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Three-Dimensional Radiative Transfer
Tomography for Turbid Media

W. Cai, M. Xu, and R. R. Alfano

Abstract—The photon distribution, as a function of position,
angle, and time, is computed using the analytical cumulant solution
of the Boltzmann radiative transfer equation (RTE). A linear for-
ward model for light propagation in turbid media for three-dimen-
sional (3-D) optical tomography is formed based on this solution.
The model can be used with time resolved, continuous wave (CW),
and frequency-domain measurements in parallel geometries. This
cumulant forward model (CFM) is more accurate than that based
on the diffusion approximation of RTE. An inverse algorithm that
incorporates this CFM is developed, based on a fast 3-D hybrid-
dual-Fourier tomographic approach using multiple detectors and
multiple sources in parallel geometries. The inverse algorithm can
produce a 3-D image of a turbid medium with more than 20 000
voxels in 1–2 min using a personal computer. A 3-D image recon-
structed from simulated data is presented.

Index Terms—Absorption and scattering, forward model, in-
verse algorithm, optical tomography, photon migration, radiative
transfer equation (RTE).

I. INTRODUCTION

OVER THE PAST decade, optical tomography has been
investigated as a noninvasive imaging method that uses

nonionizing near-infrared (NIR) light to obtain images of the
interior of the breast. Unlike X-ray, which is attenuated through
media by ionizing the electrons at inner-orbits of atoms, NIR
light uses the vibrational overtones for different molecular com-
ponents in the structures of tumor. NIR light may be used to
create image based on the molecular change, which may be used
to improve sensitivity and specificity in the early diagnostics
of breast cancer. Breast tissues scatter light strongly, and blur
the direct shadow image of a tumor. A technique, known as in-
verse image reconstruction, has been investigated to overcome
the problem of multiple scattering. Some obstacles in the de-
velopment of optical tomography are inaccuracy of the com-
monly used diffusion forward model, and lack of a fast inverse
algorithm able to realize a three-dimensional (3-D) image re-
construction of a breast for clinical use.

One critical issue is the forward model, which should cor-
rectly simulate photon propagation in the medium. The most
commonly used forward models were built based on solution
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of the diffusion equation, which is the lowest approximation
of the radiative transfer equation (RTE) [1]–[5]. The forward
models based on the diffusion approximation (DA) give a large
error when the distance between a voxel and a source is
small. Furthermore, the photon distribution still maintains a
strong anisotropy in a deeper region away from a source, which
will be shown later in this paper. Unfortunately, contributions
from near surface voxels to measured signals are often larger
than contributions from the voxels deep inside the medium.
Inaccuracy of the DA-based forward model may lead to a
failure in image reconstruction, especially for small hidden
objects deep inside the medium. The total weight matrix should
be inverted. The large elements in the matrix, which play a
more important role in inversion, are evaluated incorrectly in
DA models. The shortcoming of DA is well recognized, but it
is still broadly applied due to the difficulty in directly solving
the radiative transfer equation. Hielscheret al. [6] and Vihunen
et al. [7] developed numerical solutions of RTE for optical
tomography.

Recently, we have developed an analytical solution of
RTE, based on cumulant expansion, in an infinite uniform
medium with an arbitrary phase function [8], [9]. It provides an
explicit analytical expression for photon distribution function

, as a function of position, direction of light , and
time . The mean position and the half-width at half-maximum
(HWHM) height of the distribution are always exact. In this
paper, the linear forward model based on the cumulant solution
is described. This CFM may used with time-resolved, contin-
uous wave (CW), and frequency-domain data, which are much
more accurate than the DA models.

