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An analytical expression of the particle distribution based on an analytical cumulant solution of the time-
dependent elastic Boltzmann transport equationsBTEd is presented. This expression improves upon the previ-
ous second order cumulant solution of the BTE described by a Gaussian distribution in two aspects:s1d
separating the ballistic component from the scattered component to ensure that the summation in expressions
is convergent; ands2d enforcing the causality condition to ensure that no particle travels faster than the free
speed of the particles. Time-resolved profiles obtained using the analytical form are compared with those
obtained by the Monte Carlo simulation, for both transmission and backscattering. The calculating time using
our analytical form is much faster than that using the Monte Carlo approach.
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I. INTRODUCTION

The time-dependent elastic Boltzmann transport equation
sBTEd describes the particlesand light, acoustic wave, etc.d
propagation with time in a scattering medium, where the
particles suffer multiple scattering by randomly distributed
scatterers. The BTE is also called the radiative transfer equa-
tion in light propagationf1–3g. The solutions of the elastic
BTE are applied in broad areas, such as atmospheric science,
medical imaging, and solid state physics.

An example is the approach to optical imaging of human
tissue that is often called “diffusion tomography,” because
the theoretical model is built based on the solution of the
diffusion equation. The diffusion equation is the lowest order
approximation of the radiative transfer equation, which has
significant error when the distance between a voxel and a
source is short. However, the contribution from these voxels
near the source to the measured signals is much larger than
that from voxels deep inside body. Hence, for accurate im-
aging the theoretical model should be based on solution of
the radiative transfer equation. A similar procedure can be
applied to images of cloud distribution obtained using a lidar
arranged on a satellite, which requires knowledge of the mul-
tiple scattering effect of water drops distributed in the cloud
on the time-resolved backscattering signals. In both ex-
amples, the size of the scatterers can be nearly equal to or
larger than the wavelength of light, leading to a large aniso-
tropic factor. The use of low-frequency sound to detect oil-
bearing layers deep under the ocean floor is another example.

Currently, numerical approaches, including Monte Carlo
simulations, are the main methods in solving the BTEf4–6g.
Numerical solution of the BTE is a cumbersome task, since
the particle distributionIsr ,s,td is a function of positionr ,
angles, and timet, in a six-dimensional space of parameters.
An analytical expression forIsr ,s,td with quantitative accu-
racy can greatly reduce the computation burden in modeling
particle and light propagation in scattering media, which is
essential for imaging in turbid media, because the inverse

reconstruction process calls the forward model many times.
Recently, we have developed an analytical solution of the

time-dependent elastic BTE in an infinite uniform medium
with an arbitrary phase functionf7,8g. The exact spatial cu-
mulants ofIsr ,s,td up to an arbitrary high order at any angle
and any time have been derived. A cutoff at second order of
the cumulantsIsr ,s,td can be approximately expressed by a
Gaussian distribution, which has the exact first cumulantsthe
position of the center of the distributiond and the exact sec-
ond cumulantsthe half-width of the spread of the distribu-
tiond. The cumulant solution of BTE has been extended to
the case of a polarized photon distribution, and to semi-
infinite and slab geometries. Using a perturbation method,
the distributionIsr ,s,td in a weak heterogeneous medium
can be calculated based on the cumulant solution of the BTE.

The analytical cumulant solution of the BTE obtained,
although it has exact center and half-width, is not satisfac-
tory in two respects. First, one cannot ensure that the sum-
mation overl in the expressions shown in Sec. II is conver-
gent at very early times. Second, a remarkable fault of the
Gaussian distribution at early times is that particles at the
front edge of the distribution travel faster than the free speed
of the particles in the medium, thus violating causality, espe-
cially for those particles moving along near forward direc-
tions. The Gaussian distribution is accurate at long times and
in the backscattering case, since many collisions lead to a
Gaussian distribution according to the central limit theorem.

In this paper, the analytical cumulant solution of the BTE
has been improved compared to our previous workf7g in
these two respects. For solving the first problem, we make a
separation of the ballistic component from the totalIsr ,s,td
and compute the cumulants for the scattered componentI ssd

3sr ,s,td. This treatment ensures convergent summation over
l. Also this separation provides a clearer picture of particle
propagation. In the time-resolved transmission profile the
ballistic component is described by a sharp jump exactly at
the ballistic time, separated from the later scattered compo-
nent. For solving the second problem two approaches are
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used. The first method is to calculate the distribution includ-
ing the higher-order cumulants, based on our work in Ref.
f8g. However, computation of high-order cumulants is a
cumbersome task. In the second method the Gaussian distri-
bution is replaced by a different-shaped form, which satisfies
causality, and maintains the correct center position and the
correct half-width of the distribution computed by our ana-
lytical approach. There are infinite choices of the shapes of
the distribution satisfying these conditions; we choose a
simple analytical form. At long times, the reshaped distribu-
tion tends to the Gaussian distribution. Our results show that
the reshaped distribution matches that obtained using Monte
Carlo simulation much better than the Gaussian distribution.

