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Photon-transport forward model for imaging in turbid media
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A photon-transport forward model for image reconstruction in turbid media is derived that treats weak in-
homogeneities through a Born approximation of the Boltzmann radiative transfer equation. This model can
conveniently replace the commonly used diffusion approximation in optical tomography. An analytical ex-
pression of the background Green’s function is obtained from the cumulant solution of the Boltzmann equation.
Our model provides the correct behavior of photon migration at early times and reduces at long times to the
center-moved diffusion approximation. Numerical comparisons between this model and the standard and
center-moved diffusion models are presented. © 2001 Optical Society of America
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Probing the internal properties of highly scattering
turbid media with photons has a variety of applications
in geophysics, radio astronomy, and medical tomogra-
phy. Imaging based on the diffusion approximation
has been pursued over the past decade because it cap-
tures the core characteristic of light migration in tur-
bid media and is easy to implement.1 – 3 However, in
the diffusion approximation, light is assumed to dif-
fuse from a fixed source with a constant diffusion co-
efficient throughout the full time range when photons
propagate inside the uniform medium.4 This assump-
tion is invalid when the incident photon retains its
early time directionality preference. To account for
this difficulty, a common practice is to assume that
all the incident photons are initially scattered at a
depth z0 � lt (transport mean free path) inside the tur-
bid medium,5 which we call the center-moved diffusion
model (CDM). But CDM breaks the reciprocity theo-
rem and still fails in the description of photon propa-
gation at early times.6

To fully account for photon migration in a turbid
medium, one must use the radiative transfer equation
instead:
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where I �r, s, t� is the photon-distribution function de-
pending on position r, direction s, and time t; c is light
speed inside the medium; ma and ms denote the posi-
tion-dependent absorption and scattering coefficients;
q�r, s, t� is the photon-source strength; and P �s, s0� is
the normalized phase function of light propagation in
the medium.

Recently, we derived an analytical solution for the
photon distribution, I �0��r, s, t�, and photon density,
N �0��r, t�, in an infinite uniform medium, with exact
spatial center position and exact spatial half-width, at
any direction and time7; the exact solution up to an
arbitrary order of cumulants was also derived.8 The
photon-density distribution is found to have a center
that advances in time and an ellipsoidal contour that
grows and changes shape, providing a clear picture
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of the time evolution of light migration from the ini-
tial ballistic to the final diffusive regime. A forward
model adding inhomogeneity to the analytical expres-
sion of I �0��r, s, t� involves a complicated numerical in-
tegration over angular parameters. In this Letter we
use an approximate expression of I �0��r, s, t� that not
only retains the main features of photon propagation in
both early and long time limits but also is convenient
for building a forward model to account for weak in-
homogeneities of the medium that are treatable in the
Born approximation.

The photon distribution in an infinite uniform
medium, I �0��r, s, t�, is assumed to have the following
form:
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where N �0��r, tjr0, s0, t0� is the photon density for
a point pulse propagating along s0 at position
r0 and time t0 in an infinite uniform medium,
F �0��s, tjs0, t0� is the known exact photon distri-
bution in light-direction space, and D�t 2 t0�
is the time-dependent diffusion coeff icient. The
full definitions of these quantities originated in
Ref. 7 and are given as follows: F �0��s, tjs0, t0� �
�4p�21

P
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gl � cms�1 2 al��2l 1 1��, al are the coefficients
in the Legendre expansion of the phase function,
P �s, s0� � �4p�21
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and g1 � cms
0, where ms

0 is the reduced scattering
coefficient. The diffusion coeff icient D�t� is taken to
be an average of the time-dependent semimajor axis,
Dzz, and semiminor axes Dxx � Dyy of the diffusion
coefficient ellipsoid:
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The photon density is given by
© 2001 Optical Society of America
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where D�t� � c�1 2 exp�2g1t���g1 is the average cen-
ter of photons, which moves with speed c initially and
stops at c�g1 � lt in the long time limit.

At the early times t ! t0, the f irst term of Eq. (2)
dominates, and F �0��s, tjs0, t0� ! d�s 2 s0�, D�t 2 t0� !
c2�t 2 t0�2ms

0�9 ! 0, and N �0��r, tjr0, s0, t0� !
d�r 2 r0 2 c�t 2 t0�s0�; thus I �0��r, s, tjr0, s0, t0� pro-
vides a correct picture of ballistic motion at the speed
of light along the incident direction, s0. In the long
time limit, F �0��s, tjs0, t0� ! �4p�21, D�t� ! �3ms

0�21,
Eq. (2) reduces to the photon distribution of the CDM
approximation.

A perturbative method is then used to obtain the
forward model when weak inhomogeneities are intro-
duced into the otherwise uniform medium. Making a
perturbation expansion of the radiative transfer equa-
tion (1) to the first-order Born approximation, we de-
rive the change in photon distribution from I �0��r, s, t�,
which is the photon distribution of the uniform back-
ground, as
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where dma, dms, and d�msP � are the changes of the
absorption coeff icient, the scattering coefficient, and
the angular-dependent differential scattering coeff i-
cient, respectively, from the background to the inhomo-
geneity. The optical reciprocity theorem, I �0��r, s, t 2
t0jr0, s0� � I �0��r0, 2s0, t 2 t0jr, 2s�, is used to obtain
Eq. (5).