To obtain a 3-D image one needs to investigate the inverse
algorithms. For clinical applications, this requires an inversion
technique, that is computationally fast, and stable in the
presence of measurement noise. Recent algorithms to solve the
inverse problem include Newton’s least-square-based methods
and gradient-descent methods [1]–[5]. These approaches use
an iterative procedure, which requires a long computation
time to solve a 3-D inverse problem with large unknowns
(the number of unknowns is the number of voxels). Further-
more, the iterative methods can not ensure that the result
arrives at a “global minimum,” and does not converge to a
“local minimum,” which is not a true image of the medium.
The application of Fourier transform, which has been called
“diffraction tomography,” can greatly reduce computation
time. Matsonet al. [10] and Li et al. [11] have developed the
diffraction optical tomographic methods to realize fast image
reconstruction. However, their algorithms are limited to the use
of a single light source with a two-dimensional (2-D) plane
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of detectors. This type of experimental setup acquires only
a set of 2-D data using CW or frequency-modulated light,
that is not enough for a 3-D image reconstruction. Recently,
Schotland and Markel developed inverse inversion algorithms
using diffusion tomography [12]–[14] based on the analytical
form of the Green’s function of frequency-domain diffusive
waves, and point-like absorbers and scatterers. Data obtained
by multiple sources with multiple detectors in parallel slab
geometry are used in these approaches.

A fast hybrid-dual-Fourier (HDF) algorithm, which uses mul-
tiple sources and multiple detectors in parallel slab geometry,
is described in this paper for reconstruction of a 3-D image of
an inhomogeneous medium. This approach uses a general 2-D
translation invariance of the Green’s function in a homogeneous
background slab medium, suitable for forward models based on
solution of RTE, and various other forward models, in CW, fre-
quency-domain, and time-resolved measurements. This inverse
algorithm runs fast. It is shown that a 3-D image of a turbid
medium (for example, divided into 32 32 20 20 480
voxels) can be reconstructed in 1–2 min using a personal com-
puter. This algorithm can produce stable images in presence of
relatively strong noises.

The forward model and the inverse algorithm discussed in
the following can also be applied for image reconstruction in a
cloudy environment for military use.

This paper is organized as follows. Section II presents the
analytical solution of RTE, based on a cumulant expansion,
in an infinite uniform medium and shows the photon distribu-
tion function computed using the cumulant analytical solution.
Section III describes the forward models based on the ana-
lytical solution of RTE, considering the slab geometry, and a
weak heterogeneity using a perturbative method. Section IV
describes the HDF inverse algorithm for a reconstruction of
a 3-D image of an inhomogeneous medium. The 3-D image
using this algorithm is shown. A discussion is presented in
Section V.

II. A NALYTICAL CUMULANT SOLUTION OF RTE

The photon propagation in a medium is described by the
photon distribution function, , as a function of time
, position , and direction . The mathematical equation

governing photon propagation is the well-known radiative
transfer equation

(1)

where the fundamental parameters are the scattering rate
, the absorption rate , and the

differential angular scattering rate , where
and are the absorption and scattering cross sections

respectively, is density of scatterers, andis the speed of light
in the medium. In a uniform infinite medium, these parameters
are position independent.

When the phase function depends only on the scattering
angle, we can expand the phase function in Legendre polyno-
mials with constant coefficients

(2)

Recently, we have developed a new approach to obtain an
analytical solution of RTE, based on a cumulant expansion, in
an infinite uniform medium, with an arbitrary phase function

[8], [9].
We briefly review the concept of “cumulant” in a one-di-

mensional (1-D) case. Consider a random variable, with a
probability distribution function . Instead of using
to describe the distribution, we define theth moment of

, and correspondingly theth cumulant
defined by

. The first cumulant is the mean posi-
tion of . The second cumulant represents the HWHM
of the distribution. The higher cumulants are related to the
detailed shape of the distribution. For example, describes
the skewness or asymmetry of the distribution, and
describes the “kurtosis” of the distribution, that is the extent to
which it differs from the standard bell shape associated with the
normal distribution function. The cumulants, hence, describe
the distribution in an intrinsic way by subtracting off the effects
of all lower order moments. In 3-D case, the first cumulant has
three components, the second cumulant has six components,
and so on.

We derived an explicit algebraic expression of spatial cumu-
lants at any angle and any time that is exact up to an arbitrarily
high order [9]. This means the distribution function
can be computed to any desired accuracy. At the second order,

, an analytic, hence, useful explicit expression for dis-
tribution function is obtained [8]. This distribution is
Gaussian in position, which is accurate at later times, but only
provides the exact mean position and the exact HWHM at early
times. A weakness of the second order cumulant solution is that
photons at the front edge of Gaussian distribution travel faster
than light speed, thus violate causality, though to a much less
extent than that in the DA.