The paper is organized as follows. In Sec. II we briefly
review the main results of the analytical cumulant solution of
the BTE. Section III presents a separation of the ballistic
component from the scattered component, which makes the
summation overl convergent. Section IV improves the dis-
tribution at early times using two approaches, and presents
the numerical result compared with the Monte Carlo simula-
tion. Section V is devoted to discussion and conclusions.

II. THE ANALYTICAL CUMULANT SOLUTION
OF THE BTE

The elastic Boltzmann kinetic equation of particles, with
magnitude of velocityv, for the distribution functionIsr ,s,td
as a function of timet, position r , and directions, in an
infinite uniform medium, from a point pulse light source,
dsr −r 0ddss−s0ddst− t0d, is given by

]Isr ,s,td/]t + vs · =r Isr ,s,td + maIsr ,s,td

= msE Pss,s8dIsr ,s8,tdds8 − msIsr ,s,td

+ dsr − r 0ddss− s0ddst − t0d s1d

wherems is the scattering rate,ma is the absorption rate, and
Pss,s8d is the phase function, normalized toePss,s8dds8=1.
The phase function is assumed to depend only on the scat-
tering angle in an isotropic medium. Under this assumption,
an arbitrary phase function can be handled. We expand the
phase function in Legendre polynomials with constant coef-
ficients,

Pss,s8d =
1

4p
o

l

alPlss ·s8d. s2d

Recently, we have developed a different approach to ob-
tain an analytical solution of the BTE in an infinite uniform
medium, based on a cumulant expansionf7,8g.

We briefly review the concept of the “cumulant” in a one-
dimensionals1Dd case. Consider a random variablex, with a
probability distribution functionfsxd. Instead of usingfsxd to
describe the distribution, we define thenth moment ofx,

kxnl =E xnfsxddx, s3d

and correspondingly thenth cumulantkxnlc defined by

expSo
n=1

`

kxnlcsitdn/n!D = kexpsitxdl = o
n=0

`

kxnlsitdn/n! s4d

The first cumulantkxlc is the mean position ofx. The
second cumulantkx2lc represents the half-width of the distri-
bution. The higher cumulants are related to the detailed
shape of the distribution. For example,kx3lc describes the
skewness or asymmetry of the distribution, andkx4lc de-
scribes the “kurtosis” of the distribution, that is, the extent to
which it differs from the standard bell shape associated with
the Gaussian distribution function. The cumulants hence de-
scribe the distribution in an intrinsic way by subtracting off
the effects of all lower-order moments. In the 3D case, the
first cumulant has three components, the second cumulant
has six components, and so on.

We have derived an explicit algebraic expression for the
spatial cumulants at any angle and any time, exact up to an
arbitrarily high ordern f8g. This means the distribution func-
tion Isr ,s,td can be computed to any desired accuracy. At the
second order,n=2, an analytic explicit expression for distri-
bution functionIsr ,s,td is obtainedf7,8g. This distribution is
Gaussian in position, which is accurate at later times, but
only provides the exact mean position and the exact half-
width at early times.

The Gaussian distribution of the second-order cumulant
solution is written as

Isr ,s,td =
Fss,s0,td
s4pd3/2

1

sdetBd1/2

3expF−
1

4
sB−1dabsr − rcdasr − rcdbG , s5d

where Fss,s0,td is the total angular distributionFss,s0,td
=eIsr ,s,tddr , which has the following exact expression:

Fss,s0,td = exps− matdo
l

2l + 1

4p
exps− gltdPlss ·s0d

= exps− matdo
l

2l + 1

4p
exps− gltdo

m

YlmssdYlm
* ss0d,

s6d

where

gl = msf1 − al/s2l + 1dg. s7d

Two special values ofgl areg0=0, which follows from the
normalization ofPss,s8d, andg1=v / l tr, wherel tr is the trans-
port mean free path, defined byl tr=v / fmss1−kcosuldg,
wherekcosul is the average ofs·s8 with Pss,s8d as weight.
In Eq. s6d, Ylmssd are spherical harmonics normalized to
4p / s2l +1d.

The center of the packetsthe first cumulantd, denoted by
r c, is located at

rz
c = Go

l

AlPlscosudfsl + 1dfsgl − gl+1d + l f sgl − gl−1dg,

s8d
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rx
c = Go

l

AlPl
s1dscosudcosfffsgl − gl−1d − fsgl − gl+1dg,

s9d

where G=v exps−matd /Fss,s0,td, Al =s1/4pdexps−gltd, and
for any variablex,

fsxd = fexpsxtd − 1g/x. s10d

ry
c is obtained by replacing cosf in Eq. s9d by sinf. In Eqs.

s8d and s9d, Pl
smdscosud is the associated Legendre function.

