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Abstract. In a recent work, Baladi and Demers constructed a measure of maximal entropy for
finite horizon dispersing billiard maps and proved that it is unique, mixing and moreover Bernoulli.
We show that this measure enjoys natural probabilistic properties for Hölder continuous observables,
such as at least polynomial decay of correlations and the Central Limit Theorem.

The results of Baladi and Demers are subject to a condition of sparse recurrence to singularities.
We use a similar and slightly stronger condition, and it has a direct effect on our rate of decay of
correlations. For billiard tables with bounded complexity (a property conjectured to be generic),
we show that the sparse recurrence condition is always satisfied and the correlations decay at a
super-polynomial rate.

1. Introduction

Dispersing billiards were introduced by Sinai [S63, S70] as mechanical models of particles for
which Boltzmann’s hypotheses could be verified. They have become central to mathematical physics
as prototypical models of hyperbolic systems with singularities. Such billiards are defined by placing
finitely many convex obstacles having boundary with strictly positive curvature on the two-torus
and following the motion of a point particle moving at unit speed and undergoing specular reflections
at collisions. The collision-to-collision map is called the billiard map associated to the configuration
of obstacles and it is known to preserve a smooth invariant measure.

Over the ensuing decades, a wealth of information has been obtained regarding the statistical
properties of the system with respect to the smooth invariant measure: it is ergodic, mixing [S70]
and indeed Bernoulli [GO74], enjoys exponential decay of correlations [Y98], and a host of limit
theorems including the Central Limit Theorem [BSC91] and related invariance principles [MN05].
See [CM06] for an excellent exposition of the subject and additional references.

Despite these successes, only recently has attention been given to other invariant measures for
dispersing billiards. Denote by T the billiard map corresponding to a finite horizon Sinai billiard
and let Mn be the set comprising the maximal domains of continuity of Tn. Let #A denote the
cardinality of a set A and following [BD20] define

(1.1) h = lim
n→∞

1

n
log
(
#Mn

)
.

We call h the topological entropy of T . The main result of [BD20] is that under a condition of
sparse recurrence to singularities (see (2.1)), T satisfies a variational principle,

(1.2) h = sup
{
hµ(T ) : µ is a T -invariant Borel probability measure

}
,
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where hµ(T ) denotes the Kolmogorov-Sinai entropy of µ. Moreover, there exists a unique measure
µ0, called the measure of maximal entropy (MME), which attains the supremum, is T -adapted,
Bernoulli and positive on open sets.

However, left open in [BD20] is the rate of mixing of µ0 with respect to a reasonable class of
observables. In the present work we prove a polynomial bound on the rate of decay of correlations for
µ0 and derive an almost-sure invariance principle (which implies e.g., the Central Limit Theorem).
Furthermore, assuming that a bounded complexity conjecture holds for generic billiard tables, we
prove that generically correlations decay at a super-polynomial rate.

In this context, the question naturally arises whether our rates of mixing are optimal or, in
fact, µ0 enjoys exponential decay of correlations like the smooth invariant measure. Indeed, for
many classes of smooth systems the MME mixes exponentially, even when hyperbolicity is weak,
as long as the topological entropy of the system is positive. Notable examples are some classes of
multimodal maps in [BT08b, IT10], and topologically transitive C∞ surface diffeomorphisms with
positive topological entropy in [BCS]. In the piecewise monotone setting, the recent preprint [T21]
proves topological mixing for unimodal maps whose topological entropy is greater than 1

2 log 2, while
[B00] proves that topological mixing implies exponential mixing for the MME of such maps. We
are not aware of any natural examples where the MME is known to mix slower than exponentially.

It is interesting that for dispersing billiards the situation seems to be special due to the blow up
of the derivative near tangential collisions; in particular, exponential mixing of the MME is known
to follow from topological mixing if hyperbolicity dominates complexity for piecewise hyperbolic
maps without such a blow up [D21]. One can view the MME as belonging to a family of equilibrium
states corresponding to the geometric potentials −t log JuT , t ∈ R, where JuT is the Jacobian of
T along unstable manifolds. We define the pressure corresponding to such potentials by

P (t) = sup
{
hµ(T )− t

∫
log JuT dµ : µ is a T -invariant probability measure

}
.

The recent work [BD21] identifies a t∗ > 1 such that P (t) is real analytic on (0, t∗) and for each
t ∈ (0, t∗) there is a unique equilibrium state µt (i.e., µt achieves the above supremum) and enjoys
exponential decay of correlations on Hölder observables. Moreover, under the sparse recurrence
condition, limt↓0 P (t) = h.

Yet if the billiard table has a periodic orbit with a grazing collision, then P (t) = ∞ for t < 0
so that the pressure function signals a phase transition at t = 0. Since the spectral gap for the
associated transfer operators in the construction of µt tends to 0 as t decreases to 0 in [BD21], it
is reasonable to expect a subexponential rate of decay of correlations at t = 0. The present work
proves a polynomial upper bound on the rate of decay with exponent expressed as a function of
h/s0, where s0 is a parameter controlling recurrence to singularities (2.1). However, the question
of lower bounds for the decay rate remains open.

The paper is organized as follows. In Section 2 we define our setting and assumptions precisely,
recall some facts about dispersing billiards and state our main results regarding decay of correlations
and an almost-sure invariance principle. In Section 3 we describe our main construction which
consists of counting proper returns to a reference magnet rectangle. This is similar in spirit to the
construction of a Young tower, but rather than estimating the measure of points making a proper
return to the base at time n, we control the cardinalities of distinct itineraries. The key estimates
are contained in Propositions 3.24 and 3.25. In Section 4 we introduce a symbolic model which
captures counts of returning itineraries from Section 3, and on which probabilistic results like the
Central Limit Theorem are standard. In Section 5 we relate the symbolic model to the billiard and
complete proofs of the main results.
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2. Setting and Statement of Results

We begin with a precise description of the class of systems we will study. Let Oi ⊂ T2 be strictly
convex pairwise disjoint closed sets (called obstacles or scatterers) whose boundaries are C3 curves
with strictly positive curvature, i = 1, . . . , d. The billiard flow is defined by the motion of a point
particle moving in straight lines at unit speed in the billiard table Q = T2\(∪di=1Oi) and undergoing
specular reflections (angle of incidence equals angle of reflection) at collisions with the boundary
∂Q. If we identify ingoing and outgoing collisions, then the flow is continuous on Q× S1.

The discrete-time billiard map T is defined as the collision map on the global Poincaré section
∂Q. We adopt standard coordinates at collisions, x = (r, ϕ) where r denotes position on ∂Q
parametrized (clockwise) by arc length and ϕ denotes the angle made by the post-collision velocity
vector with the outward normal to ∂Oi at position r. Then M = ∪di=1Si× [−π/2, π/2], where Si is
the circle of length |∂Oi|, is the phase space for the billiard map T .