Fig. 1 compares obtained from the analytical cumu-
lant solution and the Monte Carlo (MC) simulation. In order to
reduce the statistical deviation to an acceptable level, 10events
are counted in the MC simulation. The figure shows that the
solid curve (the tenth-order cumulant solution) is located in the
middle of data obtained by the MC simulation. The solution for
CW case can be obtained by an integration of over
time . It is shown that even second order cumulant solution (the
dotted curve) can provide an accurate CW solution, because this
solution ensures that the mean position and the HWHM of dis-
tribution are always exact.

The plots in Fig. 1 indicate that a strong anisotropic angular
distribution still exists at 6 ( is the transport mean free
path) from the source. The DA is only valid when the angular
distribution is nearly isotropic. The dominatewave distribu-
tion 4 computed using the diffusion model (the thick
dotted curve) has a large discrepancy with the MC result.
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Fig. 1. Distribution functionI(r; s; t) in an infinite uniform scattering
medium as a function of timet, using Henyey–Greenstein phase function
with g = 0:9. The detector is located atR = 6 l = 60 l from the source
front along direction of incident light, and the direction is along the incident
direction. The solid curve is computed from approximation up to tenth order of
cumulant; the dotted curve is computed from approximation up to the second
order of cumulant, the discrete dots are from the MC simulation; the curve of
thick dots is from the DA,N(r; t)=4�.

The second-order analytical cumulant solution is given by [8]

(3)

where

(4)

In (4), ,
, where is

the associated Legendre function, and are spherical har-
monics normalized to .

In (3), the mean position of the distribution (first cumulant),
when the source is located at and the incident direction
is along , is given by

(5.1)

(5.2)

where

(6)

is obtained by replacing in (5.2) by .
The HWHM (second cumulant) is expressed as

(7)

with

(8.1)

(8.2)

where ( ) corresponds to and ( ) corresponds to .

(8.3)

(8.4)

is obtained by replacing in (8.4) by . In
(8.1)–(8.4) are given by

(9.1)

(9.2)

(9.3)

(9.4)

Fig. 2(a) and (b) shows the light distribution as a function of
time at different receiving angles in an infinite uniform medium,
computed by the second cumulant solution, where detector is
located, separately, at 5 [Fig. 2(a)] and 15 [Fig. 2(b)] from
the source in the incident direction of the source. Fig. 2 shows
the existence of the strong anisotropy of the light distribution at
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(a)

(b)

Fig. 2. Light distribution in an infinite uniform medium as a function of time
at different received angle, using second cumulant solution of radiative transfer
equation, where detector is located, separately, at 10 [Fig. 2(a)] and 30 mm
[Fig. 2(b)] from the source in the incident direction. The parameters for this
calculation are:l = 2 mm, l = 300 mm, the phase function is computed
using Mie theory for polystyrene spheres with diameterd = 1:11 �m in water
and the wavelength of laser source� = 625 nm, which gives the g-factor
g = 0:926.

5 from the source and the modest anisotropy at a distance of
15 . These types of distributions have been demonstrated by
time-resolved experiments [15].

One advantage of using the above analytical solution of RTE
is that the distribution function can be computed very fast. The
associated Legendre functions can be accurately computed
using recurrence relations. It takes only a minute to compute
10 data of on a personal computer.

The corresponding solution in the frequency-domain
can be obtained by making a Fourier transform

. The CW solution is obtained by
taking .

The photon density of the second cumulant solution
is given by

(10)

with the mean position

(11)

The corresponding time-dependent diffusion coefficients are

(12)

(13)

As shown in (11)–(13), the mean position of the distribution
is moving, and the diffusion coefficients are time dependent. At

, the mean position of the photon density moves along
direction with speed, and the diffusion coefficients tend to

zero, this result presents a clear picture of near ballistic mo-
tion. As time increases, the mean position motion slows down,
and the diffusion coefficients increase from zero. This stage of
photon migration is often called a snakelike mode. At long time,
(10) tends to the center-moved (1) diffusion model with the
diffusion coefficient .

III. FORWARD MODEL BASED ON THE

CUMULANT SOLUTION OF RTE

The linear forward models for scattering media are built in
following three steps: 1) computation of a background Green’s
function in an infinite uniform medium; 2) extension of this
Green’s function to slab geometry; and 3) computation of the
weight function using a perturbative method. These steps have
been applied in building the linear forward models under DA
[2]. We use these steps as well, but our approach is based on the
cumulant solution of RTE, rather than the solution of the diffu-
sion equation.