The square of the average spread half-widthsthe second
cumulantd is given by

Bab = vGDab − ra
crb

c /2, s11d

where all the coefficients are functions of angle and time:

Dzz= o
l

AlPlscosudF lsl − 1d
2l − 1

El
s1d +

sl + 1dsl + 2d
2l + 3

El
s2d

+
l2

2l − 1
El

s3d +
sl + 1d2

2l + 3
El

s4dG , s12d

Dxx,yy = o
l

1

2
AlPlscosudF−

lsl − 1d
2l − 1

El
s1d −

sl + 1dsl + 2d
2l + 3

El
s2d

+
lsl − 1d
2l − 1

El
s3d +

sl + 1dsl + 2d
2l + 3

El
s4dG

± o
l

1

2
AlPl

s2dscosudcoss2fd

3F 1

2l − 1
El

s1d +
1

2l + 3
El

s2d −
1

2l − 1
El

s3d −
1

2l + 3
El

s4dG ,

s13d

wheres+d corresponds toDxx and s−d corresponds toDyy,

Dxy = Dyx = o
l

1

2
AlPl

s2dscosudsins2fdF 1

2l − 1
El

s1d

+
1

2l + 3
El

s2d −
1

2l − 1
El

s3d −
1

2l + 3
El

s4dG , s14d

Dxz= Dzx= o
l

1

2
AlPl

s1dscosudcosfF2sl − 1d
2l − 1

El
s1d

−
2sl + 2d
2l + 3

El
s2d +

1

2l − 1
El

s3d +
1

2l + 3
El

s4dG . s15d

Dyz is obtained by replacing cosf in Eq. s15d by sinf. In
Eqs.s12d–s15d El

s1–4d are given by

El
s1d = ffsgl − gl−2d − fsgl − gl−1dg/sgl−1 − gl−2d, s16d

El
s2d = ffsgl − gl+2d − fsgl − gl+1dg/sgl+1 − gl+2d, s17d

El
s3d = ffsgl − gl−1d − tg/sgl − gl−1d, s18d

El
s4d = ffsgl − gl+1d − tg/sgl − gl+1d. s19d

The second order cumulant approximation for the particle
density distributionNsr ,td has a Gaussian shape:

Nsr ,td =
1

s4pDzzvtd1/2

1

4pDxxvt
expF−

sz− Rz
cd2

4Dzzvt
G

3expF−
sx2 + y2d
4Dxxvt

Gexps− matd, s20d

with a moving center located at

Rz
c = vf1 − exps− g1tdg/g1, s21d

and the corresponding time-dependent diffusion coefficients
are given by

Dzz=
v
3tH t

g1
−

3g1 − g2

g1
2sg1 − g2d

f1 − exps− g1tdg

+
2

g2sg1 − g2d
f1 − exps− g2tdg −

3

2g1
2f1 − exps− g1tdg2J ,

s22d

Dxx = Dyy =
v
3tH t

g1
+

g2

g1
2sg1 − g2d

f1 − exps− g1tdg

−
1

g2sg1 − g2d
f1 − exps− g2tdgJ . s23d

Each distribution in Eqs.s5d ands20d describes a particle
“cloud” anisotropically spreading from a moving center, with
time-dependent diffusion coefficients. As shown in Fig. 1, at
early time t→0, the mean position of the photons moves
along thes0 direction with speedv, and the diffusion coeffi-
cient tends to zero. These results present a clear picture of
nearly ballistic motion att→0. With increase of time, the
motion of the center slows down, and the diffusion coeffi-
cients increase from zero. This stage of particle migration is
often called a “snakelike mode.” At late times, the total an-
gular distribution function tends to become isotropic. The

FIG. 1. The moving centerRz
c and the diffusion coefficientsDzz

andDxx of the particle density function as functions of timet.
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particle density, att@ l tr /v and r @ l tr, tends toward the
center-moveds1l trd diffusion solution with the diffusive co-
efficient l tr /3. Therefore, our solution quantitatively de-
scribes how particles migrate from nearly ballistic motion, to
snakelike motion, and then to diffusive motion.

Figure 2 shows the calculated distribution as a function of
time at different receiving angles in an infinite uniform me-
dium, computed by the second order cumulant solution,
where the detector is located at 5l tr from the source in the
incident direction of the source. Figure 2 shows anisotropy
of the distribution at a distance of 5l tr from the source. This
type of distribution has been demonstrated by time-resolved
experimentsf9g.

The analytical solution obtained, although it has the exact
center and half-width, is not satisfactory in two respects.
First, at very early times, exps−gltd→1 for all l; hence, one
cannot ensure that summation overl is convergent. Second,
particles at the front edge of the Gaussian distribution travel
faster than the speedv, thus violating causality.