Let τ(x) denote the time between collisions at x and T (x) in Q. We will study tables Q which
satisfy the finite horizon condition: there exist no trajectories making only tangential collisions.
This implies in particular that there exists τmax < ∞ such that τ(x) ≤ τmax for all x ∈ M . The
fact that the Oi are closed, disjoint and convex implies also that there exists τmin > 0 such that
τ ≥ τmin. We will refer to this class of billiards as finite horizon dispersing billiards throughout.
We do not consider tables with corner points.

2.1. Singularities, hyperbolicity and sparse recurrence. Denote by S0 = {(r, ϕ) ∈ M : ϕ =
±π/2} the set of tangential collisions and let S±n = ∪nk=0T

∓kS0. Then S±n is the discontinuity
set of T±n. It is a standard fact (see, for example, [CM06, Sect. 4.9]) that Sn comprises a finite
collection of C2 curves with compact closures in M . Moreover, these curves obey the property of
continuation of singularities: For each n > 0, every curve S ⊂ S±n \ S0 is part of a monotonic and

piecewise smooth curve S̃ ⊂ S±n \ S0 that terminates on S0.
With this notation, the collection Mn from (1.1) is the partition of M \ Sn into its maximal

connected components. Note that A ∈ Mn if and only if Tn(A) ∈ M−n, where M−n is the
corresponding partition of M \ S−n. The quantity h measures the exponential rate of growth in
the cardinality of the domains of continuity of Tn. Indeed, Baladi and Demers [BD20] proved that
the limit in (1.2) exists and coincides with topological entropy defined in other natural ways, for
example by counting Bowen’s separated and spanning sets.

The existence of a unique measure of maximal entropy is proved in [BD20] under the following
condition, which can be seen as a type of sparse recurrence to singularities relative to h. For
0 < ϕ0 < π/2 and n0 ≥ 1, let s0(ϕ0, n0) ≤ 1 be the smallest number such that any orbit segment
for T of length n0 makes at most s0n0 collisions with |ϕ| > ϕ0. It is a consequence of the finite
horizon condition that we may always choose ϕ0 and n0 so that s0 < 1. Indeed, in a table without
triple tangencies (a generic condition) one has s0 ≤ 2/3. We assume:

(2.1) There exist ϕ0 < π/2 and n0 ≥ 1 such that h > s0 log 2.

This assumption seems to be quite mild: we are not aware of any dispersing billiard table for which
it fails. See [BD20, Section 2.4] for a discussion of this condition and explicit verifications for several
popular models. The factor log 2 appears due to the fact that at nearly tangential collisions, one
has |TW | ∼ |W |1/2 for a local unstable manifold W , where | · | denotes Euclidean length of the
curve. In Section 2.2, we state a conjecture due to [BT08a] on the growth of complexity for finite
horizon dispersing billiard tables. We prove that under this conjecture, s0 can be chosen arbitrarily
small for typical tables, thus (2.1) is typically satisfied. This allows us to strengthen the rate of
decay of correlations to super-polynomial in Corollary 2.3.

Despite the presence of singularities, T enjoys uniform hyperbolicity in the following sense. There
exist stable and unstable cones, Cs(x) and Cu(x), which are strictly contracted by the dynamics,
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DT (x)Cu(x) ( Cu(Tx) for all x /∈ S1 and DT−1(x)Cs(x) ( Cs(T−1x) for all x /∈ S−1. Indeed, the
cones have a particularly simple (and global) definition,

(2.2) Cu(x) =
{

(dr, dϕ) ∈ R2 : Kmin ≤ dϕ
dr ≤ Kmax + τ−1

min

}
,

where Kmin > 0 and Kmax <∞ denote the minimum and maximum curvatures of the ∂Oi in Q. A
similar formula holds for Cs [CM06, Section 4.4].

We call a C2 curve W ⊂M an unstable curve if its tangent vector at each point lies in Cu. Stable
curves are defined analogously. The singularities S±n align with the stable and unstable cones in
the following sense: For each n > 0, each smooth component S ⊂ Sn \ S0 is a stable curve, while
each smooth component S ⊂ S−n \S0 is an unstable curve [CM06, Sect. 4.9]. Thus Sn is uniformly
transverse to Cu and S−n is uniformly transverse to Cs.

Define Λ = 1 + 2Kminτmin. Then Λ is the hyperbolicity constant which governs the minimum
rate of contraction and expansion in the stable and unstable cones. There exists Ce > 0 such that
for all n ≥ 0 ([CM06, eq. (4.19)]),

(2.3)
‖DTn(x)v‖ ≥ CeΛn‖v‖ ∀v ∈ Cu(x),

‖DT−n(x)v‖ ≥ CeΛn‖v‖ ∀v ∈ Cs(x).

2.2. Statement of main results. Throughout this section we assume that T is a finite horizon
dispersing billiard map as described above and that the sparse recurrence condition (2.1) holds.

For a function u : M → R and γ ∈ (0, 1], define

(2.4) |u|Cγ = sup
x∈M
|u(x)|+ sup

x 6=y∈M

|u(x)− u(y)|
d(x, y)γ

,

where d(·, ·) denotes the Riemannian distance in M . We call u a Hölder observable with exponent
γ if |u|Cγ <∞. Let Cγ(M) denote the set of Hölder observables with exponent γ.

Our main results are as follows.

Theorem 2.1. Let s0 ∈ (0, 1) be chosen according to (2.1). Suppose that h > s0 log 4 and ε ∈(
0, h

s0 log 2 − 2
)
. Then for every γ ∈ (0, 1], all u, v ∈ Cγ(M) and n ≥ 0,∣∣∣∣∫ u v ◦ Tn dµ0 −

∫
u dµ0

∫
v dµ0

∣∣∣∣ ≤ Cγ,ε|u|Cγ |v|Cγ n− h
s0 log 2

+2+ε
,

where Cγ,ε is a constant depending on γ, ε and on the billiard T : M →M .

An important quantity used to control the effect of cutting due to the singularity sets Sn is the
complexity. For n ∈ Z, let Kn denote the maximum number of curves in Sn that intersect at one
point. For n > 0, since Sn is uniformly transverse to the unstable cone, if W is a sufficiently short
unstable curve, then there can be at most Kn + 1 connected components of W \ Sn. Thus the
rate of growth of Kn is a measure of how unstable curves are fragmented due to the presence of
singularities. This, in turn, informs the global rate of growth of #Mn (see the verification of (F2)
in Section 3.1 below or [BD20, Proposition 5.5]).

It is a classical result due to Bunimovich (see, for example [C01, Lemma 5.2]) that for finite
horizon dispersing billiards,

(2.5) There exists K > 0 such that Kn ≤ K|n| for all n ∈ Z.

The fact that the complexity bound is subexponential is essential to the uniform bounds on #Mn

obtained in [BD20] and is essential to the present work. Yet, it is conjectured that for generic
dispersing billiard tables, the complexity bound is even stronger. Indeed, for a given billiard table,
we say the sequence of complexities is bounded if there exists K > 0 such that Kn ≤ K for all
n ∈ Z.
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Conjecture 2.2. ([BT08a, Conjecture 3.3]) The sequence of complexities Kn is bounded for typical
finite horizon dispersing billiard configurations.