We use the second-order cumulant solution for computing a
background Green’s function in an infinite uniform medium,
since it is easy to use the explicit expressions in (3)–(9), that
avoid complicated computations of higher order cumulants. The
second order cumulant solution is accurate at later times, but
only provides the correct mean position and the correct HWHM
at early times. We notice that the width of the distribution at
early times could be smaller than the size of a voxel, the average
over the distributions at different points in a voxel smears the de-
tail shape of the distribution. In the CW or frequency- domain
cases, the shape of the distribution is further smeared by integra-
tion over time . Therefore, the second-order cumulant solution
can be a reasonable approximation in building forward models
based on the RTE.

Since a detector usually collects emergent light within a wide
range of angle of different directions, it is convenient to compute
the Green’s function related to a detector using photon density

(10)–(13), where is the position of detector.
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Fig. 3. Schematic diagram shows how to extend the cumulant solution of RTE
from an infinite medium to a semi-infinite medium.

It is essential to include the boundary effect in the solution of
the RTE when photons are injected into and spread out from a
finite sized medium. A proper extension of the cumulant solu-
tion to slab geometry is an essential step for building a forward
model.

A boundary condition is applied based on the following phys-
ical consideration. At early times, the center of photon distribu-
tion injected into medium, moves forward into medium. Then,
the distribution spreads out from the moving center with dif-
fusion coefficients that gradually increase from zero. At early
times, the number of photons leaking out of the boundary is
negligible compared to the total number of the incident photons.
The boundary condition plays a role at later times, when there
are many photons leaking out of the boundary.

The approach known as an approximate “extrapolated”
boundary condition [16], extrapolates the boundary by a
distance , the extrapolation length, beyond the real
boundaries with 0.7, at which the photon density vanishes.

To apply this boundary condition for the cumulant solution in
a semi-infinite geometry, a virtual negative source is added
to the original source , as shown in Fig. 3. During the early
period, the solution of the RTE in an infinite uniform medium
automatically satisfied the boundary condition because the den-
sity is near zero at the boundary, and the virtual source does not
play a role. After a time of approximately 4 , the center of
photon density, , has moved and stopped at a position 1
from the original source and the center from virtual source,

, has moved in a similar way. Then, the arrangement shown
in Fig. 3, produces a cancellation of contributions to the photon
density from the original source and the virtual source on the
extrapolated boundary.

Fig. 4 shows that the time-resolved backscattered photon dis-
tribution in a semi-infinite medium on the surface, with
the source-detector distance 1, obtained using the second-
order cumulant approximation and the extrapolated boundary

Fig. 4. Backscattered photon distributionI(r; s = �z; t) emerging from
plane surface of a semi-infinite turbid medium, as a function of time, with the
source-detector distance 1l on the surfacez = 0 plane. The pulse source
is located atz = 0, incident alongz direction. The extrapolated boundary
condition is used. The solid curve is obtained from cumulant approximation
(CA), up to the second cumulant. The dashed curve is from DA. The cross points
are obtained from MC simulation.

condition, which agrees with the MC simulation much better
than that of the DA.

For extending to the slab geometry, adding a series of pairs of
virtual “image” sources at both sides of slab is a good approxi-
mation for satisfaction of the extrapolated boundary conditions
on both sides of a slab [17].

The heterogeneous structure of a highly scattering turbid
medium can be characterized by the following optical param-
eters: the scattering rate , the absorption rate , and
the differential angular scattering rate .

A perturbation method is used which takes the photon dis-
tribution function in a uniform background slab medium as the
zero-order approximation. The change of the photon distribu-
tion function originates from the change of optical parameters
compared to that in the uniform background slab medium. The
change of scattering and absorption parameters are defined as
follows:

(14)

where the quantities with super index (0) are the optical pa-
rameters in a uniform background slab medium. By expanding

( ) in Legendre polynomials, we obtain

(15)

with , since always equals 1. The physical
meaning is that the scattering parameters have no effect on the

( ) component.
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Making a perturbation expansion of (1) to the first-order Born
approximation, the change in the photon distribution is given by

(16)

where is the change in the light intensity
received by a detector located at, along the direction , and
at time , which is injected from a source located at, along
a direction of , at time . “Change” refers to the dif-
ference in intensity compared to that received by the same de-
tector, from the same source, when light passes through a uni-
form background slab medium. The term
is the intensity of light, calculated using the cumulant solution
of RTE, at along the direction and at time , when light is
injected from a position along a direction of at time
migrating in a uniform background slab medium.