III. SEPARATING THE BALLISTIC COMPONENT FROM
THE SCATTERED COMPONENT

In order to make the summation overl convergent, we
separate the ballistic component from the totalIsr ,s,td, and
compute the cumulants for the scattered componentI ssd

3sr ,s,td.
The ballistic component is the solution of the homoge-

neous Boltzmann transport equation, which is the transport
equation, Eq.s1d, without the “scattering in” termfthe first
term in the right side of Eq.s1dg. The solution of the ballistic
component is given by

I sbdsr ,s,td = expf− sms + madtgdsr − vts0ddss− s0d. s24d

The moments of the ballistic component can be easily calcu-
lated. Whens0 is alongz, we have

E znI sbdsr ,s,tdd3r = expfs− ms + madtgsvtdndss− s0d,

s25d

and other moments related tozn1xn2yn3 sn2,n3Þ0d are zero.
The total distribution is the summation of the ballistic

component and the scattered component:

Isr ,s,td = I sbdsr ,s,td + I ssdsr ,s,td; s26d

hence, the moments of the scattered component can be ob-
tained by subtracting the corresponding ballistic moments
from the moments ofIsr ,s,td. For example, we have

E znI ssdsr ,s,tdd3r =E znIsr ,s,tdd3r −E znI sbdsr ,s,tdd3r .

s27d

Notice that

dss− s0d = o
l

fs2l + 1d/4pgPlss ·s0d. s28d

Substituting Eqs.s25d ands28d into Eq.s27d, the correspond-
ing cumulants for the scattered componentI ssdsr ,s,td can be
easily obtained; they replace Eqs.s6d, s8d, ands12d by

Fssdss,s0,td = exps− matdo
l

2l + 1

4p
fexps− gltd

− exps− mstdgPlss ·s0d, s29d

rz
cssd = Go

l

Plscosud
1

4p
hexps− gltdfsl + 1dfsgl − gl+1d

+ l f sgl − gl−1dg − s2l + 1dt exps− mstdj, s30d

Dzz
ssd = o

l

Plscosud
1

4p
Hexps− gltdF lsl − 1d

2l − 1
El

s1d

+
sl + 1dsl + 2d

2l + 3
El

s2d +
l2

2l − 1
El

s3d +
sl + 1d2

2l + 3
El

s4dG
−

t2s2l + 1d
2

exps− mstdJ . s31d

The expressions for the other components of the first and
second cumulants are unchanged, provided allFss,s0,td in G
in Sec. II are replaced byFssdss,s0,td. Note that Eq.s28d
actually is equal to zero atsÞs0, and there is no ballistic
component in these directions.

The replacement of equations in Sec. II by Eqs.s29d–s31d
greatly improves the calculation of cumulants at very early
times. By the subtraction introduced above, the terms for
large l approach zero, and summation overl becomes con-
vergent at very early times. Whent→0, gl =msf1−al / s2l
+1dg fsee Eq.s7dg approachesms for large l, fsgl −gl±1d. t

FIG. 2. Light distribution in an infinite uniform medium as a
function of time at different received angles, using the second cu-
mulant solution of the BTEsGaussian distributiond, where the de-
tector is located atz=10 mm from the source in the incident direc-
tion. The parameters for this calculation arel tr=2 mm, the
absorption lengthla=300 mm, the phase function is computed us-
ing Mie theory for polystyrene spheres with diameterd=1.11mm
in water, and the wavelength of the laser sourcel=625 nm, which
gives theg factor g=0.926.
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fsee Eq.s10dg, andEl
s1−4d. t2/2 fsee Eqs.s16d–s19dg, which

results in cancellation in the summand for largel at very
early times.

An example of successful use of this replacement is the
calculation of backscattering. Whenu=180°,Plscosud=1 or
−1, depending on whetherl is even or odd. The computedrz

c

at very early times using Eq.s8d oscillates with a cutoff ofl.
But the computedrz

cssd at very early times using Eq.s30d
becomes stable. Calculation shows thatrz

cssd=0 at any time
whenu=180°.

Figure 3 shows the computed time profile of the back-
scattering intensityI ssdsr ,s,td at a detector centering atr =0
and received at an angleu=180°, which actually is the total
backscattering intensityIsr ,s,td becausesÞs0, compared
with the Monte Carlo simulation. The absolute value of the
intensity, as well as the shape of the time-resolved profile,
computed using our analytical cumulant solution of the BTE
match well with those of the Monte Carlo simulation. The
inset diagram is the same result drawn using a logarithmic
scale for intensity. Note that this result of backscattering,
based on the solution of the BTE, is for a detector located
near the source, different from other backscattering results
based on the diffusion model, which is only valid when de-
tector is located at a distance of severall tr from the source.

IV. SHAPE OF THE PARTICLE DISTRIBUTION

If the cumulants with ordern.2 are assumed all zero, the
distribution becomes Gaussian. The Gaussian distribution is
accurate at long times. At early times, particles at the front
edge of the distribution travel faster than the free speed of
the particles, thus violating causality, especially for particles

that move along near forward directions. In the following,
two approaches are used for overcoming this fault:sAd in-
cluding higher cumulants; andsBd introducing a reshaped
distribution.

A. Calculation including high-order cumulants

We have performed calculations including the higher-
order cumulants to obtain a more accurate shape of the dis-
tribution. The Codes for calculation are designed based on a
formula derived in Ref.f8g.

Figure 4 showsIsr ,s,td with the detector located atz
=6l tr in front of the source and receiving direction alongu
=0, computed using the analytical cumulant solution up to
tenth order of the cumulantsssolid curved, up to the second
order cumulantssdotted curved, in the diffusion approxima-
tion sthick dotted curved, and the Monte Carlo simulation
sdiscrete dotsd. The figure shows that the tenth order cumu-
lant solution is located in the middle of the data obtained by
the Monte Carlo simulation, andIsr ,s,td<0 before the bal-
listic time tb=6l tr /v. The second order cumulant solution has
nonzero Isr ,s,td before tb, which violates causality. The
computedNsr ,td /4p using the diffusion model has a large
discrepancy with the Monte Carlo simulation, and the diffu-
sion solution has more nonzero components beforetb, which
violates causality.

Using the second order cumulant solution, the distribution
function can be computed very fast. The associated Legendre
functions can be quickly computed using recurrence relations
with accuracy limited by the computer machine error. It
takes 1 min to produce 105 data points ofIsr ,s,td on a per-
sonal computer. On the other hand, in order to reduce the
statistical fluctuation to the level shown in Fig. 4, 109 events

FIG. 3. Time-resolved profile of the backscattereds180°d photon
intensity inside a disk with center atr =0, radiusR=1l tr, thickness
dz=0.1l tr, and the received solid angled cosu=0.001, normalized
to inject one photon. The Heyney-Greenstein phase function with
g=0.9 is used, and 1/la=0. The solid curve is for the second cu-
mulant solutionsGaussian distributiond, and dots are for the Monte
Carlo simulation. The inset diagram shows the same result drawn
using a logarithmic scale for intensity.

FIG. 4. Time-resolved profile of transmitted light in an infinite
uniform medium, computed using the tenth order cumulant solution
ssolid curved, the second order cumulant solutionsdotted curved,
and the diffusion approximationsthick dots curved, compared with
that of the Monte Carlo simulationsdiscrete dotsd. The detector is
located atz=6l tr from the source along the incident direction, and
the received direction isu=0. The Heyney-Greenstein phase func-
tion with g=0.9 is used, and the absorption coefficient 1/la=0.
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are counted in the Monte Carlo simulation, which takes tens
of hours computation time on a personal computer. Compu-
tation of high-order cumulants also is a cumbersome task,
because the number of involved terms rapidly grows with
increase of the ordern. Also, for a distribution function that
is positive definite, the Bust theorem states that the existence
of nonzero cumulants of any order higher than 2 will be
accompanied by nonzero cumulants of all ordersf10g. There-
fore, no matter how the cutoff at a finite high ordern is
taken, the cumulant solution of the BTE cannot be regarded
as exact.

B. Reshaping the particle distribution

For practical applications, we use a semiphenomenologi-
cal model. The Gaussian distribution is replaced by a
different-shaped form, which maintains the correct center po-
sition and the correct half-width of the distribution. This dis-
tribution satisfies causality, namely,Isr ,s,td=0 outside the
ballistic limit vt. There are an infinite number of choices of
shape of the distribution under the above conditions. We
choose a simple analytical form as discussed later. At long
times, the half-width of the distributions,s4Bd1/2, with B
shown in Eq.s11d, spreads ast1/2; hence,s!vt at larget,
and the Gaussian distribution at long times with half-widths
can be regarded as completely inside the ballistic sphere. The
reshaped distribution ofIsr ,s,td hence should approach the
Gaussian distribution at long times.

1. 1D density

We first discuss the one-dimensional density as an ex-
ample to explain our model.

The Gaussian distribution of 1D density is described by

Nszd = s4pDzzvtd−1/2expf− sz− Rz
cd2/s4Dzzvtdg, s32d

whereRz
c andDzz are given in Eqs.s21d ands22d. As shown

in Fig. 5, although the 1D Gaussian spatial distributionsthe
dashed curved at timet=2l tr /v, Eq. s32d, has the correct cen-
ter and half-width, the curve deviates from the distribution
computed by the Monte Carlo simulationsdotsd, and a re-
markable part of the distribution appears outside the ballistic
limit vt=2l tr. At early times the spatial distribution is not
symmetric about the centerRc. When Rc moves from the
source toward the forward side, causality prohibits particles
appearing beyondvt. This requires the particles in the for-
ward side to be squeezed in a narrow region betweenRc and
vt. For a balance of the parts of the distribution in the for-
ward and backward sides ofRc, the peak of the distribution
should move to a point at the forward side and the height of
the peak should increase. The earlier the timet, the closer is
Rc to vt, and the asymmetry of the distribution becomes
stronger. Based on this observation we propose the following
analytical expression:s1d to move the peak position of the
distribution from Rz

c to zc, where the parameterzc will be
determined later;s2d to take this point as the origin of new
coordinates; ands3d to use the following form of the shape of
the 1D density in the new coordinates:

Nsz̃d = b exps− a2z̃2df1 − sz̃/z̃±d2g, s33d

where

z̃± = vt 7 zc Hz̃. 0,

z̃, 0.
J s34d

At the ballistic limit z̃= z̃±, Nsz̃d reduces to zero, andNsz̃d
=0 whenz̃ is outside ofz̃±. The parameterb in Eq. s33d can
be determined by normalization; the parameterssa ,zcd can
be determined by fitting the center and half-width of the
distribution. This fit requires

E Nsz̃ddz̃= 1, s35d

kz̃l =E z̃Nsz̃ddz̃= Rz
c − zc, s36d

kz̃2lc =E sz̃− kz̃ld2Nsz̃ddz̃= 2Dzzvt. s37d

The integrals in Eqs.s35d–s37d can be analytically per-
formed; they are related to the standard error functionsthe
incomplete gamma function, or the confluent hypergeometric
function of the first kindd:

Fs0dsbd =E
0

b

e−y2
dy=

p1/2

2
erfsbd, s38d

Fs1dsbd =E
0

b

e−y2
y dy=

1

2
f1 − e−b2

g, s39d

FIG. 5. The 1D spatial photon density at timet=2l tr /v, obtained
by the reshaped form Eq.s33d ssolid curved and the Gaussian form
sdashed curved, compared with that of the Monte Carlo simulation
sdotsd. The Heyney-Greenstein phase function withg=0.9 is used,
and 1/la=0. In the figure, the unit on thez axis isl tr; Rc is the center
position of the distribution computed by the cumulant solution;zc is
the distance between the origin of the new coordinates and the
source.
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Fs2ndsbd =E
0

b

e−y2
y2ndy=

1

2
fs2n − 1dFs2n−2dsbd − b2n−1e−b2

g,

s40d

Fs2n+1dsbd =E
0

b

e−y2
y2n+1dy=

1

2
f2nFs2n−1dsbd − b2ne−b2

g.

s41d

For nonlinear fitting a difficulty is how to quickly find a
global minimum. The optimization codes require setting a
good initial value of the parameters, so the obtained local
minimum is the true global minimum. Since we have no
experience for setting good initial parameters at a special
time, the following procedure is used. At the long time limit
zc<Rz

c and a2<s4Dzzvtd−1, the distribution approaches the
original Gaussian distribution. We make a nonlinear fitting at
a point of long timetm, using these values of the parameters
as initial values. Then, we make a fitting attm−1= tm−Dt,
whereDt is a small time interval, with the initial values of
parameters from those obtained attm, to produce parameters
at tm−1. Step by step, the parameters in the whole time period
can be computed. Our test shows that the fitting program
using this procedure runs quickly, with very small fitting
error, up to a certain short time limit.

The solid curve in Fig. 5 shows the reshaped spatial dis-
tribution, Eq.s33d, of 1D density at timet=2l tr /v, using the
Heyney-Greenstein phase function withg=0.9, which satis-
fies causality and matches the Monte Carlo result much bet-
ter than the Gaussian distribution.

2. 3D density

In this case the ballistic limit is represented by a sphere
with center located at the source position and the radiusvt.
We move the peak position of the distribution fromRz

c to zc
along thes0= ẑ direction, take this point as the origin of new
coordinates, and use the following form of the shape of the
3D density as a function of position in the new coordinates,
r̃ :

Nsr̃ d = b expf− asx̃d2r̃2gf1 − sr̃/r̃*d2g, s42d

andNsr̃ d=0 whenr̃ . r̃* , wherex̃ is the polar angle ofr̃ in
the new coordinates, andr̃* is the distance between the new
origin and the point obtained by extrapolatingr̃ to the sur-
face of the ballistic sphere,

r̃* = fsvtd2 − zc
2 sin2sx̃dg1/2 − cossx̃dzc. s43d

In Eq. s42d asx̃d is defined by

asx̃d2 ; az̃
2 cos2sx̃d + a'

2 sin2sx̃d. s44d

The parametersb can be determined by normalization; the
parameterssaz̃,a' ,zcd are determined by fitting the center
and half-width of the distribution. This fit requires

kz̃l =E r̃ cossx̃dNsr̃ dd3r̃ = Rz
c − zc, s45d

E fr̃ cossx̃d − kz̃lg2Nsr̃ dd3r̃ = 2Dzzvt, s46d

E fr̃ sinsx̃dg2Nsr̃ dd3r̃ = 4Dxxvt. s47d

In the above integrald3r̃ =2pr̃2dr̃ d cossx̃d, integration overr̃
can be analytically performed, and integration overx̃ is per-
formed numerically.

Figure 6 shows the computed time profile of the 3D den-
sity Nsr ,td, with the source at the origin and the detector
located atr =s0,0,3l trd, using the Heyney-Greenstein phase
function with g=0.9. The solid curve is for the reshaped
form using Eq.s42d. The dashed curve is for the Gaussian
form, and the dots are for the Monte Carlo simulation. The
results clearly demonstrate an improvement by use of the
reshaped form over use of the Gaussian form. The nonzero
intensity beforetb=3l tr /v in the reshaped form has been
completely removed, while the Gaussian distribution has
nonzero components beforetb. The reshaped time profile
matches with the result of the Monte Carlo simulation in
most of the time period, but the peak values are about 20%
lower. The errors are much smaller than those of the Gauss-
ian distribution. By integration over time, the density for the
steady state can be obtained. The difference in the steady
state density between the reshaped analytical model and the
Monte Carlo simulation is about 3%.

3. Distribution function I„s…„r ,s ,t…

When the detector is located less than 8l tr from the source
in a medium with largeg factor, the distribution function
I ssdsr ,s,td is highly anisotropic, and the intensity received

FIG. 6. Time-resolved profile of 3D photon density, where the
detector is located atz=3l tr from the source along the incident
direction, obtained by the reshaped form Eq.s42d ssolid curved and
the Gaussian formsdashed curved, compared with that of the Monte
Carlo simulation sdotsd. The Heyney-Greenstein phase function
with g=0.9 is used, and the absorption coefficient 1/la=0.
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strongly depends on the angle. One needs to use the photon
distribution functionI ssdsr ,s,td instead of the photon density
Nsr ,td.

In this case the center positionr c, as a function ofss,td, is
not located on the axis at incident directions0. Without loss
of generality, we set the scattering planess,s0d as thex-o-z
plane. The center position now is located atr c=srx

c,0 ,rz
cd.

The orientations and lengths of the axes of the ellipsoid,
which characterize the half-width of the spread of the distri-
bution, can be computed as follows. The nonzero compo-
nents for the second cumulant now aresBxx,Bxz,Bzz,Byyd,
expressed in Eq.s11d. Byy represents the length of one axis of
the ellipsoid, perpendicular to the scattering plane. By diago-
nalizing the matrix

FBxx Bxz

Bxz Bzz
G , s48d

the lengths and directions of the other two axes of the ellip-
soid on the scattering plane can be obtained. In fact, calcu-
lation shows that the direction ofr c is also the direction of
one axis of the ellipsoid, since at a certain timet the direction
r c can replaces as the unique special direction in the scat-
tering plane. In order to reshape the distribution we choose a
new z̃ axis along ther c direction, and move the peak position
of the distribution fromurcu to zc, taking this point as the
origin of new coordinatessx̃, ỹ=y, z̃d, as shown schemati-
cally in Fig. 7.

In the new coordinates we use a shaped form similar to
that of the 3D density Eqs.s42d, while asx̃d in Eq. s42d is

asx̃,w̃d2 ; az̃
2 cos2sx̃d + ax̃

2 sin2sx̃dcos2sw̃d

+ aỹ
2 sin2sx̃d sin2sw̃d, s49d

where x̃ and w̃ are, separately, the polar angle and the azi-
muthal angle of positionr̃ in the new coordinates. The pa-
rameterssax̃,aỹ,az̃,zcd are determined by fitting the center
ur cu and lengths of the three axes of the ellipsoid character-
izing the half-width of the distribution. In many cases, the
ellipsoid can be approximately treated as an ellipsoid of
revolution; the length of the axis of the ellipsoid along thex̃
direction is approximately equal to that along theỹ direction,
and thus the computation can be simplified. The reshaped
distribution functionI ssdsr ,s,td for a certain directions is
normalized toFssdss,s0,td.

Figure 8 shows the computed time profile of the distribu-
tion functionI ssdsr ,s,td, when the detector is located at 3l tr in
front of the source, using the Heyney-Greenstein phase func-
tion with g=0.9. Figures 8sad and 8sbd are, separately, for
different directions of lights:u=0 and 30°. The solid curves
are for the reshaped form using Eq.s42d and the dashed
curve is for the Gaussian form. The dots are for the Monte
Carlo simulation. Anisotropic distribution is shown by com-
paring Figs. 8sad and 8sbd. The reshaped distribution removes
intensity beforetb=3l tr /v, which appears in the Gaussian dis-
tribution. The reshaped distribution matches the Monte Carlo

FIG. 7. Schematic diagram describing the geometry of the par-
ticle spatial distribution for scattering along a directionsÞs0. At a
certain timet, the center of the distribution is located atr c. The
half-width of the spread is characterized by an ellipsoidsthe gray
aread. The large sphere represents the ballistic limit. The origin of
the new coordinates is set by extending fromurcu to zc. r̃ * is the
point obtained by extrapolating a positionr̃ sin the new coordi-
natesd to the surface of the ballistic sphere, and the lengthr̃* is
determined by Eq.s43d.

FIG. 8. Time-resolved profile of photon distribution function,
for light directions u= sad 0 and sbd 30°, where the detector is
located atz=3l tr from the source along the incident direction, ob-
tained by the reshaped form Eq.s42d ssolid curvesd and the Gauss-
ian form sdashed curved, compared with that of the Monte Carlo
simulation sdotsd. The Heyney-Greenstein phase function withg
=0.9 is used, and the absorption coefficient 1/la=0.
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result much better than the Gaussian distribution, but the
peak value is about 40% lower than that of the Monte Carlo
simulation. Integrating over time shows that the difference in
the steady state distribution function between the reshaped
analytical model and the Monte Carlo simulation is about
7%. The ratio of the peak value atu=30° is about 60% of
that atu=0, which shows stronger anisotropy atd=3l tr com-
pared to that atd=5l tr shown in Fig. 2.

Figure 9 shows the distribution functionI ssdsr ,s,td when
the detector is located at 4l tr in front of the source. The
reshaped distribution matches the Monte Carlo result much
better than that at 3l tr. It shows that the peak intensity at 4l tr
is about one order of magnitude smaller than that at 3l tr, but
intensity decays with time more slowly at 4l tr than at 3l tr.

V. DISCUSSION

While causality, together with the correct center and half-
width of the distribution, are major controlling factors in
determining the shape and the range of the particle distribu-
tion, the detailed shapes are, to some extent, different in the
different models. Our choice of the reshaped form is based
on simplicity and ease of computation, which obviously is
not the only available choice. The initial results show that for
g=0.9 the parameters in our model can be quickly obtained

using the above fitting procedure up totù4l tr /v for the 3D
casesup to tù2l tr /v for 1D densityd. The Monte Carlo simu-
lation is more time consuming in this time region. This
model may work well forg,0.9 in the above time region,
because there is less forward scattering for a smallerg factor.
The fitting error begins to increase during 3l tr /v, t,4l tr /v.
At early timet,3l tr /v, r c becomes very close to the ballistic
limit vt; the front edge of the distribution almost perpendicu-
larly jumps at the positionvt. In this case, the parameterzc
<vt in our model, is difficult to adjust through the fitting
program. A more suitable model in this early time period is
needed. Of cause, Monte Carlo simulation also runs fast for
short times and small spatial regions. Fors at the near back-
scattering direction, the Gaussian distribution can be a good
approximation as shown in Fig. 3, because most particles
suffer many scattering events to transfer from the forward
direction to the backward direction. Our calculation shows
that the center positionr c is close to the source foru
<180° and far from the ballistic limit; hence, reshaping has
little effect on the backscattering case.

In addition to improving convergence, separating the bal-
listic component from the scattered component also provides
a more appropriate time-resolved profile for transmission. In
the time-resolved transmission profile the ballistic compo-
nent is described by a sharp jump exactly at timevt, sepa-
rated from the later scattered component. The intensity of the
ballistic component, compared to the scattered component,
strongly depends on theg factor. Forg=0, l tr= ls, the ballistic
component decays to exps−1d=0.368 at distance 1l tr. But for
g=0.9 it decays to exps−10d=4.54310−5 at 1l tr, becausel tr
=10ls. The jump of the ballistic component can be seen in
experiments of transmission of light for a medium of small
sized scatterersssmallg factord, but is difficult to observe for
a medium of large sized scatterersslargeg factord. Our for-
mula presented in Sec. III provides a good estimation for
both small and largeg factors by explicitly separating these
two components.

Using the obtained analytical expressions, the distribution
Isr ,s,td can be computed very fast. The cumulant solution of
the BTE has been extended to the case of a polarized photon
distribution f11g, and to semi-infinite and slab geometries
f12g. Using a perturbation method, the distributionIsr ,s,td
in a weak heterogeneous medium can be calculated based on
the cumulant solution of the BTEf12g. The nonlinear effect
for strongly heterogeneous objects inside a medium can also
be calculated using a correction of the “self-energy” diagram
f13g. Hence, the analytical form of the solution of the BTE
may have many different applications.

In summary, the analytical cumulant solution of the Bolt-
zmann transport equation is improved in two respects. The
ballistic component is separated and the cumulants for the
scattered component are computed. This treatment ensures
that summation-overl is convergent. We replace the Gauss-
ian distribution by a different shaped form, which satisfies
causality, and maintains the correct center position and the
correct half-width of the distribution computed by our ana-
lytical formula. Our results show that the reshaped distribu-
tion matches that obtained by the Monte Carlo simulation
much better than does the Gaussian distribution.

FIG. 9. Time-resolved profile of photon distribution function,
for light directions u= sad 0 and sbd 30°, where the detector is
located atz=4l tr from the source along the incident direction. Other
parameters are the same as in Fig. 8.
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