Expanding d�msP� in Legendre polynomials and
substituting Eq. (2) into Eq. (5), the integrations
over angular variables in Eq. (5) can be analytically
performed. We obtain
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after neglecting fast-decaying terms involving
exp�22glt� for l $ 1.

The photon-transport forward model (PTFM),
Eq. (6), is the main result in this Letter and obeys
the reciprocal relation dI�r, s, t 2 t0jr0, s0� �
dI�r0, 2s0, t 2 t0jr, 2s�. In the long time limit, the
term in Eq. (6) that contains the exponential decay
factor exp�2g1t0� can be neglected, and the change in
photon density, 4pdI �r, s, t� in the PTFM, is reduced
to the diffuse imaging model [Eq. (14) in Ref. 9].

To show the difference between our model and
the diffusion models, we consider a point photon
pulse d�r�d�s 2 ẑ�d�t� propagating inside an infinite
scattering turbid medium with absorption coeff icient
ma � 0, reduced scattering coeff icient ms

0 � 1 mm21,
anisotropy g � 0.9, and refractive index n � 1.33.
These optical properties are similar to those of a
typical breast tissue. A Henyey–Greenstein phase
function is adopted in the following calculations.10

The time-resolved profiles of transmission
I �0��r, ẑ, t� at position r � �0, 0, 5� mm and backscat-
tering I �0��r, 2ẑ, t� at position r � �0, 2, 0� mm are
shown by the solid curves in Figs. 1(a) and 1(b),
respectively. For comparison, the photon density
divided by 4p from the original diffusion model (ODM)
and the CDM are also plotted.

In a transmission case [Fig. 1(a)], the peak photon
intensity in the ODM arrives too late compared with
the experimental result reported by Yoo et al.,11

whereas in the CDM the artif icial adjustment of the
source position for lt leads to an arrival of photons
faster than light speed. The intensity at forward
directions from our model is stronger than that
of diffusion models, which indicates that a ceratin
anisotropic angular distribution remains even at a
distance of 5lt from the source.

In the case of backscattering [Fig. 1(b)], photons dif-
fuse from the origin (0, 0, 0) to (0, 2, 0) mm with a
constant diffusion coeff icient D � lt�3 in the ODM,
whereas photons diffuse from the adjusted source po-
sition (0, 0, 1) mm to (0, 2, 0) mm with the same con-
stant diffusion coeff icient in the CDM. The photons
in our model are backscattered to (0, 2, 0) mm later
than those in the ODM and the CDM because the
center of photons moves forward along the positive z
direction and diffuses from the moving center with a
gradually increasing diffusion coeff icient from 0 to lt�3
in the PTFM.

Consider a forward model with a scattering inho-
mogeneity dms

0 � 0.1 mm21 of unit volume placed
at position (0, 0, 2) mm. The time-resolved pro-
files of 2dI�r, ẑ, t� at position r � �0, 0, 5� mm and
dI�r, 2ẑ, t� at position r � �0, 2, 0� mm from Eq. (6)
and those from diffusion models are shown in Fig. 2.
The signif icant difference between our model and
diffusion models shows that the nondiffusive nature
of photon migration at early times is important and
cannot be neglected when the separation of any pair of
source, inhomogeneity, and detector is small.

In conclusion, a photon-transport forward model of
image reconstruction in turbid media has been derived
by use of the Born approximation of th radiative trans-
fer equation. A simplif ied cumulant solution in an
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Fig. 1. Photon-distribution profiles (a) I �0��r, ẑ, t� at posi-
tion r � �0, 0, 5� mm and (b) I �0��r, 2ẑ, t� at position r �
�0, 2, 0� mm.

infinite uniform medium serves as the background
Green’s function. This model provides a correct pic-
ture of nearly ballistic motion of photons at early times
and reduces to the center-moved diffusion approxima-
tion at long times. Extension to semi-infinite and slab
geometries of this model is being studied.
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position r � �0, 2, 0� mm.

3. S. R. Arridge and J. C. Hebden, Phys. Med. Biol. 42,
841 (1997).

4. K. Furutsu and Y. Yamada, Phys. Rev. E 50, 3634
(1994).

5. M. S. Patterson, B. Chance, and B. C. Wilson, Appl.
Opt. 28, 2331 (1989).

6. Y. Tsuchiya, K. Ohta, and T. Urakami, Jpn. J. Appl.
Phys. Part 1 34, 2495 (1995).

7. W. Cai, M. Lax, and R. R. Alfano, Phys. Rev. E 61,
3871 (2000).

8. W. Cai, M. Lax, and R. R. Alfano, J. Phys. Chem. B
104, 3996 (2000).

9. S. R. Arridge, Appl. Opt. 34, 7395 (1995).
10. L. G. Henyey and J. L. Greenstein, Astrophys. J. 93,

70 (1941).
11. K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett.

64, 2647 (1990).