The background Green’s functions in (16), obtained by cu-
mulant solution, are expanded in spherical harmonics

(17)

The spherical transform is performed using a fast Fourier trans-
form for the integral over , and a Clenshaw–Curtis quadrature
for the integral over .

Using the orthogonality relation of the spherical function and
the addition theorem: , the
analytical integration overand in (16) can be performed. For
time resolved data, the contribution from an absorbing object
located at is given by

(18)

where is the volume of th voxel, and is the cutoff value
in the Legendre expansion in (18). The contribution from a scat-
tering object located at is given by

(19)

For frequency domain (or CW) data, the contribution from an
absorbing object located at is given by

(20)

and the contribution from a scattering object located atis
given by

(21)

Comparing (18)–(21) with the corresponding weight function
commonly used in the DA, [1], [2] only wave ( ) for ab-
sorptive objects, and onlywave ( ) for scattering objects
are considered in the diffusion forward models. Besides, even
for wave and wave, the diffusive solution is incorrect when
voxels are located near the source, as discussed before.

The previous formulae allow simulating the background
Green’s function and the change of optical parameters in
detail. They are also applicable to the cases where only a
few parameters of the medium are known, similar to that
for the diffusion forward model. When only , and
-factor for an uniform background medium are given, the

Henyey–Greenstein phase function [18] is widely adopted as
an approximate phase function

(22)

Although (22) uses a single parameter-factor to describe a
phase function, this description is much better than that used
in the DA, which implies a phase function linear in .

If in (21), which represent the change of the phase
function, is not considered, two optical parameters being im-
aged are and . The reduced scattering coeffi-
cient is directly related to (change of the
diffusion coefficient) used in the DA models. The CFM, hence,
can be applied to the experimental data in a similar fashion as
that for the DA models, to obtain images of the optical parame-
ters. In the CFM, however, all contributions from higher spher-
ical waves are properly included.

The most time consuming part in computation of CFM using
the previous formulae is to build a database of and .
Once it is built for a uniform background medium, the database
can be applied for imaging of various heterogeneity cases. In
parallel geometry, is a function of ( ) due
to the 2-D translation invariance. Since position of sourceand



CAI et al.: THREE-DIMENSIONAL RADIATIVE TRANSFER TOMOGRAPHY FOR TURBID MEDIA 195

incident direction are fixed, only a 3-D ( )
database is required. Whenis taken along direction (light
is injected perpendicular to surface), the scale of database is re-
duced to 2-D due to theaxis symmetry. Photons from different
directions in a wide solid angle are received by a detector, as dis-
cussed before, photon density ) is used for com-
puting the Green’s function associated with detectors, which is
independent of , and can be computed much easily. The
database can be built in a reasonable computation time because
the distribution function ( ) can be rapidly
calculated using the analytical expressions.

IV. FAST 3-D HDF INVERSEALGORITHM

We now outline an inverse algorithm to quickly reconstruct
image of a medium from acquired measurements using the
above CFM. The model, neglecting the irrelevant parameters,
can be briefly written as

(23)

where is the position of a voxel inside turbid
medium; is ( ) coordinates; is the position
of a source; and is the position of a detector.
In (23), is the measured change in light
intensity received by a detector at from a point source at .

is the change of the optical parameters inside turbid
medium. The weight function
is a function of and on ( ) plane, because of
parallel geometry, assuming an infinite sized area, and the 2-D
translation invariance of the Green’s function in a background
homogeneous slab. Here, the special form of the weight
function is not relevant; the weight function can be calculated
by the CFM or the DA models, using with CW, frequency,
or time-resolved data. This approach is general and can also
be used for inverse problems of nonoptical measurements in
parallel geometries.

A light source scans through a 2-D array. Transmitted or
backscattered light signals emerging from the medium are
detected using a 2-D array of detectors, such as a charge-cou-
pled device (CCD) camera (or time-gated CCD camera in
the time resolved case). Each illumination of the light source
provides a set of 2-D data on the 2-D detector array. For CW
or frequency-modulated light source, this arrangement can
produce a set of 2-D 2-D 4-D data in a relatively short
acquisition time, because a CCD camera produces 2-D data
of the detectors at different positions simultaneously. When
time-resolved or modulation at multiple frequencies are ap-
plied, a set of five-dimensional (5-D) data can be acquired. The
inverse problems of 3-D imaging, hence, are over-determined,
which is necessary for obtaining an accurate 3-D image.

When the translation invariance is satisfied, the Fourier
transform approach is a powerful technique to achieve a fast
inversion. In the Fourier space, the convolution of and
becomes a product of and , and the weight matrix
becomes diagonal. Hence, inversion can be performed much
faster. Using this concept in the case of multiple sources and

multiple detectors in parallel geometries a dual 2-D Fourier
transform is performed on (23), to obtain

which leads to

(24)
where , , and are change in light intensity, change in
optical parameters, and the weight function in the Fourier space,
respectively.

A similar form of this dual Fourier transform has been derived
by Markel and Schotland [13], [14] in a frequency-domain dif-
fusion model.

Equation (24) seems difficult to be used for performing the
inverse reconstruction because of the argument mismatch

in and ( ) in and . This difficulty occurs be-
cause the weight function in (23) is related to three positions:

, and . To remove this complexity, the following linear
hybrid transform is introduced:

(25)

This results in the HDF formula

(26)

where , , and are, respectively, , , and as functions
of and .

While (25) is a relatively simple expression, it is essential to
properly realize this hybrid transform in discrete lattices of the
Fourier space. A procedure to quickly perform this transform
from ( ) coordinates to new ( ) coordinates, separately,
for and components, is explained in Fig. 5 using an example
of a 6 6 lattice. The maximum value of is taken as the
maximum value of or , not the maximum value of .
The periodic property of lattice in the Fourier space is used, for
example, . This
procedure builds a one-to-one correspondence between lattices
in the two coordinate systems. Fig. 5 shows thatand at
each node [circle in Fig. 5] in ( ) coordinates are directly
mapped from and , respectively, at the corresponding node
in ( , ) coordinates without any algebraic manipulation.

In (26), a common 2-D Fourier argument appears
in , , and . For each value of , (26) leads to an
over-determined 1-D problem for inverse reconstruction:

. In order to perform fast in-
version, we invert the normal form of the forward model:

for each , where [ ] is a
matrix, with the number of layers indirection. The original

in (23) is a matrix with a large dimension. The inverse
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Fig. 5. Example of a 6� 6 lattice for explaining the linear hybrid transform
from (q ; q ) coordinates to (u; v) coordinates.

problem now is simplified to invert many (number of discrete
value of ) matrices, each with a small dimension. The latter
problem is much more computationally efficient compared
to the original problem of (23). Once are obtained
for all , a 2-D inverse Fourier transform produces ,
which is the 3-D image of optical parameters of the medium.
Markel and Schotland use different procedures for inversion. In
[13], a Fourier–Laplace inversion is applied, hence, an analytic
continuation of measured data to the complex plane is required
for the inverse Laplace transform. In [14], an inverse procedure
is performed in an argument space, similar to variableshere.
Since include 2-D variables, inversion in space could take
longer time than that of inversion inspace.

As discussed previously, matrices and [ ] for each
can be calculated in advance for a uniform background slab

medium. Assuming that a group of experimental data has been
acquired, the following steps are taken to produce a 3-D image
of the medium:

1) obtain “change” of intensities, , by sub-
tracting the intensity for a uniform background medium
from the measured intensity;

2) extend the ( ) area and padding zeros, to overcome the
wraparound problem in discrete convolutions [19];

3) perform a dual 2-D fast Fourier transform (FFT) of
in the extended area to produce

;
4) determine for each , using a mapping

procedure explained in Fig. 5;
5) invert for each , which is an in-

verse problem involving a matrix, with the
number of layers along direction. Proper regularization
according to noise level needs to be taken into account.
Regularization will be discussed later in the paper;

6) perform an inverse 2-D FFT on to produce
.

Fig. 6. 3-D image reconstructed using hybrid dual Fourier tomography. Two
absorbing objects, each with the volume 3� 3� 2 mm , are located inside a
turbid medium with volume 96� 96� 40 mm divided into 32� 32� 20
voxels. The first one is located at position labeled (10, 10, 10) with absorption
difference�� = 0:01 mm . The second one is located at position labeled
(20, 20, 15) with absorption difference�� = 0:007 mm . A CW light
source incident perpendicular to thez = 0 plane is scanned through a 2D 32�
32 array at the plane, with each pixel 3 mm� 3 mm. A same sized 2D array of
detectors is located atz plane (transmission geometry). The simulated data are
produced with noise 5%. A linear scale of color bar from the maximum value to
minimum value of�� is used. The numbers labels thez layers counting form
source to the detector, layers are separated by 2 mm.

Our computational experiments show it takes only 1–2 min
on a personal computer to perform an inverse reconstruction of
a 3-D image of a medium with a large number of voxels (for
example, 32 32 20 voxels) using this HDF algorithm.

To demonstrate our concept of HDF tomography in 3-D
image reconstruction, an example using simulated CW data is
presented. A slab turbid medium, with a transport mean-free
path mm, absorption length mm, and
thickness mm, is divided into 20 layers. A CW light
source, injected perpendicular to the plane, scans by
a 2-D 32 32 array on the plane, with each pixel 33 mm.
A 2-D array of detectors with the same spacing is located at

plane (transmission geometry). The medium, is divided into
32 32 20 voxels, each of dimension 3 3 2 mm .
Two absorbing objects are located in the medium, each with a
volume 3 3 2 mm . The first one located at (10, 10, 10)
has an absorption difference of mm with the
background. The second one is located at (20, 20, 15) with an
absorption difference of 0.007 mm. The simulated data with
noise level of 5% are obtained using the CFM. The tomographic
images are shown in Fig. 6. As shown, the central positions of
3-D image of the objects are correct, located at a voxel (10, 10,
10) with dark color, and a voxel (20, 20, 15) with gray level.
The resolution of image is about6 mm in the transverse
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( plane and 10 mm along direction. In general, the
axial resolution (along direction) is poorer than the lateral
resolution [on the ( ) plane]. In transmission geometry, two
Green’s functions in the weight function compensate each other
when the position of the object changes, that leads to a poor
sensitivity of the measured photon intensity to theposition
of the object. The shapes of 3-D image of two objects are
ellipsoids with longer axis along thedirection. The absorption
difference has the maximum value at the center of ellipsoid,
and decays gradually with increase distance from the center.

A cutoff in discrete lattices of and naturally introduces
a kind of regularization. This regularization is very effective.
Initial tests show that even adding 30% of fluctuations on sim-
ulated data of , an image similar to that shown
in Fig. 6 is still reconstructed. The reason for this is that noises
come from fluctuations at different source and detector posi-
tions, which are mainly the high-frequency components of
and . A cutoff in and naturally eliminates these high
frequency noises, such that a stable image, especially in ()
plane, can be reconstructed in a strong noise level.

However, the inverse problem is still ill-posed, because
contribution to the change of intensity from a small voxel
deeply inside medium is weak, and is not sensitive to its
position in transmission case. A regularization procedure on
inversion of is still needed. The standard
Tikhonov regularization approach [20] is applied and L-curve
[21], [22] method is used for determining the best regularization
parameters.

This fast inverse algorithm produces a 3-D image in a linear
image regime. For nonlinear image reconstruction procedure,
the reconstructed 3-D image provides a good initial profile for
further refining the 3-D image taking the nonlinear effects into
consideration.

The HDF inversion method can be extended to a cylindrical
geometry, with an arbitrary shape of the ( ) cross section,
for 3-D image reconstruction. In this geometry, an algorithm
using a single Fourier inversion has been developed [23]. This
algorithm is limited to the case that the sources and the detectors
are located on a plane with samecoordinates. The hybrid-dual-
Fourier inverse approach in cylindrical geometry removes this
restriction, so more data can be acquired for 3-D tomography.
The linear forward model in cylindrical geometry is given by

(27)

where is the weight function, a
function of and due to the 1-D translation invari-
ance of the Green’s function in a homogeneous background
medium in cylindrical geometry (assuming infinitelength).
We make a dual 1-D (along direction) Fourier transform

on (27) to obtain

(28)
where , , and are the Fourier space quantities corre-
sponding that in (27).

The (1-D) linear hybrid coordinate transforms, ,
and , for (28) leads to

(29)

where , , and are, respectively, , , and as
functions of and . For each value of , (29) is an over
determined 2-D problem for inverse reconstruction, namely, to
determine a 2-D unknown value of from known 3-D
data of for each . This 3-D–2-D determination
enhances the accuracy of 3-D image compared to 2-D–2-D
determination in the single-Fourier transform inversion. After

are obtained for all , a 1-D inverse Fourier transform
produces the image .

V. DISCUSSION

As shown in (19) and (21), there is no contribution from
wave to the weight function for a scattering object. This result
reflects a fact that no scattering effect exists for an isotropic an-
gular distribution. In the regions far from sources, the weight
function contributed from scattering objects is small because
there is no contribution from the dominantwave, as shown in
many results based on the diffusion models [1]–[5]. This non-
sensitivity of signals to the scattering objects deep inside the
medium should be considered in optical tomography. A pure
isotropic distribution is never achieved, otherwise, there will be
no flux in any directions. In the diffusive model, a smallwave,

, exists which maintains the photons diffusing
to the regions with fewer photons. The factor represents
this effect. However, this expression is valid only in the regions
where the wave is much smaller thanwave, , and
does not correctly describe the early photon propagation near
sources. Since only the weight function for scattering objects
close to sources plays an important role, but it was estimated
using the formula valid in regions far from sources, substantial
error introduced in the diffusion forward model for scattering
objects is crucial, considering in tissue.

For the weight function of absorbing objects, contributions
from all spherical components, includingwave, are given in
(18) and (20). In commonly used diffusion formula, the con-
tribution from wave was neglected. The diffusion coefficient
originally derived in the DA is , that leads to

. The contribution from wave to
the weight function for absorbing objects, hence, should exist.
However, in the later diffusion models, is assigned only
for scattering objects and onlywave for absorbing objects is
taken. Equations (18) and (20) provide a quantitative estimation
of weight function for absorbing objects in regions close to the
source, as well as far from the source.

The CFM and the HDF inverse algorithm need further
improvements in the following aspects. Further improvement
should be considered without significantly increasing com-
plexity in computation. First, the second cumulant solution is
not accurate in the detailed shape of the distribution, especially,
the front edge in the Gaussian distribution violates causality.
An empirical distribution, which keeps the exact value of the
first and second cumulants, while satisfies the causality, can be
designed to replace the Gaussian distribution.
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Second, the boundary condition is approximate. When a
more accurate distribution at early time is needed,
the boundary condition for a semi-infinite geometry should be

if (30)

This type of the boundary condition was studied by Domke [24]
for the steady state case. The solution is represented as a super-
position of a solution describing a transport problem in an infi-
nite medium, and a Fredholm integral term, which corrects this
solution for the appropriate half-space boundary condition. This
approach may be used for further development of the boundary
problem.

Third, to consider the nonlinear effects, s in (16) should
be replaced by the Green’s function in a real heterogeneous
medium. Among the high-order perturbative corrections of
the Green’s function, the “self-energy” diagram, which counts
photon round trips through a position up to infinite times,
plays an important role. Gandjbakhcheet al. [25] studied this
effect using a random walk model. We find that a renormal-
ization procedure for this nonlinear effect can be performed
after image is obtained using a linear inversion process. This
renormalization procedure can recover the optimal value of the
optical parameters and can improve the resolution of image.
The detailed results of the renormalization will be published
elsewhere.

The translation invariance is valid for the parallel geometry
assuming that the ( ) area is infinite. We suppose that this
assumption of the infinite area is reasonable. How much error
arises due to the finite area of a sample will be studied in details.

Use of the simulated data mainly tests the validity of the
inverse algorithm, does not test accuracy of the forward model.
Experimental data from phantoms and in vivo measurements
in human body will be performed for further testing of our
approach.
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