Typical here can be taken in either an algebraic1 or topological2 sense. See [BT08a, Section 3.3]
for a more extended discussion of this conjecture, in 2 and higher dimensions. Notice that the
conjecture does not hold if the table has a periodic orbit with a grazing collision; however (2.1)
can still hold in this case, and does in all known examples (see [BD20, Section 2.4]). We prove the
following corollary in Proposition 5.5.

Corollary 2.3. Assume Conjecture 2.2 holds in some sense of typicality. Then for a typical
dispersing billiard table, (2.1) holds with s0 arbitrarily small and the rate of decay of correlations
for µ0 is super-polynomial.

Definition 2.4. We say that a real-valued random process Sn satisfies the almost sure invariance
principle (ASIP) with rate o(np) if without changing its law, {Sn} can be redefined on a probability
space which supports a Brownian motion Wt such that

Sn = Wn + o(np) almost surely.

Remark 2.5. Useful corollaries of the ASIP with rate o(np) with p < 1/2 include the Central Limit
Theorem, the Law of the Iterated Logarithm and their functional versions, see for example Philipp
and Stout [PS75].

Theorem 2.6. Let v : M → R be Hölder with
∫
v dµ0 = 0 and let Sn =

∑n−1
k=0 v◦T k. Consider Sn as

a random process on the probability space (M,µ0). If h > s0 log 8, then for each p >
(

h
s0 log 2 − 1

)−1

the process Sn satisfies the ASIP with rate o(np).

2.3. Discussion of sparse recurrence conditions in Theorems 2.1 and 2.6. As mentioned
above, condition (2.1) is not known to fail for any dispersing billiard table. In this section, we
briefly discuss the slightly stronger conditions assumed in Theorems 2.1 and 2.6.

Assuming Conjecture 2.2 and using Corollary 2.3, for typical billiard tables, s0 can be chosen
arbitrarily small so that the conditions h > s0 log 4 and h > s0 log 8 are generically satisfied. Yet
there are tables with grazing periodic orbits for which s0 has a positive minimum value. For
such tables, numerical studies indicate that these assumptions are indeed satisfied in some popular
models of dispersing billiards. We mention two such studies, both of which are described in [BD20,
Section 2.4].

While both of these studies approximate the entropy of µSRB by approximating the positive
Lyapunov exponent χ+

SRB of the system, we will use this as a proxy for verifying our conditions
since according to [BD20, Theorem 2.4]

h > hµSRB
= χ+

SRB.

Thus, for example, verifying χ+
SRB > s0 log 8 will imply h > s0 log 8.

In [G97], Garrido studied a family of dispersing billiards formed by two circular scatterers of
radii r < R on a square lattice with side length 1 (see Figure 1(a)). As observed in [BD20], for
such tables satisfying the finite horizon condition, every double tangency is followed by at least two
nontangential collisions, so we may choose ϕ0 and n0 so that s0 ≤ 1/2. Setting R = 0.4, Garrido

computed values of χ+
SRB for r ranging from r = 0.1 (when τmin = 0) to r =

√
2

2 − 0.4 ≈ 0.3071

(when τmax =∞). All recorded values of χ+
SRB are greater than 0.82 > 1

2 log 4 so that the hypothesis

1Consider a family of scatterers on T2 whose boundaries are given by algebraic equations in some parameters;
then the set of non-typical tables is conjectured to lie in a lower-dimensional subspace.

2The set of tables in the C3 topology that has bounded complexity is conjectured to be a countable intersection
of open and dense sets.
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Figure 1. (a) Sinai billiard on a square lattice with scatterers of radii r < R
from [G97]. (b) Sinai billiard on a triangular lattice with angle π/3 from [BG95],
scatterers of radius 1 and distance d between centers of adjacent scatterers. The
boundary of a single cell is indicated by dashed lines in both tables.

of Theorem 2.1 are numerically satisfied for all such tables. The values of χ+
SRB remain above

1.039 ≈ 1
2 log 8 from r = 0.1 until about r = 0.28, which is very close to the infinite horizon

threshold. So the hypothesis of Theorem 2.6 is numerically satisfied for all but a small segment of
such tables.

We remark that choosing R = 0.4 and r = 1
2 −

0.4√
2

produces a table with a period 8 orbit making

4 grazing collisions with the central scatterer of radius r and 4 collisions with angle ϕ = π/4 with
the scatterer of radius R. For such a table, s0 = 1/2 and χ+

SRB ≈ 1.3 > 1
2 log 8.

In [BG95], Baras and Gaspard studied a class of dispersing billiards formed by a single circular
scatterer of radius 1 in a triangular lattice with distance d between the centers of adjacent scatterers
(Figure 1(b)). The distance varied between d = 2 (when τmin = 0) and d = 4/

√
3 (when τmax =∞).

As with the previous class of tables, one can choose s0 ≤ 1/2. All tables tested by Baras and
Gaspard above d = 2.01 satisfied χ+

SRB > 1
2 log 4. The table corresponding to d = 2.01 fails this

condition. For the condition χ+
SRB >

1
2 log 8, the tables tested with d > 2.15 satisfy this condition.

In summary, the majority of tables tested numerically in [BG95, G97] satisfy the strongest condi-
tion χ+

SRB > s0 log 8 and nearly all of them satisfy χ+
SRB > s0 log 4. We conclude by remarking that

even when this condition fails numerically, it does not imply that the hypotheses of Theorems 2.1
and 2.6 fail since in fact, h > χ+

SRB. To estimate h directly is an interesting project in its own right
and outside the scope of this paper.

3. Billiard coding

In this section we build a collection of cylinders (or symbolic itineraries) for the map T which
we later use to construct a semiconjugacy with a symbolic model. We do this by building a type of
return scheme or Young tower based on iterates of a reference local unstable manifold which can
be thickened into a rectangle. The main results are Propositions 3.24 and 3.25.

From [CM06, Theorem 4.66] it follows that Lebesgue almost every point in M has a stable and
unstable manifold of positive length (this also holds for the measure of maximal entropy µ0 [BD20,
Corollary 7.4]). Moreover, [CM06, Proposition 4.29 and Corollary 4.61] prove that there exists
Cu > 0 such that every local unstable manifold is C1+Lip with Lipschitz constant bounded by Cu.

Definition 3.1. We call connected pieces of stable/unstable manifolds of positive length sta-
ble/unstable leaves.3 A leaf may or may not include its endpoints. We use the term maximal

3Global stable and unstable manifolds may be disconnected for billiards. Then unstable leaf is simply shorthand
for local unstable manifold.
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stable/unstable leaf to refer to a leaf whose two endpoints belong to the set ∪n≥0Sn or ∪n≤0Sn,
respectively.

Definition 3.2. A stable leaf W is preperiodic if there is a finite set of stable leaves {Wk} such
that Tn(W ) ⊂ ∪kWk for each n ≥ 0. The minimal cardinality of {Wk} is the preperiod of W .

For an unstable leaf W , its image T (W ) is a union of unstable leaves. For n ≥ 0, let Gn(W )
denote the collection of maximal connected components of Tn(W ), excluding isolated points.4 We
denote the Euclidean length of W by |W |, and by |Tn(W )| the sum of lengths of the leaves.

As in [CM06, Section 7.11], we define:

Definition 3.3. A solid rectangle (or just rectangle) D ⊂ M is a closed domain bounded by two
stable and two unstable leaves. We call the two stable/unstable leaves the stable/unstable boundary

of D and denote it by ∂sD/∂uD. We denote by D̊ the interior of D.

Definition 3.4. We say that an unstable leaf W fully crosses a (solid) rectangle D if W ∩ ∂sD
consists of two points, where W is the closure of W , and a stable leaf W fully crosses D if W ∩∂uD
consists of two points.

Definition 3.5. We say that a solid rectangle R u-crosses a rectangle D if the unstable leaves of
∂uR fully cross D. If R u-crosses D and R ⊂ D, we say that R is a u-subrectangle of D. Similarly
we define s-crossings and s-subrectangles.

Assume that s0 < 1 from (2.1) has been chosen (and so ϕ0 and n0 are fixed as well). Recall that
Λ = 1+2Kminτmin from (2.3) denotes the minimum expansion factor along unstable curves W , and
that Gn(W ) denotes the maximal connected components of Tn(W ), excluding isolated points.

Our construction of the symbolic model relies on the following facts.5

(F1) For every h′ > 0 and N ′ ≥ 1 with log(KN ′+1)
N ′ ≤ h′, there exists δ′ > 0 such that if W is an

unstable leaf, then

|W | ≤ δ′ implies #GN ′(W ) ≤ eh′N ′ .
Further we assume that such h′, δ′ and N ′ are fixed, and that h′ < h − s0 log 4. We are
interested in small h′ because it plays the role of ε in Theorem 2.1.

(F2) There are C1 > 0 and δ1 ∈ (0, δ′] such that if W is an unstable leaf, then:
(a) #Gn(W ) ≤ C1e

hn for all n ≥ 0.

(b) If W∩Sn = ∅ (i.e. Tn is continuous on W ) for some n ≥ 0, then |Tn(W )| ≤ C1|W |2
−s0n .

(c) For every δ > 0 there are C(δ) > 0 and N(δ) ≥ 1 so that if |W | ≥ δ, then #{U ∈
Gn(W ) : |U | ≥ 3δ1} ≥ C(δ)enh for all n ≥ N(δ).

(F3) Unstable manifolds are transverse to singularities, so that each unstable manifold intersects
the boundary of each ε-neighborhood of S1 in at most NS points, and there is C2 > 0
such that the maximum length of an unstable leaf contained in an ε-neighborhood of S1 is
bounded by C2ε.

(F4) There are δ2 > 0, N1 ≥ 1 such that for every sufficiently small b0 > 0 there are N2 ≥ 1,
δ3 > 0 and a solid rectangle D ⊂M such that:
(a) D does not intersect the b0-neighborhood of S1.
(b) The stable boundary of D comprises two preperiodic stable leaves, with preperiod

bounded above by N1, which never returns to the interior of D, i.e. Tn(∂sD) ∩ D̊ = ∅
for all n ≥ 0.

4See [BD20, Figure 1] for an example of how isolated points can arise from multiple tangencies.
5We formulate (F1)-(F4) in terms of unstable leaves because this is what we shall use in our construction, but

equivalent statements hold for unstable curves, and under time reversal, for stable curves as well.
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(c) D is long in the unstable direction: every unstable leaf fully crossing D has length at
least δ2.

(d) D is narrow in the stable direction: every stable curve contained in D has length at
most Ceb0/2; the constant Ce is from (2.3). Moreover, if x ∈ D satisfies d(Tn(x),S1) ≥
b0Λ−n for all n ≥ 0, then x belongs to a stable manifold which fully crosses D. (See
Remark 3.7.) Each point on the stable boundaries of D satisfies this condition.

(e) If W is an unstable leaf with |W | ≥ δ1/3, where δ1 > 0 is from (F2), then for each
n ≥ N2 there is a subleaf W ′ ⊂W such that:
• T k(W ′) does not intersect the b0-neighborhood of S1 for all 0 ≤ k ≤ n. In

particular, Tn is smooth on W ′.
• Tn(W ′) fully crosses D.
• d(Tn(W ′), ∂uD) ≥ δ3.

(f) rD = min{n ≥ 1 : Tn(x) ∈ D for some x ∈ D}, the minimal first return time to D, is
large so that Λ−rD ≤ 1/2, and |Tn(γ)| ≤ δ3/2 for every stable leaf γ ⊂ D and n ≥ rD.

Further we assume that δ2, δ3, b0, N2 and D are chosen and fixed, and that b0 is sufficiently
small. The precise requirements on b0 are contained in the proofs.

Definition 3.6. We denote by Bn the b0Λ−n-neighborhood of S1.

Remark 3.7. In (F4.d), the condition d(Tn(x),S1) ≥ b0Λ−n for all n ≥ 0 is a way to guarantee
that x belongs to a stable manifold with endpoints at a distance at least Cb0 from x, where C
depends only on the billiard (see Lemma 3.9). Hence to satisfy (F4.d) it is enough to ensure that
D is sufficiently narrow in the stable direction.

3.1. Verification of (F1)–(F4). In order to count elements of Gn(W ), we rely on the results6

of [BD20]. To this end, we translate between our Gn(W ) and the collection Gδ0n (W ) used in [BD20].
Here δ0 is a positive constant, chosen in the same way as our δ′. For an unstable curve W , the set
Gδ01 (W ) comprises the maximal connected components of T (W ), with curves longer than length δ0

subdivided to have length between δ0 and δ0/2. Gδ0n (W ) is then defined for n > 1 by applying this

construction inductively to each element of Gδ0n−1(W ).

Lemma 3.8. There exists C > 0 such that for any δ0 > 0, unstable leaf W and n ≥ 0,

Cδ0#Gδ0n (W ) ≤ #Gn(W ) ≤ #Gδ0n (W ).

Proof. The upper bound is trivial since Gδ0n (W ) requires extra cuts not present in Gn(W ). The
lower bound follows from hyperbolicity (2.3): |Tn(W )| ≥ CeΛ

n|W |. Thus the extra pieces in
Gδ0n (W ) which come from an artificial subdivision at time k ≤ n, if not cut again by a genuine
singularity, have length at least Ceδ0/2. This implies that a single curve in Gn(W ) can contain at
most 2Mu/(Ceδ0) elements of Gδ0n (W ), where Mu is the maximum length of an unstable curve in
M . �

With the equivalence established, we start by verifying (F1). Let K > 0 be from the linear

complexity bound (2.5). Given h′ > 0 and N ′ ≥ 1 such that KN ′ + 1 ≤ eN
′h′ , we choose δ′ > 0

such that any unstable leaf W with |W | ≤ δ′ intersects SN ′ in at most KN ′ points and thus TN
′
(W )

has at most KN ′ + 1 connected components. Then

|W | ≤ δ′ implies #GN ′(W ) ≤ eN ′h′ ,
as required.

Next,

6In fact, we use the time reversal of the estimates from [BD20], since these are phrased in terms of the evolution
of stable curves under T−n while we will be concerned with the evolution of unstable leaves under Tn.
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(F2.a) follows from the exact exponential growth of #Mn given by [BD20, Proposition 4.6]:

(3.1) ehn ≤ #Mn = #M−n ≤ C1e
hn,

and the fact that each element of Gn(W ) is contained in a unique element of M−n.
(F2.c) follows from the combinatorial Growth Lemma [BD20, Lemma 5.2] and the uniform lower

bound on the growth of #Gn(W ) given by [BD20, Proposition 5.5].
(F2.b) is equation7 (5.3) in the proof of [BD20, Lemma 5.1].

The transversality requirements in (F3) can be found in [CM06, Section 4.5].
Construction of the rectangle D for (F4) occupies the rest of this subsection. First we justify

Remark 3.7 (similar statements like [CM06, Lemma 4.67] or [Y98, Section 8, Sublemma 1] are not
quite convenient for our goals since the time reversal of the first would replace S1 by S−1, while
the second has less explicit control on the length of the local stable manifold).

Lemma 3.9. If x ∈M satisfies d(Tn(x),S1) ≥ bΛ−n for some b > 0 and all n ≥ 0, then x belongs
to a local stable manifold with endpoints on a distance at least Ceb from x. Here Ce > 0 is the
expansion constant from (2.3).

Proof. We slightly modify the proof of [CM06, Lemma 4.67]. We may assume that x ∈M \∪n≥0Sn.
Fix n ≥ 1. Let Q be the connected component of M \ Sn containing x. Let Wn ⊂ Tn(Q) be an
arbitrary stable curve passing through Tn(x) and terminating at the opposite sides of Tn(Q), and
let W = T−n(Wn). The map T−n : Wn →W is continuous, and W is a stable curve passing through
x. Both W and Wn do not include their endpoints, just as Q does not contain its boundary.

If y is an endpoint of W , then there is 0 ≤ m < n such that Tm(y) ∈ S1 and Tm is continuous
on W ∪ {y}. By uniform hyperbolicity (2.3),

d(x, y) ≥ CeΛmd(Tm(x), Tm(y)) ≥ CeΛmd(Tm(x),S1) ≥ Ceb.

Since this holds for all n ≥ 1 and the local stable manifold through x is the unique stable curve
belonging to the connected component of M \Sn containing x for all n ≥ 1, the lemma follows. �

Next, we recall some basic properties of rectangles and Cantor rectangles.

Definition 3.10. For a solid rectangle D, we denote by D∗ the maximal Cantor rectangle contained
in D:

D∗ = D ∩
(
∪W s∈Ss ∪Wu∈Su W

s ∩W u
)
,

where Ss(D) and Su(D) are the families of all stable/unstable leaves which fully cross D. We say
that a rectangle D is thick if Leb(D∗) > 0.

Remark 3.11. By Sinai’s Fundamental Theorem [CM06, Theorem 5.70], thick rectangles exist ev-
erywhere in M : each open subset of M contains a thick rectangle.

Remark 3.12. From the proof of [BD20, Proposition 7.11], if Leb(D∗) > 0 then µ0(Ss(D)) > 0,
where µ0 is the measure of maximal entropy.

From [CM06, Section 7.12] we extract the following two lemmas.

Lemma 3.13. Suppose that R is a thick (solid) rectangle. Then for every δ > 0 there is nδ > 0 so
that every unstable leaf W with |W | > δ has a subleaf W ′ on which Tnδ is continuous and Tnδ(W ′)
fully crosses R.

7We thank J. Carrand for pointing out that [BD20, eq. (5.3)] needs additional justification in order to apply s0

from (2.1) to the evolution of unstable (or stable) curves. This is accomplished in the proof of [C22, Lemma 3.1].
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Proof. The proof follows that of [CM06, Proposition 7.83], with R∗ in place of the magnet rectangle.
Although the magnet rectangle is built from a specific family of stable leaves, that is not used for
the proof of the referenced proposition; it is sufficient that R is thick.

In particular, if R is thick, then by Lebesgue density we can find a u-subrectangle R of R such
that ρs(R) > 0.99, where

ρs(R) := inf
x∈R∗∩R

|W s(x) ∩R∗ ∩R|
|W s(x) ∩R|

,

denotes the minimal density of intersections with elements of Su(R) in each stable leaf of Ss(R)
restricted to R; here W s(x) is the maximal stable leaf containing x. Then [CM06, Lemma 7.90]
applies to the rectangle R and if Tnδ(W ) fully crosses R, then Tnδ(W ) fully crosses R. �

Lemma 3.14. Suppose that R is a thick rectangle and R ⊂ R is a rectangle with Leb(R∩R∗) > 0.
Then for some nR ≥ 1 and each n ≥ nR there exists a thick s-subrectangle R′ of R which s-crosses
R such that Tn is continuous on R′ and Tn(R′) u-crosses both R and R. Further, there is a stable
leaf W fully crossing both R and R such that Tn(W ) ⊂W .

Proof. We look again into the proof of [CM06, Proposition 7.83]. From [CM06, Corollary 7.89], for
any ε > 0, there exists δ∗ > 0 and a subset P∗ ⊂ R ∩ R∗ with Leb(P∗) > 0 such that for every
stable manifold W with |W | ≤ δ∗ and W ∩P∗ 6= ∅ we have |W ∩R ∩R∗|/|W | ≥ 1− ε.

Next, Leb(R∩R∗) > 0 and the mixing property of T guarantee that Leb(P∗ ∩ Tn(R∩R∗)) > 0
for all sufficiently large n. Let Ss

∗ ⊂ Ss(R) denote the set of stable leaves properly crossing R
which contain at least one point in T−n(P∗) ∩ R ∩ R∗. Since Leb(T−n(P∗) ∩ R ∩ R∗) > 0 and
Mn is finite, there must exist at least two stable leaves in Ss

∗ belonging to the same component
of Mn such that the solid s-subrectangle R′ of R bounded by these two leaves has Leb(R′) > 0.
Then R′ is a thick s-subrectangle of R which s-crosses R, on which Tn is continuous, and such that
Tn(R′ ∩R∗) ∩P∗ 6= ∅. As in [CM06, Lemma 7.90], for sufficiently large n such a crossing implies
that Tn(R′) u-crosses both R and R.

It remains to show that there exists a stable leafW fully crossing bothR and R with Tn(W ) ⊂W .
Let n and R′ be as above. Define A0 = R′ and inductively Ak+1 = Ak ∩ T−n(Ak). Observe that
Ak is a nested sequence of exponentially shrinking s-subrectangles of R that also s-cross R. Its
limit W = limk→∞Ak is necessarily a stable leaf which s-crosses R and R, with Tn(W ) ⊂ W , as
required. �

Note that if we find a stable leaf W and n ≥ 1 such that Tn(W ) ⊂ W as in Lemma 3.14, then
W is necessarily preperiodic.

Corollary 3.15. There exists a thick rectangle R such that:

(a) d(R,S1) > 0.
(b) T (R) ∩R = ∅.
(c) The stable leaves of ∂sR are preperiodic, Tn(∂sR) ∩ R̊ = ∅ for all n ≥ 0 and

infn≥0 d(Tn(∂sR),S1) > 0.
(d) There is δR > 0 such that for every δ > 0 there is nδ ≥ 1 so that every unstable leaf W with
|W | ≥ δ has a subleaf W ′ on which Tnδ is continuous, Tnδ(W ′) fully crosses R and extends
at least distance δR outside of R on each side.

(e) There are two s-subrectangles R′, R′′ of R and n′, n′′ ≥ 1 with gcd{n′, n′′} = 1 such that:

• Tn′ is continuous on R′,
• Tn′(R′) fully u-crosses R,

• d(∂uT
n′(R′), ∂uR) > 0,

• each unstable leaf fully crossing Tn
′
(R′) extends at least distance δR outside of R on

each side.
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And the same conditions hold for R′′ and n′′.

Proof. Starting from a thick rectangle R, chosen away from S1 in an area which guarantees T (R)∩
R = ∅ and using Lemma 3.14, we find two preperiodic stable leaves W,W ′ which fully cross R and
do not belong to ∂sR, and so that the s-subrectangle R′ bounded by W and W ′ is thick.

The forward images of W,W ′ are contained in some finite set of preperiodic maximal stable
leaves {Wk}. This allows us to find a thick rectangle R contained in the part of R between W and
W ′ such that ∂sR ⊂ ∪kWk with R a positive distance from the endpoints of {Wk}, and such that

R̊ does not intersect any Wk. Our choice of R implies (a), (b) and (c).
For (d), there exists a u-subrectangle R� of R with Leb(R� ∩ R∗) > 0 and d(∂uR

�, ∂uR) > 0.
Given an unstable leaf W with |W | ≥ δ, we apply Lemma 3.13 to the rectangle R to obtain

W ′′ ⊂W such that Tn
′
δ(W ′′) u-crosses R. Then apply Lemma 3.14 to obtain an s-subrectangle R′

of R so that TnR(R′∩Tn′δ(W ′′)) u-crosses both R� and R. This yields a curve W ′ ⊂W ′′ satisfying
the required property with nδ = nR + n′δ and δR ≥ d(∂sR, ∂sR).

Finally, item (e) follows by twice applying Lemma 3.14 to R and the u-subrectangle R� of R as
constructed above. The overlap δR is the same as in (d). �

Lemma 3.16. Suppose p ≥ 2 is prime and γ ⊂ M \ S−p is a closed unstable leaf such that
T−1(γ) ∩ γ = ∅ and T−p(γ) ⊂ γ. Then there is a neighborhood U of γ such that min{n ≥ 1 :
U ∩ Tn(U) 6= ∅} = p.

Proof. For ε > 0 let Uε denote the closed ε-neighborhood of γ and let

Eε = {x ∈ Uε : Tn(x) ∈ Uε for some 0 < n < p}.

Suppose that the result is wrong. Restrict to ε sufficiently small so that T−p is continuous on Uε.
Then Eε are nested non-empty compact sets and thus E = ∩ε>0Eε ⊂ γ is non-empty, so there is
x ∈ γ with Tn(x) ∈ γ with some 0 < n < p.

Let γ̃ be the maximal unstable leaf containing γ. Then T−n(γ̃) ⊂ γ̃ and T−p(γ̃) ⊂ γ̃. Since
n and p are coprime, γ̃ (and hence γ) has a fixed point. This contradicts our assumption that
T−1(γ) ∩ γ = ∅. �

Now we are ready to construct the rectangle D for (F4). Let R be as in Corollary 3.15 and let
R′, R′′, n′, n′′ be from Corollary 3.15(e). Let p be a large prime (specified later in (3.3)), and let
p = k′n′ + k′′n′′ with k′, k′′ ≥ 1.

Construct D′ as a u-subrectangle of R obtained by following the itineraries of R′ and R′′ with
multiplicities k′ and k′′ steps respectively. That is, let D′ = D′k′+k′′ where D′0 = R, D′` = Tn

′
(D′`−1∩

R′) for 1 ≤ ` ≤ k′ and D′` = Tn
′′
(D′`−1 ∩R′′) for k′ + 1 ≤ ` ≤ k′ + k′′.

By construction, D′ is a thin u-subrectangle of R with T−p continuous on D′. Moreover, T p(D′∩
T−p(D′)) is a u-subrectangle of D′ fully crossing D′. Set D0 = D′ and D` = T p(D`−1 ∩ T−p(D′))
for ` ≥ 1. Note that D` ⊂ D`−1.

Then lim`→∞D` =: γ is an unstable leaf that fully crosses D′ and is p-periodic in the sense that
T−p(γ) ⊂ γ. Using Lemma 3.16, choose L large so that min{n ≥ 1 : Tn(DL)∩DL 6= ∅} = p. Define
D = DL. Note that T p(D ∩ T−p(D′)) is a u-subrectangle of D.

Let c0 = d(Orbn′(R
′) ∪ Orbn′′(R

′′),S0) > 0, where Orbn(A) = A ∪ T (A) ∪ · · · ∪ Tn(A). Note
that c0 is positive and independent of our choice of D. Since T has bounded distortion away from
S0, [CM06, Section 5.6] there is Cd > 0, depending only on c0 and the billiard table, such that
JV T

p(x)
JV T p(y) ≤ Cd for any stable leaf V ⊂ T−p(D′) and all x, y ∈ V , where JV T

p denotes the Jacobian

of T p along V . Thus the way T p(D∩T−p(D′)) sits inside D is comparable to the way D′ sits inside
11



R. Moreover, since D′ ⊂ Tn′′(R′′), we have,

(3.2)
d
(
∂uT

p(D ∩ T−p(D′)), ∂uD
)

diamsD
≥ CR, where CR = Cd

d(∂uT
n′′(R′′), ∂uR)

diamsR
.

Here diams(A) is the maximal length of a stable curve contained in A. Informally, T p(D∩T−p(D′))
sits inside D at least as deeply as R′′ sits inside R.

Recall that by (2.3), if θ is a stable leaf contained in D, then |T p(θ)| ≤ C−1
e Λ−p diamsD. We

choose p sufficiently large so that

(3.3) CeΛ
−p ≤ CR/2

and let

δ3 = CR diamsD, so d(∂uT
p(D ∩ T−p(D′)), ∂uD) ≥ δ3.

We constructed D, and it remains to verify that it satisfies the requirements of (F4).
Indeed, (F4.a) and (F4.b) hold by construction. Since D u-crosses R, the minimal length of an

unstable leaf fully crossing D is some δ2 for (F4.c).
Choosing L (and or p) large we make D sufficiently narrow in the stable direction, as required

for (F4.d); the part of (F4.d) related to ∂sD is satisfied for sufficiently small b0 because the stable
leaves ∂sR are preperiodic and infn≥0 d(Tn(∂sR),S1) > 0.

Now we verify (F4.e). We say that an unstable leaf W is n-good if Tn is continuous on W ,
Tn(W ) properly crosses R, and B0∩T k(W ) = ∅ for all 0 ≤ k ≤ n, where B0 is the b0-neighborhood
of S1 from Definition 3.6.

Apply Corollary 3.15(d) with δ = min{δ2, δ1/3} and get the corresponding nδ. Forcing b0 to
be sufficiently small and using the bound (F2.b), for every unstable leaf W ⊂ B0 we ensure that
|T k(W )| < δR for all 0 ≤ k ≤ n∗, where n∗ = max{nδ, n′, n′′}. Then for every unstable leaf W
which fully crosses R and extends distance δR outside R on each side, we have B0∩T−k(W ∩R) = ∅
for all 0 ≤ k ≤ n∗, and in particular T−n(W ) has an n-good subleaf for each 0 ≤ n ≤ n∗.

Then every unstable leaf W with |W | ≥ δ has an nδ-good subleaf W1. A further subleaf

T−nδ(Tnδ(W1)∩T−n′(R′)) is automatically (nδ +n′)-good, and similarly if we use R′′, n′′ instead of
R′, n′. Taking a suitable sequence of subleaves, and using that gcd{n′, n′′} = 1, we can obtain an n-

good subleaf Wn ⊂W for every sufficiently large n. A further subleaf T−n(Tn(W )∩ T−(p+1)L(D))

is (n + (p + 1)L)-good and its image under Tn+(p+1)L fully crosses not only D but its thinner
u-subrectangle T p(D ∩ T−p(D′)). With our choice of δ3 we have verified (F4.e).

Finally, (F4.f) follows from our choice of p and δ3.

3.2. Tree of unstable leaves. In this section we use (F1)–(F4) to construct a tree of unstable
leaves which will serve as a basis for a symbolic model of the dynamics. We start with an unstable
leaf Wroot which fully crosses D and terminates at the stable boundaries of D.

Definition 3.17. We say that an unstable leaf W properly crosses D if W fully crosses D and
d(W,∂uD) ≥ δ3/2.

Definition 3.18. For the map T , a cylinder of length n is a domain of continuity of Tn (an element
of Mn), in other words the set of points which follow a given topological itinerary for n steps. A
concatenation AB of cylinders A and B of lengths n and m respectively is A∩T−n(B), a (possibly
empty) cylinder of length n + m which can be thought of as the set of points which successively
follow topological itineraries of A and B.

For an unstable leaf W and n ≥ 0, let A−nW denote the cylinder of length n containing T−n(W ),

and let AnW = Tn(A−nW ) be the cylinder of length n for T−1 containing W .
Recall that Bn denotes the b0Λ−n-neighborhood of S1. Let ∂Bn denote its boundary.
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We construct a tree W, where nodes are unstable leaves. The root of the tree is Wroot; it is the
only node of height 0. We use Wn to denote the set of nodes at height n, n ≥ 0. For W ∈Wn, its
children are obtained as follows. We apply T to W and erase the intersections of T (W ) with Bn+1.
Each leaf which properly crosses D, we cut at the stable boundaries of D, creating at most three
components. The resulting leaves become children of W and elements of Wn+1.

Some nodes in W ∈Wn, n ≥ 1, we designate as prime:

• If W properly crosses D and has no prime ancestor, then W is prime.
• If W properly crosses D and has a prime ancestor, let n−k be the height of its most recent

prime ancestor (with smallest k). If there is no node in U ∈Wk such that D∩AkW ∩U 6= ∅,
then W is prime. (See Figure 2 for two ways in which this may occur.)
• Otherwise W is not prime.

D

Wroot

U ′

W ′ V ′2 V ′1

SkSk

(a)

W

U

S−k
D

(b)

Figure 2. (a) The most recent prime ancestor W ′ ∈ Wn−k of W ∈ Wn prop-
erly crossing D shown with singularity curves in Sk. If T−k(W ) ⊂ V ′1 then
AkW ∩ T k(Wroot) = ∅. On the other hand, if T−k(W ) ⊂ V ′2 and there is U ∈ Wk

with T−k(U) ⊂ U ′, then AkW ∩ U 6= ∅, but it may happen that D ∩ AkW ∩ U = ∅.
(b) Relative positions of a prime node W , and U ∈ Wk with AkW ∩ U 6= ∅, but

D ∩AkW ∩ U = ∅.

Remark 3.19. By construction, and in particular by the choice of D such that D ∩ B0 = ∅, each
W ∈W belongs to M \ S1, thus T is continuous on W .

Let R be the collection of cylinders associated with all prime nodes:

R =
∞⋃
n=1

{A ∈Mn : Tn(A) contains a prime node of height n}.

Let A be the collection of cylinders obtained by taking all finite concatenations of elements of R.
Let Rn ⊂ R and An ⊂ A be the subcollections of cylinders of length n.

Remark 3.20. The correspondence between W ∈ Wn and cylinders AnW is not one-to-one: due to
the artificial cuts at ∂sD, two or more nodes can correspond to the same cylinder.

Remark 3.21. Suppose that R ∈ Rn and let DR = D∩R∩T−n(D). Our construction ensures that
DR is an s-subrectangle of D and that Tn(DR) is a u-subrectangle of D. The same then holds for
A ∈ An.

Definition 3.22. If W ∈ Wn properly crosses D and A−nW ∈ An, then we call W a return node.
Note that all prime nodes are necessarily return nodes.
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Recall h′ ∈ (0, h− s0 log 4) from (F1) and let

(3.4) α =
h− h′

s0 log 2
.

Observe that α > 2 under the assumption of Theorem 2.1.
The crux of our argument is the following three propositions.

Proposition 3.23. Every cylinder in A has a unique representation as a concatenation of cylinders
in R.

Proposition 3.24. There exists C > 0 such that for all sufficiently large n,

C−1ehn ≤ #An ≤ Cehn.

Proposition 3.25. There exists C > 0 such that #Rn ≤ Cehn/nα for all n ≥ 1.

Remark 3.26. The overall number of cylinders of length n grows as ehn up to a multiplicative
constant by (3.1). Informally, Proposition 3.24 shows that A “sees” the full topological pressure,
Proposition 3.25 gives a weak bound on the pressure at infinity, and Proposition 3.23 shows that
cylinders in R are a prime basis of A.

Remark 3.27. In fact, Propositions 3.24 and 3.25 hold as well for all h > s0 log 2 (i.e. under the
sparse recurrence condition (2.1)) and h′ small enough so that α > 1. However, we work with α > 2
in light of the rate of decay of correlations specified by Theorem 2.1.

In the remainder of this section we prove Propositions 3.23, 3.24 and 3.25. We use C to denote
various constants which depend continuously (only) on the constants from (F1)–(F4) as well as
Kmin, Kmax, τmin from (2.2), Λ and Ce from (2.3).

3.3. Proof of Proposition 3.23.

Lemma 3.28. For every A ∈ An there is a unique WA ∈Wn which fully crosses D and such that
WA ⊂ Tn(A). Explicily, WA = D ∩ Tn(A) ∩ Tn(Wroot).

Proof. The uniqueness of WA is immediate if it exists: there cannot be two different elements of
Wn fully crossing D and coming from the same cylinder of length n.

The statement is clear if A ∈ R. Suppose that it holds for A′ ∈ A and R ∈ R. We show that it
holds for A = A′R; this proves the result in general by induction.

Suppose that R has length r and A′ has length n′. Let DR = D∩R∩T−r(D) be the s-subrectangle
of D as in Remark 3.21. Then WA′ fully crosses DR, and by the construction of W it is enough to
check that for each endpoint x of WA′ ∩DR,

(3.5) d(T k(x),S1) ≥ b0Λ−(k+n′) for all 0 ≤ k ≤ r.
Indeed, let γ be the stable leaf on the boundary of DR containing x, and let y = γ ∩Wroot. Since
R is prime with length r, for 0 ≤ k ≤ r,

d(T k(y),S1) ≥ b0Λ−k

by the construction of W, and

d(T k(x), T k(y)) ≤ |T k(γ)| ≤ b0Λ−k/2

by (F4.d). Now, (3.5) follows from the triangle inequality, n′ ≥ rD and (F4.f) since Λ−n
′ ≤ 1/2. �

Proof of Proposition 3.23. Suppose that RA = R′A′ with R,R′ ∈ R, A,A′ ∈ A and R 6= R′. We
show that this is impossible, which implies the desired result.

Denote the lengths of R,R′ and A,A′ by r, r′ and n, n′ respectively. It is impossible that r = r′,
so we suppose that r < r′.
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Using Lemma 3.28, let WR,WR′ ,WA,WA′ ,WRA and WR′A′ be the nodes of W corresponding to
the respective cylinders. Observe that WRA is a descendant of WR and WR′A′ is a descendant of
WR′ . At the same time, RA = R′A′ implies WRA = WR′A′ , so WR′ is a descendant of WR.

Now, T−n(WA) ⊂ Wroot and T−n(WRA) ⊂ WR are unstable leaves contained in A ∩ D whose
images under Tn fully cross D. In particular, there is a stable leaf γ ⊂ D which connects interior
points of T−n(WA) and T−n(WRA).

Let U ∈Wr+k be the first prime descendant of WR on the line of ancestors of WRA. Since WR′

is prime, U is well defined and k ≤ r′ − r ≤ n. Since U is prime, there is no element of Wk which
intersects D ∩ AkU . At the same time, U is an ancestor of WRA, so U intersects T k(γ). Moreover,

T k(γ) ⊂ D due to (F4.e), (F4.f) and k ≥ rD. This is a contradiction because T k(γ) contains a
point of a node of Wk. �

3.4. Proof of Proposition 3.24. We will find it convenient to record the following consequence
of (F1).

Lemma 3.29. Let W be an unstable leaf. Then

max{|U | : U ∈ Gk(W ), 0 ≤ k ≤ n} ≤ δ′ implies #Gn(W ) ≤ e(n+N ′)h′ .

Proof. Clearly, (F1) implies #Gn(W ) ≤ enh′ if n is a multiple of N ′. We extend it to general n by
writing #Gn(W ) ≤ #Gm(W ) where m is a multiple of N ′ with n ≤ m < n+N ′. �

For an unstable leaf W , a subset X ⊂M and a point x ∈M , let

∆X
W (x) = {y ∈W : there exists a stable curve γ ⊂ X with x, y ∈ γ}.

For E ⊂M let ∆X
W (E) = ∪x∈E∆X

W (x). Informally, ∆X
W (E) represents the projection of E onto W

along stable curves in X.

Remark 3.30. Preimages of stable curves, on which T−1 is continuous, are stable curves, so if T is
continuous on X, then

(3.6) ∆
T (X)
T (W )(T (x)) ⊂ T (∆X

W (x)).

Denote

(3.7) En = Wroot ∩ T−n∂Bn.
These are points on Wroot where cuts may occur in the construction of Wn when we discard the
pieces which fall in Bn.

Definition 3.31. We say that an unstable leaf W crosses D extra properly if it fully crosses D
with d(W,∂uD) ≥ δ3. We way that W ∈Wn is regular if:

(a) W fully crosses D,
(b) Tn(D) ∩AnW contains an unstable leaf which crosses D extra properly,

(c) ∆
D∩AkW
W (T k(Ej)) = ∅ for all 0 ≤ j ≤ k ≤ n.

Lemma 3.32. Suppose that W ∈Wn, n ≥ 1, is regular. Then A−nW ∈ An.

Proof. The result is trivially true if W is prime, or if n = 1 because a regular W ∈W1 is necessarily
prime. The proof continues by induction in n: we assume that the result holds for all n < N and
we aim to prove it for n = N .

Without loss of generality we assume that W is not prime.
Observe that W has a prime ancestor: otherwise W would have to be prime by construction.

Let V ∈WnV be the most recent prime ancestor of W and set n′ = n− nV .

Let U = D ∩ An′W ∩ Tn
′
(Wroot). Note that U is nonempty, moreover there is W ′ ∈ Wn′ with

W ′ ∩ U 6= ∅: otherwise W would be prime.
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We claim that W ′ is regular. Then by the assumption of induction, A−n
′

W ′ ∈ A and A−nW =

A−nVV A−n
′

W ′ ∈ A as required.
It remains to verify the claim.

First we show that ∆
D∩Ak

W ′
W ′ (T k(Ej)) = ∅ for all 0 ≤ j ≤ k ≤ n′. Indeed, if that fails for

some j, k, then there is a stable curve γ ⊂ D ∩ AkW ′ connecting W ′ to a point in T k(Ej). Since

W,W ′ ⊂ AkW ′ = AkW and W fully crosses D, we can extend γ so that it reaches W while staying

within D ∩AkW . This contradicts the regularity of W , namely ∆
D∩AkW
W (T k(Ej)) = ∅.

In particular, W ′ ∩ T `(∂Bn′−`) = ