = (1) A2 (y, @ v_y9).
But

T2
¢J+1/2( k+1/2)

= 9i(¢; ® $1/2)9" (Vks1/2)
j—k+1 1/2

= g;(; ® bry)(AT™ kﬁ
| . — k|12
+(—1)j_k'1AJ+k+lﬁ

~ [ —k+ 1]1/2

= AT (W e
[ — K2

Uk+1/2-

Uk @ V172
Vg1 ® V-1/2)
Vg @ V)2

+(—1)j—k—1Aj+k+1 Vi+1 @ U_l/g)

— (_1)2j+1A—4k:—2
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(b) (and c.) By induction simultaneously.

First assuming that statements b. and c. are true of the label j, we
will show that 45 + 2]
7+
F(T)=-—

=g

where T is as in Figure (26).

Ly;, (18)

Figure 26: The identity tangle encircled by an unknot

Of course, assuming j is irreducible, we know that F(T) is an inter-
twiner, so it is - 1y;. Thus

aqdim; = qtr(F(T))
= th‘(PRl/zyjPRj,lﬁ)
Applying b. gives
aqdim; = AYqtr(glg;) + A qtr(f1f5)

A4thrj+1/2(gj9;’) + A_4j_4qt1'j—1/2(fjf;)
A4‘7 qdimj+1/2 + A_4J—4qdimj_1/2.

By a., qdim; = (—=1)%[2j + 1], so

—AY[2j + 2] — A~44[25]
27 +1]
W+
27+ 1)

=

Now notice that PRy/3;41/2PRj11/2,1/2 is F of the tangle pictured in
the upper left of Figure (27). It is therefore

(9; ® 1}F(T)(g; ® 1),

where T is the tangle between the horizontal lines in the upper right
of Figure (27) .
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Figure 27: The inductive computation of F of the full twist

Now
F(T) = A’F(X)+ FY)+ F(Z)+ A2F(W)

by Equation (13), where X, Y, Z, and W are as pictured in Figure
(27). Applying the inductive hypothesis to the first three tangles and
recalling f;9¢ = g;ff =0, g;9} = 1, and the value we computed for the
tangle in Figure (26)

PR1/2,j+1/2PRj+1/2,1/2 = A2A4j1j®1/2

2[47 +2] ¢
o) ICERHOIEES)

+ (2A4J' — A"
where S is as pictured at the bottom of Figure (27). But by Equations
(16) and (17),

27+ 2
(0 8 DA ® 1) = = L e

So recalling that

Ligij2 = 9;+1/29j+1/2 =5 f;+1/2fj+1/2’
we get
PRyjsj+1/2PRjs1/21/2 = A4j+2g§+1/29j+1/2

. 45 + 2]\ [25 +2 ;
—( (2’44] = {2; j: 1%) %2; . 1} + A L jafrege
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And now a simple calculation gives

4 a-2147 2]\ [25 +2] 4j+2
(244 o) B+ A

si+2 a4 27+ 2]\
(A SR )
27 +2] [, 2[4 +2] 4
pj+u<A 27 +1] ‘4>
a2 [ padi+4 45 2[27 +2]
= A <A+ A+—[2j+1]>
LAY (27 4 2] ( ALi+2 4] + 2] . A8j+4>

(27 + 1] [27 + 1]
o (1] —4j-4 [27 + 2]
[2j + 1] [2j + 1]
_aje A%[25 + 2] — AYHY1]
25 + 1]

= A

e A—4j—6

and b. is proven.

But now for c., notice that if A is not a root of unity, each vy is an
eigenvector for ¢; with distinct eigenvalue. We have only to construct
the operators x and y of Lemma (5) out of PR/ jPR; /2 and we are
done.

Writing PRij2;PRj1/2 = 2k, fx ® f*, we see that
=3 (v_1ya, ffv1/2) fi

k

and

y=> (vija, ffv_1/2) fi
p

are in the algebra, where (vg,v;) = 6k, so it suffices to show that
(Vk41, zUg) and (vg_1,yvk) nonzero for each k.

(Ver1, 7vg) = AY (Ukg1, Que) + A7 (ves1, Pug)
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(—1)% A%+2h+1 [j + &+ 1)2/%5 — k]*/2
(25 + 1]
2j+1 g —4j+2k~3 [ + &+ 1]M2[5 — E}V/2
[27 +1]

A2lc—1(A4j+2 _ A—4j—2).

+(=1)

o1+ k +1]72[5 — kM2
25 + 1]

= (-1
Likewise

(—1)% A%-3 [j + K120 — k4 112
27 +1]

Since A # 0 and A is not a root of unity, the powers of A, differences

of powers of A, and hence [n] for all n, are all nonzero. Thus both
quantities are nonzero.

(A4j+2 _ A_4j_2).

(Uk—ly yvk) =

Corollary 7 For each j and k, j®k = EB{:G_,C' i, where the sum increases
by integers.

Pf:By induction on the lesser of the two: Assume it is k. Clearly it is
true if £ = 0, and we have proven it in Proposition (31) for kK = 1/2. Assume
it is true up to k. Then

j+k
(eRnel2 = @ ivl)

i=j—k

jtk

= D (i-1/2)®(+1/2)

i=j—k
jHk+1/2 j4k—1/2

= P ie P

i=j—k—1/2 i=j—k+1/2
On the other hand

(@K ®L2 = j®(k®1/2)
= j®(k-1/2)@j® (k—1/2)
: j+k-1/2
= jok+1/22e P i
i=j—k+1/2
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But by the uniquness of the decomposition of labels, this gives
j+k+1/2
i®k+1/2)= P i

i=j—k—1/2

Theorem 9 F, with labels all direct sums of j € Z=°, forms a complete
framed unoriented tangle representation with each j being irreducible and
relevant, and with the structure constants given in the previous corollary.

Pf:This all follows from the propositions of this section. =]
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2.4.3 Roots of Unity

Let A be a root of unity, and let J be the least half integer such that A%/+4 =
1.

Proposition 33 For each j < J, V; ds defined in the previous subsection is
irreducible, and the formulas for f;, f;, a3, g;, ®j, and PRy ;PR;1/2 are
ezactly the same as in Propositions (31) and (82).

Pf:The arguments are exactly the same as in the previous subsection. One
need only check that the only things we ever need to divide by are powers
of A and [2j + 1], which are never zero, and that the nonzero quantities
(vks1,zvg) and (vg—1, yvk) are still nonzero, since A%+2 — A=4=2 £ ( for
i< dJ. ]

Proposition 34 The image of gs_1/2, Vi, gwes an irreducible irrelevant
label.

Pf:By the same reasoning as in Proposition (32),
$s(vi) = (1) A%}

Since each A% is distinct for —J < k < J, ¢ still satisfies the conditions of
Lemma (5). We just need to find an appropriate z and y.

The reasoning of Proposition (32) used to compute the value of a full
twist applies here so far as to show that

PR3 sPRy1j2 = A% 1581/
. 4]
+(2AY-2 A 2%2_‘]})(%_1/2 Q@ 1)F(95-12®1)

where S is as pictured at the bottom of Figure (27). Notice that since
A¥* = 1 we have [2J] = —A**2 and [4J] = —[2], so 24 2— A~2[4J]/[2J] =
—AY*2 oL 0. Thus we will take z = (1®v_12, (PR1j2,sPRj12— A% 101/2)1®
v1/2) divided by this quantity and y = (1®v1/2, (PRl/zJPR“/g—A‘”lj@l/g)1®
v_1/2) divided by this quantity. '

(Vkt1, 2Uk) = (Vk41 @ V_1/2, (gr-1/2 ® 1)7:(5)(93_1/2 ® 1)vx @ vyy2)
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Y AK 51

= (Uk41 ®V_1/2, (9172 ® 1)(A*7 [2J]i/2 V172 ® V172 ® V12

s~k
(- )2.] 1 A=k~ sl [ZJ']JE g+11//22®v 1/2 ® V1/2))

= (Vks1 ® V_1)2

2J- lA—k -J+1 ['] k]l/2
(gJ—1/2 ® 1)(( ) [2J]1/2 Vk+1/2 ® V1/2 ® V_1/2

_ J — kv
+(-1)Y AT ILTF]I]‘(T”I{+3;§®U—1/2®U1/2))

1)27 A—27+2 [J - k]l/Q[J +k+ 1]1/2

= (-1) o
This is nonzero for all —J < k < J.
Similarly,
m p wm ] R OFR T _as [+ KM2[T =k + 1]1/2
(Uk—lay’vk) = ( 1) A [2J]

which is again nonzero of all —J < k < J.
Thus by Lemma (5), J is irreducible. But

qdim; = tr(¢s)
J
— (___1)2.] Z A—4Ic
k=—J
= (-1D)¥[27+1]=0.

Proposition 35 If j,k < J, then

i®k= @ oz

leSj ks

where Z is a direct sum of irrelevant labels and S; ; is the set of all l such
that j+k+1€Z,1<j+k 1>|k—j,andj+k+1<2J.
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Pf:If J = 0 there is nothing to prove and if J = 1/2 it is trivially true.
o assume J > 1/2. We will prove it by induction on the lesser of k¥ and 7,
which without loss of generality we will assume to be k. So assume the claim
is true for all k¥ < kg and all 7 > k£ and choose a j > k.

M
i®k= P loZ
l=j—ko
where M = min{j + ko, 2J — j — ko — 1}, and the sum goes by integers. Then
M
((ok)®1l/2= P (I®1/2)®(Z®1/2).

I=j—ko

But Z ®1/2 is a sum of irrelevant terms, by Proposition (26). On the other
hand, since M < J, and j — ko > 0, Proposition (33) implies that

1®1/2=(—-1/2) ® (I +1/2).

So
M
(j®k)®1/2= P ((—1/2)& (I+1/2)) & (irrel. terms)
l=j—ko
M+1/2
= & l@@lzj—k0+1/2M_1/2l€B(irrel.).
I=j—ko—-1/2

There are now three cases. If j+ ko < J —1/2, then M = j + ko so write

the sum as
M+1/2 M-1/2

b o P I (irel)

l=j—ko—1/2 l=j—ko+1/2
= @ o P I (irrel).
S} kg+1/2,7 Sjkg~1/2,0
If j+ky>J—1/2, then M is 2J — j — ko — 1, so write it as

M-1/2 M+1/2

D o P & /(irrel)

l=j—ko—1/2  l=j—ko+1/2
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= P o P o (rrel).

S kg+1/2:7 Sjkg=1/2,7

Finally, if j + ko = J — 1/2, then M = J — 1/2, so write the sum as

M-1/2 M-1/2 .
D o G eI/ (irrel)

I=j—ko—1/2  l=j—ko+1/2
= P e P o (irrel),
Sj ko +1/2,7 Sjkg-1/2,7
by the irrelevance of J. Thus the result is the same and by induction we get

(1Qko)®1/2=j@(k—1/2)® € [ (irrel.).

Sjko+1/2,7

But
(1®k)®1/2 = j®(ha®1/2) =37 ® ((ko —1/2) ® (ko +1/2))
(7® (ko —1/2)) ® (j ® (ko +1/2)).

From this the result follows. |
Let H), refer to the positively oriented Hopf link, with one component

labeled by A and the other b}@)wn in Figure 28)
Figure 28: The Hopf link labeled by A and v

Proposition 36 If A is generic, or if J is the least J such that A%+4 =1,
and 1,5 < J, then

F(Hig) = (=1)**[(2i +1)(25 + 1)].

Pf:By induction on j. The result is clear if j = 0. If j = 1/2, recall Equa-
tion (18) says that if T is the identity tangle on i encircled by a component
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Figure 29: Decomposing Hopf link labeled by a tensor product of labels

labeled by 1/2, then F(T) = —[4i + 2)/[2i + 1]. But F(H;12) = qtr(F(T)),
which is

[4i + 2

2i + 1]

Now assume it is true for jo, and consider F(Hj j,g1/2). On the one hand

we see in Figure (29) that it is just F(H; jo#H;1/2), the connect sum being
along the ¢ component. By Proposition (27), this equals

(=1)*[2i + 1] = (=1)%*[di + 2].

which by induction is

(—1)%+%o [(21 + 1)(250 + 1)][2(24 + 1))
21 + 1]

which is easily seen to be
(—1)%#%073 (20 + 1)24] + (= 1)*+4°+ (24 + 1)(250 + 2)]-
On the other hand, jo ® 1/2 = (jo — 1/2) @ (jo + 1/2), so

F(Hijoo12) = F (Hi.q'o—}/z) + F(Hijo+1/2)
(—1)%*2071(24 + 1)250] + F(Hi jo+1/2)-

Subtracting from the above formula, we get the desired result. =
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Addendum To Section 2.3

Lemma 6 Let A be nonreducible, and x € Cy. Then x is nilpotent if and
only if 1t s singular if and only if its trace is zero. In particular, the set of
nilpotent operators forms an ideal of Cy. If ) is relevant, T satisfies either of
these two conditions if and only if gtr(z) = 0.

Pf:Write z as al, + 7, where « is scalar and 7 is a nilpotent operator.
Writing 7 in its Jordan canonical form, we see det(z) = o™ and tr(z) = na,
where n is the dimension of V). Thus all three conditions are equivalent to
a=0.

For the ideal, notice that the nilpotents are a linear subspace because the
set of things with tr equal to zero is, and the product of a nilpotent with any
other operator (on either side) is again nilpotent because the same is true of
nonsingular operators.

Finally, if A is relevant, then qtr(z) = cqdim, is nonzero if and only if
a=0. ]

Proposition 37 Let f be an invertible intertwiner from @, n;\; to @; m;A;,
where each A; is nonreducible and n; and m; are multiplicities in the direct
sum. Then n; = m; for all 1.

Pf:Let p;; for 7 = 1 to n; be a resolution of the identity of the domain
into minimal idenpotents in in the commutant, with range of p; ; isomorphic
to Ai, and let g; ;, for j = 1 to m; be the same for the range. Choose an i,and
consider the intertwiner p; j» f ~*q,.fpi ;. This is an intertwiner from the range
of p;; to that of p; i, and thus can be identified with an element of Cy,. If
it is invertible, then so is gx:fpi;, which means that k& = ¢, for otherwise
it would give an isomorphism between A; and Ar. Thus if @ = Xy gey,
then p; 3 f~1(1 — Q) fpi; = §;» — m;; as an element of of Cy,, where 7 is
nilpotent. Let P = 37, p; j, and consider Pf~1(1 — Q)fP as an operator on
the range of P. Writing it in block matrix form we see that its determinant
is the determinant of the identity plus a sum of products of nilpotents in Cj,,
and hence is 1. Thus it is invertible. But then (1 — Q) fP must be invertible
as a map from the range of P to the range of 1— (), and thus they must have
the same dimension. Since one is a direct sum of n; copies of V., and the
other of m; copies of the same space, n; must equal m;. ]
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Thus it makes sense to ask the multiplicity of a nonreducible label in a
given label. In particular, define the structure constants n‘f\ﬂ by A\®@ v =
Ds nf\ﬁé, where A, v and ¢ are all nonreducible. These structure constants
together with the permutation map ¢ on the nonreducibles given by o(A\) =
A*, completely determine the algebraic structure of A.

Proposition 38 If A, v, and § are relevant, then nf\ﬁ = n%. :

Pf:We will actually show that n$., < nJ’.. By the mod 3 symmetry of
the statement, this suffices.
Choose nj , minimal idempotents p; in Cyg, With pip; = 6; ;p; and each
p; equivalent as a label to §. Also choose isomorphisms from Vs to the

range of each p;, so that we have intertwiners x; : Vis — Vi) ® Vi, and
i : Via ® Vi, — Vg such that ¥;x; = 6, ; and p; = x;3%s. Define

Xii Vi — Vi @ Vi
Vi Viy ®Vigr — Vi

Xi = (F(D)®1®1)(1®x:i®1)(1® F(F))
U = (1FON1®%:01)(FIE)®111),

as illustrated pictorially in Figure (30).

Figure 30: Rotating idempotents

Notice that Dix; = [(1® iqtr)(x;v:)]", and thus is an element of Cy..
Thus qtry. (¥i¥Xi) = qtTagy (Xj%i) = qtryg,(Xx;¥i). But each p; has nonzero
quantum trace (since A, 7, § are relevant), and each x;v¢; for ¢ # j has
range disjoint from its domain, and thus has quantum trace 0. So 1,7)1')23- =
@; ;1 + 75, where ;; are constants which are nonzero if and only if i = j
and 7;; are nilpotent. We will adjust ¥; and X; so that they satisfy the
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same assumptions as 9; and x;, and thus give a resolution of the identity
into n§ . ldempotents in C,gs with range isomorphic to A*. This shows that
:1\'6. > nf\v

First, since ¥;%; is invertible, define ¢ < o (1[10(1) Lob;. Now 7,0’ Xi = 1,
and W X; for i # j is an operator times a nllpotent and thus is another
nilpotent by Lemma (6). Now recursively define ¥}, ¥/, so that W X; = 6ij.
Assume this is true for 4,7 < jo and that 1/1’ X; and 1/;;’ X; are nilpotent for
i < joand j > jo. Let p = ¥icj Xi ", an idempotent in C,gs«. Notice

(L= D)o = PioXio — Ticin(Wio X (W Xio) € X. X is a nonnilpotent
element of Cy- minus a product of nilpotent operators, so it is nonnilpotent
and thus is invertible.~Deﬁne ~;’0 = ~;-0(1— p)and ¥, = (1— p)gjoX ~1. Then

;’0)2;0 =1, WX}y = Vi1 = p)XjoX " = 0 for i < jo because ¥/(1 - p) = 0,

;’ofd = io(1 — P)Xi = 0 for 1 < Jo, because~(1 —p)X; = 0. Furthermore,
Vi = 1/)9(1 — D)X X ™ = YR X7 = Ti(WiR) (¥ %) X 7t and 5% =

Jo(l X7 = ~;.o>~<3. >l Jon)(WI %) for j > jo, which are both nilpotent
since every term contains a nilpotent factor.

Thus we have constructed 9/ and ¥, with )/ X; = 0i ;- So defining ¢; =
X!, we see that the ¢; satisify q:q; = 6;;g; so g; are minimal idempotents
in C7®5- onto disjoint subspaces isomorphic to Vi (via ¥:). Decomposing
1 — 3°; ¢; into minimal idempotents, we have written v ® 6* as a sum of
nonreducible labels, with at least n3 ., copies of A*. Thus n)’s >nj .

|

Corollary 8 If), v are relevant, thenn} , = 0 unlessy = A*, andnj y. = 1.

3 Three Manifolds

3.1 Three Manifold Invariants

The basis for everything in this chapter is [Wit88], which in fact gives an
outline of a rigorous proof of all the claims made in it (though Witten actually
only claims these as conjectures). In the following years an avalanch of
rigorous presentations followed. Primacy in this regard goes to [RT91] who
show a three manifold invariant arises from any “modular Hopf algebra” (our
definition of modular tangle representation is meant to correspond, though
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it is in fact somewhat weaker), and show that such an algebra arises from
the Jones polynomial (namely the quantum group U,(sl2)). A nonexhaustive
list of other versions includes [KM91], [Lic91], [CBV92], [Koh92], [Mor92],
[TWO93], [Wen93], and [Wal]. Our approach is a mixture of all of these.
[KM91] and [Lic91] are recommended as the simplest, [Wal] is recommended
as the most powerful and complete.

3.1.1 Link Labels and Satellites

Let F be a complete tangle representation with label set A. We return to
considering links, and make two modifications on A. First we allow each
component of a link to be labeled by an arbitrary (finite) linear combination
of elements of A with coefficients in the ground field. If L(};¢)\;) is L
with one component labeled by >°; ¢; A;, and L(}\;) is the same link with that
component labeled by A;, we define

FLO ed)) &S eF (L))

We say that two linear combinations [ and !’ are equivalent, [ = I, if given
any link L and any component, F(L(l)) = F(L(l')). Define the set of link
labels £, to be the set of such linear combinations modulo equivalence.

Proposition 39

(a) If \ X € A and A = X as elements of L, then \* = \*, and
AQY=N®7.

(b) If n; € Z, then Y, n; M\ = @ ny)\;, where in the right hand side n;)\;
refers to the direct sum of A\; with itself n times.

(c) L 1is spanned by equivalence classes of relevent labels.

(d) L is a commutative algebra, with multiplication - the image of ® and
with an involution * the image of *.

Pf:

(a) Clearly F(L(\*)) = F(L(A\*)) and F(A ® 7) = F(N ® ) because in
each case the left and right hand side can be written as a link labeled
by A and X respectively.
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(b) By the definition of direct sum of labels, F(L(B n;\;)) = S, niF(L(N;)) =
F(L(Zl m/\%))

(c) L is certainly spanned by equivalence classes of nonreducible labels.
But by Proposition (25), irrelevent labels are equivalent to 0 as link
labels.

(d) Immediate from Corollary (3).

|
Let T be a solid torus with a distinguished longitude. Of course, we mean
T to be a PL manifold. A link in T is just a one dimensional submanifold,
with equivalence given by ambient isotopy. Framed and oriented links are
defined by analogy with ordinary links. Given a framed oriented link L in
S? with a distinguished component ¢, we can imbed T into S by removing
a tubular neighborhood of ¢, and gluing in T by an orientation preserving
homeomophism of the boundary such that the longitude gets taken to the
image of S* X 0 in ¢ (thus T “twists the same amount as ¢”). The reader
may check that such an imbedding is uniquely determined up to isotopy.
If T contains a link ¢, then the imbedding yields a new link L%, called the
t satellite of L along c.

Proposition 40 Let t be a link in T with components labeled by elements
of L. Thent is equivalent to some | € L, in the sense that F(L%) = F(L(l))
for every link L in S3 and every component c.

Pf:Assume first that ¢ is labeled by elements of A. Identify T with D x I,
with D x {0} and D x {1} identified in such a way that {1} x I corresponds
to the longitude. Isotope t so that it intersects D x {0} transversely at evenly
spaced points along the x-axis. Call the resulting tangle T. Write L as the
closure of a (+1, +1) tangle S by cutting along ¢. If T is an (, 7) tangle, #i =
(ny,m9,...,my,) and A = ®); where \; = § if n; = § and \; = 6* if n; = —6,
let the open component of S be labeled by A. Then F(L!) = qtr(F(S)F(T)).
Let p; be a resolution of the identity of A into minimal idempotents. So

F(LY) = atry(F(S)F(T) Y p:)
= Y atr, (F(S)F(T)p:)

1)
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= thr,\(]:(S)}—(T)p?)
= Z qtr, (pFF(S)F(T)p;)
= 2 atn@F(S)pnF (T)ps).

The last two steps because p;, being in the commutant, commutes with ¢
and F(S). But p;F(S)p: is by definition F(S;), where S; is S labeled by A;.
Also gtry(piz) = qtry, (z), and p;F(T)p; = c;p; +n; for some constant ¢; and
nilpotent 7;. So the above quantity equals

Do atry, (F(S)(auly +m)) = Z cyqtry, F(S;) + atry, (F(Si)m)

= Y aiqtry, F(S;)
by the Lemma of the Addendum. But now this is exactly (L) when L is
labeled by >; a;A;.
If ¢ is labeled by linear combinations of labels, then by linearity F(L) =
> il F(LY), where the sum is over various labelings ¢; of ¢ by labels in A and
¢; are constants. But then since the claim is true for the ¢;, it is true for ¢. =

3.2 Modular Tangle Representations

Let F be a complete tangle representation with label set A. Let Ay, ..., A\, be
a finite collection of relevant labels, including 1. For simplicity of notation let
A1 = 1. Suppose that every A} and every A; ® ); is equivalent as a link label '
to a linear combination of Ay,...,\,. This would happen, for example, if
there were only finitely many relevant labels, as is the case for the Kauffman
bracket tangle representation at roots of unity. Now consider the Hopf link,
Hy, »;, labeled by X; and );, as pictured in Figure (28). Suppose the A;’s
also satisfy that the matrix of values F(H,»),;., is nonsingular. If F
admits a set Ay,..., A\, with these properties, it is called a modular tangle
representation.

Now suppose F is a modular tangle representation, and restrict the al-
gebra of link labels to the span of the image of Ay,..., A,. Notice this is a
subalgebra closed under the involution, and if ¢ is a link in the solid torus
labeled by elements of this subalgebra, then ¢ as a satellite is equivalent by
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Proposition (40) to an element of this subalgebra. Thus we will restrict at-
tention to this subalgebra, and when we say the algebra of link labels we will
mean only this subalgebra.

The value F(Hj, ,) of the Hopf link labeled by labels I; and I, gives a
bilinear form on the algebra of link labels, which is nondegenerate if F is
modular. Let w), be a dual basis to A;. That is, w), is a link label such that
F(H/\j,‘wki) . (51,_.,

Proposition 41

(a) wys = w},. In particular, wi = wi.
(b) Wy; - Wy; = 5ijw,\i/qdim,\‘,.

(c) wy -l = O()wy, where O(l) is the value of F on the unknot labeled

by L.

(d) w1 =¥ ; qdim, A;/ T(qdim,,)?.

Pf:

(a)

Notice if you reverse the orientations of both components of the Hopf
link, you get the Hopf link again. Thus H;, , = His 15, so F(H. ,\;,w;i) =
F(H ’\j’w'\i) = 6;; s0 wy, — wy; is in the null space of the matrix. Since
the matrix is assumed to be nondegenerate, it is zero.

Consider H Akt W, This has the same value as the connect sum
Hywy, #H,\‘.,w,\j along A, so
F(H’\’“w/\."w’\j) = f(HAk,w,\i) 'f(H/\k,w,\j)/qdimAk
= 6¢k5jk/qdim,\i.
Thus wy, - wy; — ijwy, /adimJ; is in the null space of the matrix, and

therefore is zero.

Notice that O(l) = F(Hy,) so O(wy,) = 6y, Also, {w,,} forms a basis
of the link labels, so | = ¥ ), w),, and therefore O(l) = oy. Finally, by
b),

w -l = Za,\iwl Wy,
ajw /qdim;

Il

= W) = O(Z)wl
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(d) First we will show that w = ¥, qdim, ); has the property that w1l =
O(l)w. It suffices to show this for { = \;. Computing

w - /\j = quim,\l)\i . )\j
i
= M qdimxinj\\f/\j Ak
i,k

= Z(Z qdim,\ing\j,\;)/\k.

k 1

But clearly qdim,, = qdim,\:, and

e . :
PL nyadimy. = qdim, gy.
i
qdim, qdim,.
= qdim, qdim,,

and so

weA; = quim,\jqdim,\k)\;c
k

= qdim,, ) qdim, Ag
= w- qdimlj\j.
But now this means
w-w = wO(wy) = w.
On the other hand,

w-w; = w,O(w) = w - Z(qdim,\‘.)?

Now w is a nonzero linear combination of the z;’s, and hence cannot
be equivalent to the 0 link label, because F is modular. Hence

Z(qdim,\l. )2 #0

)

and

w, = w/ Z(qdim,\i)Z.
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Proposition 42 Let L be the distant union of the +1 framed unknot with
the —1 framed unknot, both labeled by wy. Then F(L) = K, where

K= 1/Z(qdim,\,-')2-

: W
= | GO 2w, fw 5

Figure 31: Computations with framed unknots

P£:0f course F(L) = F(O4+1)F(O-1), where O, and O_; are the %1
framed unknots labeled by w; respectively. Write O,; = O(l), where [ is
the label equivalent to the satellite ¢ shown on the left of Figure (31). So
F(L) = F(O.) where O is O_ labeled by O(l)w;. But by Proposition (41c),
O(l)wy =1 w;. Labeling O_ by ! - w; is the same (as far as F is concerned)
as cabeling O_ and labeling one strand by w; and replacing the other by
a t satellite. This gives the link L' shown on the right hand side of Figure
(31), which is just the Hopf link with one component given a —1 framing and
both labeled by w;. By Proposition (41d), w; = K 3, qdim, A, so F(L')
is K3 qdim,y,F(L),,,) where L, is L' with the —1 framed component
labeled by A;. Finally L}, = Hyw,#0Y, the second link being the —1
framed unknot labeled by A;, so

F(L) = Kquim,\i]—'(L’,\iw)
= K Z F(Hyu ) - F(OM).

But F(Hy,uw,) = 6x,1, and F(OX) = 1, so we are done. N

3.3 Surgery and Framed 3-Manifolds

Let L be a framed unoriented link in $3. For each component of L, consider
the image of an imbedding of the solid torus T? which takes its center to
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the center of the component and its preferred longitude to one edge of the
component, as described in Section 3.1.1 for satellites. One can clearly do
this so that none of the images intersect. The complement of the union of
these images is a 3-manifold with boundary a union of tori, each boundary
component having a homeomorphism h; from boundary of T? to it such that
gluing a copy of T? to each component of the complement via h; gives back
the original S3.

Instead, let g be an automorphism of the boundary of T? which takes the
preferred longitude to a meridian and that meridian to the longitude with the
opposite orientation. If we glue a copy of T to each boundary component of
the complement by identifying each point in T with h;g of that point, we get
a new 3-manifold, M (L), which is potentially different from S®. The reader
should check that M (L) does not depend up to homeomophism ambiguities
on the imbeddings of T or the choice of g and thus the notation M(L) is
appropriate.

For example, the reader may check that if O,, O_, Og are the +1, —1,
and 0 framed unknots, then M(O.) = S® and M (O,) = 5% x S*.

We shall not prove the following two remarkable facts, as their proofs take
us deep into otherwise unnecessary topology. Their proofs can be found in
[Lic62] and [FR79], where they were first proven. The second theorem with
a “nonlocal” set of moves was first proven in [Kir78|, and Fenn and Rouke’s
theorem follows without much trouble. With some effort the arguments here
could by modified to use the Kirby moves, perhaps more naturally.

Theorem 10 Ewvery compact oriented 3-manifold is M (L) for some L.

Theorem 11 If M(L,) is homeomophic to M(L3), then L; and Ly can be
related by a sequence of the two Fenn-Rourke moves shown in Figure (82) and
their mirror images, where in move Il there can be any number of strands
linking with the unknot.

Define a framed 3-manifold to be an equivalence class of framed unori-
ented links, equivalent under the framed Fenn-Rourke moves of Figure (33).
Let L have n components. Choose an orientation for each and number
them 1 to n. Let [;; be the linking number of component 7 and j for ¢ # j.
Let l; be the self linking number of component 7 (linking and self linking
number are defined in the exercises). The symmetric matrix {l;7}*/5" is
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T b Ny X

Y /A7)

Figure 32: The Fenn-Rourke moves

Ialé,@?b,\‘ <) E Z/\\;

Figure 33: The framed Fenn-Rourke moves

called the linking matrix of L. Since it is symmetric, it is diagonalizable
over R. Let o(L) be the signature of the linking matrix, i.e., the number of
positive eigenvalues (counting multiplicities) minus the number of negative
ones.

Proposition 43 (L) is a framed unoriented link invariant, and in fact is a
framed 8-manifold invariant. What’s more, if two links represent the same 3-
manifold and have the same signature of their linking matriz, they represent
the same framed 3-manifold.

Pf:The signature of a matrix does not change with a change of basis, so
reordering the components (reordering the basis) or changing the orientation
of some components, (changing the signs of some basis elements) does not
change the signature. Since these were the only choices to he made, it is a
framed unoriented link invariant.

Invariance under the first framed Fenn-Rourke move is more easy. Let A
be the linking matrix of the right hand link. Then the linking matrix of the
right hand link is

A0 O
01 0|,
0 0 -1

assuming the +1 framed unknot is numbered n + 1 and the —1 is labeled
n + 2. Then if D is A diagonalized, then the larger matrix diagonalized is
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just

D0 0
01 0 |,
0 0 -1

which has the same signature as D.

For the second, number the components which go through the +1 framed
unknot by 1 through k, and number the unknot n. Each [;, for ¢ < k, is
just the number of times component ¢ occurs in the lower left side of Figure
(32), with signs for the direction. On the right hand side, l;, gets replaced
by 0, and since every strand gets wrapped around every other, the linking
number of 1 and j, for 4,5 < k gets I; ,1; , subtracted from it. This is exactly
the effect of replacing each basis vector v; for j < k with v; — I ,v,. Thus
the signature is unchanged. For the final claim, let L; and L, have the same
signature, and be connected by a sequence of ordinary Fenn Rourke moves.
We will adjust this sequence to a sequence of framed Fenn Rourke moves, by
an approach analogous the the proof of the framed Reidermeister moves.

To do this replace each instance of move I which creates a framed unknot
with the framed move I which creates two framed unknots. Move the extra-
neous one far away from the rest of the link. Don’t do any instances of move
I which delete a framed unknot, but instead move it far away from the rest
of the link. When you are finished, you have shown L; gives the same framed
manifold as L, distant unioned with a collection of 1 framed unknots. But
all three links have the same signature. Since distant unioning a £1 framed
unknot with a link add 1 to the signature. It follows the new link is L,
distant unioned with an equal number of +1 and —1 framed unknots. Then
a sequence of framed Fenn Rourke moves takes this link to Ls. n

We cannot end this subsection without some remark about framed 3-
manifolds. Of course there is a geometric defintion. As expected, a framed
3-manifold is something like a 3-manifold with a smooth choice of framing
of each tangent plane (here we should be working in the smooth category).
Two framings are the same if they are isotopic when imbedded in TM T M
diagonally. Atiyah has shown ([Ati90]), that if the 3-manifold bounds a
4-manifold, then exactly one isotopy class of framings extends to that 4-
manifold, and it will extend to every 4-manifold, with the same boundary and
the same signature (the signature of the cup product of H?). Remarkably,
the process of surgery on links which we used to construct 3-manifolds quite
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naturally determines a 4-manifold which it bounds, and the signature of that
manifold is exactly the signature of the linking matrix. Thus the signature of
the linking matrix corresponds to a unique framing on the 3-manifold. This
and Proposition (43) justify our senseless but very practical definition.

3.3.1 The Three Manifold Invariant

Recall that the connect sum of two connected 3-manifolds, M;# M, is the
3-manifold formed by removing a 3-ball from each and then gluing the two
together along the S? boundaries.

Theorem 12 Let F be a modular tangle representation, and L be a link la-
beled by 2 = w,/ VK. Then F(L) is an invariant of the framed 3-manifold
determined by surgery on L with orientations removed. The quantity I(M (L))
CoLF(L) is an invariant of M(L), where o(L) is the signature of L and

C = F(09)

where OF is the —1 framed unknot labeled by ). Furthermore, I sends the
connect sum of two manifolds to the product of their invariants.

Pf:Since w} = w;, O* = Q and F(L) is independent of the orientation of
each component. For framed move I, notice F(LIIOY 110*!) = F(L)F (0%
Of)/K = F(L) by Proposition (42). For move II, let the left hand side be
as pictured on the left of Figure (34), and think of it as a Hopf link, with
both components given a +1 framing and one component labeled by 2, the
other given the satellite t, where ¢ is pictured on the right of Figure (34).
But the Hopf link with both components given +1 framing is just O, cabled
twice. So F of the left hand side is F(O%4?) , where by ¢t we mean the link
label equivalent to ¢ as described in Proposition (40). By Proposition (41c),
this is just O(¢)F(OF). This is exactly F of the right hand side. Thus F is
a framed 3-manifold invariant.

To see the invariance of I{M (L)), notice both F(L) and o (L) are invariant
under Fenn-Rourke move II, so (M (L)) is. For move I, notice that 7(O%) =
F(O%)~! by Proposition (41d). Thus if Ly = LI OY, F(Ly) = F(L) -
F(OF) = F(L)/C, and if L_ = LI O%, F(L_.) = F(L)-C. On the other
hand clearly o(L,) = o(L) + 1 and o(L_-) = o(L) — 1, so I has the same
value on L., L_ and L, and thus is invariant under move I.
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Figure 34: Proof of move II

For multiplicativity, notice that M (L,)#M(Ly) = M(L,
SO45% = $%). But F(Ly 11 Ly) = F(L1)F(Ly), and w(Ly 1 Ly)
w(Lg). Thus

I(M(L1)#M(Lz)) = I(M(Ly U Ly)) = I(M(Ly)) - I(M (L))

As an example, we see "
I(S®) = F(unlink) = 1,
and
I(S* x §%) = F(O) = 0(Q) = 1/VK = (3" qdim} )2l
3.4 The Kauffman Bracket Again
Theorem 13 Let F be a tangle representation, and let Ay, ..., A, be relevant .

labels such that each A is Aj for some j, and \; ® \; = Eanj)\k & (irrel.).
Then F is a modular tangle representation if and only if the quantity

> qdim, F(Hy, ;)
=1

1s zero for all i except 1 = 1, for which it is nonzero.

Pf:First suppose F is a modular tangle representation. Then we know

n

w= quim,\‘,)\,-

i=1
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is a multiple of w;. Thus the matrix {F(H iAg) Fij<n times w should be a
multiple of the vector } -, 6::;:. But in fact it is

> qdim,, F(Hy, )N,
ij
which gives the desired results.
On the other hand, suppose these quantities have the value given. Let

n

Qi =D F(Hyp1)Nj

J=1

Then

o

<
|
=

F(Hya) = 2 F(Hya)F(Hyn)

F(Han, )T (Haz ;)

<
I
-

l Il
NERENGE

f(H)\k.,\:_)\j )qdim,‘\j

.
Il
A

Il
s
NE

[
Il
—
o~
1l
=

n:\\l/\:f (Hp;)adim,,

It
NE
M:

/\kA']:(HA- ,\‘)qdlm)\

h.
Il

-
.
Il

A

n
= Z )\k/\'(s“
anj s

aék,,

where a # 0.

Thus {Q;} is a multiple of a dual basis to {\;} under this pairing, so the
pairing is nondegenerate. n

Theorem 14 The tangle representation coming from the Kauffman bracket
at A a root of unity is modular.
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Pf:Let J be the least half integer with A3/** = 1. By Proposition (36)
F(Hiz) = (=1)**47[(2 +1)(2j + 1)]

80

J-1/2 J-1/2

Z F(Hiyj)qdim; = > (—1)%[(2 + 1)(25 + 1)][25 + 1]

=0

( 1)% JZI/Z AGHOQI+1) _ A41(25+1) _ 4—4i25+1) 1 A—(4i+4)(2+1)

= (A2 — A-2)2
(=1* J_i/z( (4+0)(254+1) | g—(di+4)(25+1)
gl + AT £ ATETETY))
(A2 — A2)2 <0
(-1)% Z/ HEAY) | g-ti(2i+)
— (1 + (AMETY 4 A7HETIY)
- L
2t 2J
— (A( 1) E A(41. Z A4in)
n=-=-2J n=-2J
( )2z ((A4i+4)—2.]( i (A41'+4)4J+1)
(A2 A 2)2 1 — A4i+4

_( Adiy—4T+1
_(A4i)—2,](1 ]in 21‘“ + )

if 4 # 0, where the denominators are nonzero since 41,41 + 4 < 8J + 4. Since
A™ raised to the 4J + 2 is 1 for any integer n, we have

J-1/2
Z F(H B qd1rn
-1 2i ; B 1-— A—4i—4 o 1— A—4i
- A - a2 E)
_1)2 . .
_ Ag _124—2( (A% =2I-1 L (g%)-20-1
-1 2 B o
Ag—L—2(A41.) 2J 1(1__A 8J 4),
= 0
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if 1 #£ 0.
On the other hand, if 4 = 0, then

J-1/2 J=-1/2
=0 =0
since [27 + 1] is real for all j < J —1/2. u

As an example, we compute

J-1/2

7=0
J—-1/2
= Y [2+1?
j=0
T=1/2 A4(2j+1) 4 fA-42+1) _ 9
5 = (A2 - A—2)2
1 At — ANIH) A A 4(2T 4+ 1)
— - -1
(A2_.Af%2( T4 T 1-A- Sl
1
o el
= (A2 — A-2)?

In particular, we have

e 1 y2TF1
I(S XS)—\/I_{—\/_(A2_A—2)2'

3.5 Topological Quantum Field Theory
3.5.1 ATQFT’s

Choose a dimension d, and choose a representative ¥ of each homeomor-
phism class of connected, compact oriented d dimension manifolds. We shall
find it notationally convenient to add the empty manifold @ to our set of
representatives. A parameterized d surface is a compact oriented d dimen-
sional manifold together with a homeomorphism from each component to a
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representative . Parameterized sufaces are homeomorphic if they are home-
omorphic as manifolds by a map which preserves the parameterization. A
component of a parameterized d surface is called positive or negative accord-
ing to whether its parameterization is an orientation preserving or reversing
homeomophism. A parameterized d + 1 manifold is a d + 1 dimensional com-
pact, oriented manifold with boundary together with a parameterization of
the boundary and an ordering of the boundary components. Thus if the ;th
boundary component of M is identified with the representative X;, we have
identified M with the sequence X;U...UX,. A d+ 1 dimensional manifold
without boundary is considered to be parameterized with boundary .

The following defintion is an attempt to capture the concept of a Topo-
logical Quantum Field Theory arising in physics. It is usually referred to
in the literature as a TQFT. However, since it misses quite a bit of what
a physicist means by a TQFT (e.g. fields!), we have chosen to call it an
Axiomatic Topological Quantum Field Theory.

A d+ 1 dimensional Aziomatic Quantum Field Theory, ot ATQFT, over
a field F, is a map Z, which sends:

e each representative & to a finite dimensional vector space Z(X). In
particular it identifies Z(@) explicitly with F,

e each parameterized d 4+ 1 manifold M whose boundary has been iden-
tified with £, U...U X, with signs €;1,...,&, to an element

where

subject to the following axioms:

(a) Reordering: if M; is simply M, with the boundary components re-
ordered by a permutation map o, then Z(M;) = 0(Z(M,)), where ¢

is the map
n ‘n

ot @ Z(Z)" — @ E(So(9)

i=1 i=1
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given by

n n
(@ vi) = Q Vos);
i=1 =1

Nontriviality: If Iy is the d + 1 manifold ¥ x [0, 1], with the obvious
parameterization on the boundary and with the negative component
coming first,

Z(Iz) = > v @u; € Z2(£)* ® Z(T)
where v; is a basis of Z(X) and v} is its dual basis in Z(Z)*;

Tensor Product: Suppose My, M, are parameterized d + 1 manifolds,
and M; U M, inherits their parameterization and ordering; putting the
boundary of M; before that of M, then

Z(MLU M) = Z2(My) ® Z(My).

If one of these is closed, we interpret this equality with the canonical
identification of vector spaces

FRH=H=HQ®F,;

Gluing: Suppose M is a parameterized d + 1 manifold, with the first
and second boundary components homeomorphic to %, via f; and f,
respectively, the first being positive and the second being negative. Let
M' be M with the points of the first and second boundary components
identified via the map f; ' o fi. Then if

Z(M) = Z'Ui®'u;®wija

i,j

where v; is a basis of Z(X), v} is its dual basis and w;; are elements of
the vector space associated to the boundary of M’, then

Z(M’) = Zwﬁ.
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Of course, an ATQFT gives a numerical invariant of d-manifolds without
boundary, since it assigns to each an element of Z(f) = F. On the other
hand, it gives much more, including a representation of the mapping class
group of every d — 1 dimensional manifold, as follows.

Suppose M is a parameterized manifold with two boundary components
homeomorphic to X, the first negative and the second positive. Then Z(M) €
Z(X)* ® Z(X) can be interpreted as an operator on Z(X). Specifically, if v;
is a basis for Z(X) and v} is its dual basis, then for

Z(M) = Zaﬁv;‘ ®'Uj

identify Z(M) with the operator which sends v; to }-; aj;v;.

Now suppose M; and M; are both of this form, and consider the manifold
M formed by taking their union and then gluing the first component of M,
to the second of M;. Then if

Z(Ml) = Ea;;,;’l);@’vj
Z(Mg) = iji’l),?‘@'l)j

we have
Z(Ml U Mg) = Z a,jib[k’l): & Vj & ’U,: & vy
id,k,l
and
Z(M) = Z btjaj,-vf X v;.
il
Thus Z(M) as an operator is the product of Z(M;) times Z(M;) as opera-
tors. '
Given an automorphism f of 3, let Iy be the manifold ¥ X [0, 1], with the
first (negative) boundary component identified with ¥ via the identity and
the second (positive) component identified with ¥ via f. Notice gluing the
second component of I to the first of I, results in the parameterized manifold
Iyo¢. Thus if we define Z(f) to be the operator associated to Z(I), we have
Z(go f) = Z(g9)Z(f). Thus Z represents the group of automorphisms of &
on Z(X). Also, if f is isotopic to the identity, then I; is homeomorphic as
a parameterized manifold to I5, so Z(f) is the identity. So we really have a
representation of the mapping class group of 2.
The following result is not strictly necessary to the course, but justifies
the term nontriviality.
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Proposition 44 Suppose Z is a map which satisfies all the assumptions of
an ATQFT except nontriviality. Then Z(Ig) as an operator is idempotent,
and if we define Z'(X) = Range(Z(Is)) and Z'(M) = Z(M) considered as a
vector in Qi Z'(X;)%, then Z' is an honest ATQFT.

Pf:Notice the above argument representing the mapping class group of
3 applies to Z here. Thus if f is the identity on X then Z(f) = Z(fo f) =
Z(f)Z(f),s0 Z(f) is an idempotent. Let Z'(X) be its range. If M is a
parameterized manifold with boundary identified with ¥; U... U X,,, and
Z(M) € @, Z(X;)%, then gluing a copy of I, to each component gives M
again. But it is easy to check that this means

so Z(M) is in the tensor product of the range of Z(f) (on negative compo-
nents, we should use the adjoint Z(f)*, but the range of Z(f)* can be canoni-
cally identified with the dual of the range of Z(f)). Thus Z(M) € 2'(M)=.
Defining 2’'(M) = Z(M), it is easy to check that Z’ now satisfies all the ax-
ioms of an ATQFT. u

Suppose Z; and Z; are ATQFT’s. We can form the direct sum Z, @ 2,
as follows. Define (2, @ 25)(X) = Z1(X) ® Z5(X). Thus we can identify
®?=1(Zl & 2:2)(21;)'si with

@ ® Z'i (Ei)Ei'
F1yeees an{l,Q} i=1
Now let M have boudary identified with ¥; U...UX,, and let the connected
components of M be M, ..., My, and notice Z; (M) ® ... ® Z;, (M) is an

element of the above direct sum for each sequence ji,...,Jx of 1’s and 2’s.
Define

k
(Z21® 25)(M) = Z ®Z'.-(Mi)
Jr..Jk i=1
and notice it is an element of (2, @ 23)(X, U ... UX,). The reordering,
nontriviality and gluing axioms all follow from these axioms for Z; and Z,,
and the tensor product axiom is true by construction.

Let S* be the d dimensional sphere. We say that Z is simple if Z(S%) is
one dimensional.
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Proposition 45 Every ATQFT can be written as a direct sum of simple
theories. A simple ATQFT cannot be written as a direct sum of two nontrivial
theories.

Pf:Notice that between two manifolds homeomorphic to S¢ there is ex-
actly one orientation preserving homeomorphism and one orientation revers-
ing homeomorphism up to isotopy. Thus to specify a union of copies of S¢
as a parameterized surface, you just have to specify an ordering and signs on
the components.

Let K be S%*! with three B! balls removed. Make the first two bound-
ary components negative and the third positive. Thus Z(K) = ¥,a; ®
b ® c; € Z(5%)* ® Z(5%)* ® Z(S%), which can be thought of as a multi-
plication on Z(S%) which defines zy to be ¥; a;(z)b;(y)c;. It is commuta-
tive by the reordering axiom and associative by the gluing axiom. Likewise
if N is S%*! with two B! balls removed, both parameterized negatively
then Z(N) is a bilinear pairing of Z(5?). On the other hand Z(N*), where
N* is N with the opposite orientation, is some element of Z(S%) ® Z(S9),
say »,%; ® y;- But gluing N to N’ along one component gives I[gs, so
Yz, zi)y; = Z(Ige)(2) = z, and thus (-,-) is nondegenerate (and z; and
y; are dual bases).

Again by the gluing axiom, we have (zy, z) = (y, zz). Thus Z(5¢) forms
a commutative algebra of symmetric operators on Z(S%), with respect to a
nondegenerate pairing. They therefore can be simultaneously diagonalized.
Let p1,...,pn be the eigenvectors. Since p;p; is a multiple of p; and pj,
pip; = 0 if ¢ # j. Normalizing, we also have p? = p; (if p? = 0, p; could
not be represented as a symmetric matrix). Thus the p;’s are a basis of
idempotents. Of course (¥; pi)p; = pj;, s0 3. p; is the identity. But Z(B)
is the identity for this multiplication, so Z(B%*!) = ¥; p;.

Now let I be Ig with a copy of B! removed, with that boundary
component put first and parameterized negatively. Notice I glued to If is
Is with two holes removed, which can be thought of as I} glued to a copy
of K (see Figure (35)). Putting the S boundary components first in each
case, we have, if Z(I}) : 2(5%) ® Z(Z) — Z(%) is given by F(z ® y), then
F(p; ®-) is an operator A; on Z(X) such that

AAi=Fpipi®-)=F(p,® ) = A
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Similarly
A,;Aj = F(pipj X ) =0.
Also F(Yp; ®-) is Z of Iy, glued to Bgyt1, and hence is Z(Ix) = 1. Thus the

A;’s are a resolution of the identity, and decompose Z(X) into a direct sum
of subspaces. Define Z;(Z) = Range(4;), so that

Likewise A; A} = 6;;A;, and so Z(X)* = @] Range(A}) and Range(A}) can
be identified with Ra,nge}'Ai)* = Z;(2)*.

Figure 35: The operator A; is an idempotent

Now for a parameterized manifold M, with k& components, let M’ be
M with a B%! ball removed from each component, with all the new S¢
boundary components parameterized negatively and put at the beginning.
Define Z;(M) = Z(M")(p®* @ -). Notice if we act A; on any tensor factor
of Z;(M), we get Z of M’ glued to I§, with p; put in each tensor factor
corresponding to an S¢ boundary component. This manifold is M’ with one
extra B! removed from one component. This can be written as Z of M’
glued to K. Since p; is put in the two factors corresponding to K, this is the
same as not gluing in K but putting p; in the tensor factor corresponding to
the S¢ along which K is glued. But this is just Z(M")(p®* ® ) = Z;(M).
Thus A, Z;(M) = Z,(M). Similarly, A} on a tensor factor of Z;(M) in Z(T)*
is again Z;(M). Therefore

Z,(M) e é ASZ(5))5 = R Z(8;).

Z; clearly satisfies reordering, nontriviality, and the tensor product axiom.
For gluing notice if you are gluing two boundary components of the same
component of M, then M’ glued is M glued with a B%*! removed. Thus
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the gluing axiom for Z; follows from the gluing axiom for Z. If two different
components of M are being glued, then the result of gluing M’ has one com-
ponent with two S¢ boundary components. As above, these can be combined
into one by separating off K. Thus each Z; is an ATQFT. Since the range
of p; was one dimensional, they are simple.

Finally, suppose a simple theory could be written as Z; @& Z,. Then
either Z,(9%) = {0} or 2,(S%) = {0}, lets assume the former. Then for
any manifold M, Z;(M) can be written as Z;(M’)(Z(B*"')), but since
Z1(B%) =0, we get Z1(M) =0 for all M. In particular every Z,() would
be zero dimensional. Neglecting this trivial theory, no simple theory admits
a direct sum decomposition. [ ]

3.5.2 Manifolds With Boundary and Framing

We can define framed, oriented links in a parameterized 3-manifold in exactly
the same way as for S°. That is, the image of a PL imbedding of copies of
S! x I in the 3-manifold, considered equivalent if there is an isotopy of the
parameterized manifold taking the image of one in an orientation preserving
fashion to the image of the other. Surgery on framed links also works the
same way. That is, remove a tubular neighborhood of each component and
glue it back in by a map which sends the longitude (determined by the
framing) to the meridian and the meridian to the reverse of the longitude.

Choose for each genus g a representative genus g surface I, sitting stan-
dardly in S® so that its interior H ; and exterior H, are both genus g han-
dlebodies (with opposite orientations).

Now consider an orientation preserving imbedding N of H'U...UH
into 33, where each ¢; is plus or minus, and let L be a framed, unorlented hnk
in the complement of the image of N. We construct a parameterized manifold
(N, L) with boundary identified with £,, U. . .UZ,, with signs —¢;, ..., —&, as
follows. Remove the image of the interior of H g U...UHm under N from S8
Parameterize the boundary by the inverse of IV restricted to 5, U...UZ,,.
(N, L) is then the result of surgery on L in the parameterized manifold. The
following is a natural generalization of the theorems of Lickorish and Kirby

to parameterized 3-manifolds. ; . _
,T#mows #fv{ s o el /674?/)”

Theorem 15 Ewvery connected, oriented parameterized 8-manifold M is home-
omorphic as a parameterized manifold to some (N, L). Two manifolds (N, L)
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and (N', L') are parametrically homeomorphic if and oniy if they can be con-
nected by a sequence of the extended Kirby moves, which are those pictured
in Figure (86), and their mirror images. Move II is explained below.

P (Y
a0 s Y
N //L(/\

Figure 36: The extended Kirby or Fenn-Rourke moves

The left hand side of move II contains a component which is a &1 framed
unknot as a knot in 3, but the disk it bounds may intersect the link and the
boundary of N transversely. The right hand side is obtained by removing the
unknot, thickening the disk to a cylinder, removing the cylinder and gluing
it back in with a clockwise (resp. counterclockwise) full twist, and adding a
distant union of a +1 framed unknot. Notice this gluing gives S? back again.

Figure 37: The manifold Iy,

This gives a combinatorial presentation of a parameterized 2+ 1 manifold
as a surgery on a disjoint union of copies of S* with imbedded handle bodies
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removed. As an example, Figure (37) shows a presentation of Iy,. The
parameterization is specified by marking meridians of H g+ on both boundary
components.

It will be useful to have a presentation in which some or all of the han-
dlebodies are imbedded in standard position. That is, a presentation in
which the imbedding of the given component extends to a homeomorphism

ofS3=Hg+uH_;toS3. - — —«5
- = (r'/w

—

( 7))
Figure 38: Putting handlebodies in standard position
Proposition 46 The parameterized 2+1 manifolds presented in Figure (38)
are homeomorphic, where in the second picture the cylinders of ¥, not shown

are sent to a tubular neighorhood of the pieces of the framed link not shown
in the first picture, with the longitudes following the framing.
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empty, we see that the full twist can be removed by a sequence of extended M %’qg

Kirby moves. / 5%,
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Notice also-that any component of the sur link—an be made into

an unframed unknotrvgg_gge,d,amuntt‘some collection of handlebody handles
and link compenernfs by a sequence of extended Klrby‘moves as shown in

Figure (41). /
Wlth this in hand, t oof of the proposition—i§ contained in Flgu.re

(42 Spemﬁca.lly, for€ach component partially in Elm1

the moves in Figure (41).to € it have zero frazmrlg/ and bound a disk ™\
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step of Figure (42), removing-the-chainrlinks, is shown in Figure-(43). n
To continue with our example Igﬂ can be presented as in Flgure (44).
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Figure 42: Pr_q-t}i: of the proposition

/

Figure 43: Removing a chain Iiﬁk

We will also need a description of gluing in terms of this presentation.
There are two cases: If the two components of M to be identified lie in
different components of M, and if they lie in the same component.

Suppose they lie in different components of M, M; and M,. A typical
M; and M, are pictured in Figure (45). Here the boundary component of
each which is to glued is shown, and is understood to be positive for M; and
negative for M,. They are assumed to have been put in standard position,
as shown in Proposition (46). The parameterization is specified by marking
meridians of H ;‘ on the boundaries.

Figure (46) shows M; presented as surgery on H} with some imbedded -

c@@go
QJ )Xo

Figure 44: Presentation of Iy,
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Figure 45: Two boundary components of a disconnected manifold

Figure 46: Gluing different components together

handlebodies removed, and then shows the result of gluing this in to M,.

The case of a single component is a bit subtler. A typical presentation
of M is shown in Figure (47), with as before the handlebodies in standard
form and with meridians marked.

The top of Figure (48) shows a presentation of M as surgery on H;
with handlebodies removed. The dashed line shows a sphere separating the
other boundary component to be glued from the rest of the handlebody. The
second line shows the result of cutting out this ball and gluing it back in
along the two £, boundary components, which gives S x I. The gluing of
M is gotten by gluing the two 52 boundaries together. Treating S? x I as
two cylinders glued together, one empty and one containing the link and the
other imbedded handlebodies, we see that M glued is the result of gluing an
empty solid torus to a solid torus containing the links and handlebodies by

91



Figure 47: Two boundary components of a connected manifold

a map sending longitude to longitude and meridian to minus the meridian.
This is simply a surgery with one more component, as shown in the last line
of Figure (48).

To return to our example, &, x S* is obtained by gluing the boundary
components of Iz, and thus can be presented as in Figure (49).

3.5.3 Intertwiner Tangles

A ribbon tangle is the image in D X I of a map of a collection of copies
of S! x I and I x I, called ribbons, and of I x I, called coupons, subject
to the following condition. The map is one-to-one on each component, and
is one-to-one on the union minus every copy of I x {0} and I x {1}. The
image of the boundary of coupons only intersect the image of the boundary
of ribbons, and the image of I x {0} and I x {1} of each open ribbon gets
mapped one-to-one into either the boundary of a coupon or {—1,1] x {0}
or [—1,1] x {1} in D x I, the map being increasing with respect to the
ordering on the intervals. Two ribbon graphs are equivalent if there is an
ambient isotopy of D x I fixing the boundary which takes each ribbon or
coupon one to one to a ribbon or coupon respectively, and so that the image
of the sequence of the points ((0,0), (0,1),(1,0),(1,1)) of any I x I gets
sent to the sequence ((0,0),(0,1),(1,0),(1,1)) of some I x I. An example
of a ribbon tangle is given in Figure (50). Here ribbons are drawn as lines,
with an arrow indicating the positive direction and the line understood to be
thickened parallel to the page. Coupons are drawn as squares, with arrows
indicating the positive direction of each I.

Ribbon tangles have the same sense of composition and tensor product,
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Figure 48: Gluing a connected manifold to itself

and form a strict monoidal category which extends the category of framed
oriented tangles.

Theorem 16 The category of ribbon tangles is generated by those shown in
Figure (51), with the relations shown in Figure (52).

Pf:The argument for this works by very precise analogy to the presenta-
tion of the tangle category given in Corollary (2). |

“
Figure 49: The manifold X, x S!
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Figure 50: A typical ribbon tangle
[ {)1

/

N X n Vv

Figure 51: Generators of the ribbon tangle category

Given a tangle representation JF with label set A, consider the strict
monoidal category of ribbon tangles, with each ribbon labeled by an element
of A, and each coupon is labeled by a (A,~) intertwiner, where A and ~y are
defined as follows. If I x {0} of the coupon intersects ribbons labeled by );,

and if ¢; is plus if the it ribbon intersects along its I x {1} boundary minus if

the ¢*1 ribbon intersects along its I x {0} boundary, then A = ®7_; \{*, where
Af =X and A\; = A!. Similarly, if I x {1} of the coupon intersects ribbons
1 through =,, and §; is plus or minus according to whether the intersection
is along I x {0} or I x {1}, then v = @,

Theorem 17 F extends to a functor from the category of labeled ribbon
tangles to the category of intertwiners, which takes tensor product to tensor
product and composition to composition, and sends the ribbon tangle I labeled
by an intertwiner f to f.

Pf:Assign to I the values given in the theorem, and assign to A through
H the values F(A) through F(H), as tangles. We have only to check moves
[-IX of Theorem (16). Relations I-VI are satisfied because F is a tangle
representation. For Relations VII-IX, assume the coupon shown is labeled
by f, an intertwiner from A to . Then the four versions of Relation VII follow
from the fact that Rs,(1® f) = (1® f)Rsx and Ry 5(f ® 1) = (f ® 1)Ry.
Relation VIII says that ¢,fé;' = f, which follows from the fact that f
commutes with ¢. Finally, relation IX says that g,fg;' = f = 9 Lfay,
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A ribbon graph is just a (0,0) ribbon tangle which we may consider to
be sitting inside S°.

3.5.4 Constructing the ATQFT

Let X, H+, and H, be as in Section 3.2. Define a ribbon graph in the
handlebody H) + or H exactly as for an ordinary ribbon graph, except the
imbeddings are into H * rather than S3. Let V,t, V;~ be the vector space of
formal linear combmatlons of labeled ribbon graphs in H, 2 , H respectively.
If h is a labeled ribbon graph in H;, and g is a labeled ribbon graph in
H, then since H, ;‘ UH; = S3, we can consider the union of h and g as a
labeled ribbon graph in S®. Define (k, g) to be vKF of this ribbon graph,

where recall K = 1/ qdim?);. This extends to a bilinear pairing (,-) :
V;t ® V- — F. Let N be the subspace

{fveVy: (vw)y=0Ywe V;}
and N, be the subspace
{veV, : (w,v) =0Vwe V;}.

Then the pairing descends to the quotients, (-,-) : V;*/Nf ® V7 /N; — F,
and here is nondegenerate. Thus if we define Z(X;) = V;*/N, it is natural
to identify Z(Z,)* with V7 /Ny .

Proposition 48 Let g be a labeled ribbon graph in S3, with closed ribbon
components labeled by link labels. Then F of g is the same as F of the result

of one of the Kirby-like moves in Figure (53), where move II is interpreted '
as in Section 3.2.

Pf:By exactly the same argument as in Theorem (12). Notice for move II
that Proposition (40) still applies to the more general situation where the
solid torus may contain ribbon graphs. ]

Now consider a connected, framed parameterized 3-manifold M, pre-
sented by (IV, L). Suppose the boundary of M is homeomorphic to X4 U...U
Xg, With signs €1,...,€n, so that N is an imbedding of H,** U... U H_*".
Suppose h; is a labeled ribbon graph in Hiffor1 <1 < n. Con51der the
ribbon graph in S° formed by imbedding each h; in 8% via N, and choos-
ing an orientation for each component of L and labeling it by Q = w;/V K VK.
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Figure 53: Kirby-like invariance of F

Figure 54: Proof of invariance

The value VKF of this ribbon graph assigns a number to each sequence
hi,..., hn, which extends to a linear functional on Vitt®...® =

Proposition 49 This functional depends only on M, and not on the partic-
ular presentation (N, L). Thus we may call this functional Z'(M).

P£:0f course, the functional does not depend on the choice of orientation
of the components of L because Q* = 2. By Theorem (15) we only need
check that this quantity does not change under the extended framed Kirby
moves. It also suffices to check this fact for any sequence of handlebodies
hi,...hn. But this is exactly the statement of Proposition (48). |

In particular, we can choose an (N, L) so that the image of Hy,™ is in
standard position, by Proposition (46). Choose labeled handlebodies h; in
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H, %, and consider the functional on Vj; defined by

Z(M)M® @b 1® B hiyy @ ® hy).

We may compute this functional by imbedding A, ... ﬁj, ... h, into S® via N
to get a labeled handlebody g in S3— Hy,”, (including the labeled components
of L) which we may think of as sitting in Hg’, since Hy," was imbedded in
standard position. The functional on any labeled handlebody h; € Hy,™ is
then v/ K F of the union of g and h; in S®. In other words the functional is
computed by taking the bracket with an element of V. In particular it is
zero on all of Ny;. So Z(M) is zero on
Vo '@ @V @N T @V @@ V™

for each j < n. Therefore Z'(M) descends to a functional on Z(X, )~ ®
+o- Z(X,,)7%, or equivalently an element of Z(%,,)' ®---® Z(Z,, )", which
we call Z(M). Here as usual Z(X,)" means Z(Z,) and Z(Z,)” means
Z(Zy)*.

If M in not connected, write it as a union of connected pieces M =

MU .- U M, and order the boundary components so that dM; precedes
OM; if i < j. Then we define

Z(M)=Z(M)®...® Z(My).

3.5.5 Verifying the Axioms

We are almost ready to verify that the map Z we construct in the previ-
ous section is indeed an ATQFT. We will need the following two lemmas,
which may seem quite innocuous, but in fact represent the only place in the
construction of the ATQFT where the structure of a tangle representation is
used in an essential way.

Lemma 7 For each 7, there exist (0,7) intertwiners T;, and (7,0) inter-
twiners T%, for i =1,...,k, such that for any (7,0) intertwiner S and (0, 7)
wntertwiner R,

k
S ST.T'R = SR

i=1
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Pf:Consider a resolution of the identity of C(#) into minimal idempotents
corresponding to the nonreducible label A. If SqR is nonzero, then ¢RSq is
nonzero and nonnilpotent. But ¢RSgq is in C(\). Since A is nonreducible,
qRSq is invertible, so Sq is an invertible intertwiner from the range of ¢ to
the trivial label. Therefore A is isomorphic to the trivial label whenever SqR
is nonzero.

Thus if p, ..., p are the minimal idempotents in this decomposition with
range isomorphic to the trivial label, then

k
SR = Z SpiR
i=1
But if f; : Range(g) — F is this isomorphism, then T} = f;, T® = f; !q satisfy
the statement of the lemma.

Lemma 8 If F is a modular tangle representation, let S be the (th, ) in-
tertwiner

S = Z \/quim,\ij,
j=1

where S; is F of 15 with a zero framed unknot labeled by \; around it posi-
tively, as in Figure (26). Then if R is any (7h, ) intertwiner

qtr(RS) = \/_. Z T'RT;.

Pf:Consider the same resolution of the identity as in the proof of the
previous lemma, and let ¢ be a minimal idempotent corresponding to A. Then
qtr(RSq) = qtr(qRqS) is VK times F of the Hopf link with one component
labeled by Q and the other labeled by the label correponding to the satellite
qRq, as discussed in Proposition (40). This label is a multiple of A, so the
whole quantity is zero unless ) is isomorphic to the trivial label. Arguing as
in the previous lemma, we have

gtr(RS) = thr (RST,TY).

i=1

But now

ST, = T,0(Q) =T:/VK,
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80

tr(RS) = tr(RTT) —T‘RT
q I'( \/_ Zq r \/E

b
Theorem 18 The map Z defined in the previous section is a simple ATQFT.

Pf:Reordering is trivial, and tensor product is by definition. For nontriv-
iality, present I, as in Figure (37). As a map on Z(X,) ® Z(X,)*, it sends
heH g+ , ' € HJ to VK F of the ribbon graph formed by their union in S3.
This is exactly (h, g). Thus as an operator A on Z(X,), Z(Iy,) acts by

(AR, g) = (R, g)

SO
A = identity.

To show gluing, suppose M is identified with £, U...UZ, with signs
€1,...,En, where Xy = ¥,, and €; = +, 2 = —. Let M’ be M with the first
two components glued. If

Z(M) = Z'U,; ®’U; Q@ Wi j
t.J
where v; is a basis of Z(Zy,), v} is the dual basis of Z(Z,,)*, and w;; is an
element of Z(Xy,)* ® - ® Z(%,,)°", then we wish to show

e Z’U)i,i.
i

We may clearly assume M has only those components bounded by the first
two boundary components. There are two cases.

First assume the first boundary component of M lies in a different com-
ponent of M from the second. Write M = M; U M, and present M; and M,
by (Ni, Ly) and (Ng, Lo) respectively, with the first two boundary compo-
nents presented in standard form. Let h; be a labeled ribbon graph in Ve
for 3 <4 < n, and let Nj, N; be N; and N2 respectively with h; glued in by
the imbeddings V; and N,. Thus Nj is now an imbedding of Hg, in standard
position with a ribbon graph and the link L, in the complement, and Nj is
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and imbedding of H, ;; in standard position with a ribbon graph and the link
L, in the complement. Thus, orienting the components of L; and L, and
labeling them by €, we may think of N as a labeled ribbon graph h in H Ao
and N} as a labeled ribbon graph g in H, Ay

By the definition of Z(M), if Z(M) =¥, ;v ® vj ® w;j, then

h®g=> v QU @ (Wi ha® - ® hy),

i,j

identifying h, g, hs, ..., h, with their equivalence classes in Z(Z,). In par-
ticular

(h’ g> = Z<h7vz><vi:g> = Z(wi,h h3 Q& hn)-

1 T

But (h, g) is just 1/v/KF of M’ with hs, ..., h, glued in along the boundary,
which is

<Z(MI),h3 & hn)'

This proves the gluing axiom in this case.

Now suppose M consists of one component and is presented by (N, L)
with the first two handlebodies imbedded in standard form in N. Again glue
in hs,...h, and orient each component of L and label it by Q. The result
is a ribbon graph in H g+ #H, . Writing Q as a linear combination of tangle
labels we can write the ribbon graph as a linear combination ¥ a;g; with
each ribbon graph g; having every component of L labeled by a tangle label.
Now choose h. labeled ribbon graphs in H gj; respectively, and glue them in
via N. The result is a linear combination 3. a;g; of ribbon graphs in S8,

1/VKF of which is
(Z(M),h_- @by ®h3® - Q hp).

Now choose an imbedding of S? into S® which separates the imbedding
of Hf and H 7> intersects L transversely and doesn’t intersect the image of

N at all. This cuts each g} into a composition of a (7, 0) ribbon tangle S5

and an (0,7) tangle R;. But by Lemma (7), this has the same F value as
%5, S;TiT Ry, for some (0, 7) and (#,0) tangles T; and T* (they will depend
on j too, but we’ll suppress that).
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But S;T;T*R; is a distant union of ribbon graphs, so
(Z(M),h_@hy @M @ Q hy)
= VK Z F(S;T,)F(T'R;)
= \/_Z\/—J-“ (S;TO)VEF(T'R;).

But VK F(S;T;) is just (S;Ti, h-), where Sj is just S; with a neighbor-
hood of h_ removed, and similarly VK F(T*R;) is (hy,T*R}), where R is
R; with a neighborhood of h, removed. Therefore

Sl ha® - ®hy) = S AZM), v @U@ hs® -+ ® hy)

k k
1 .
= — ) (SiT;,vi) (v, T'RS)
\/fgz J k J
— Z SIE’T‘LRI
which is _
F(ZTZUJ'Ti)v

gy
tangle gotten by gluing S; to R;.

where Uj is the (7, 71)
8),

Now by Lemma

> F(T'UT) = 3~ VEqtr(U;S) = VEatr(3UjS).

But comparing to Figure (48), we see this is exactly (Z(M'),h3 ® -+ ® hy),
where M’ is M glued. n
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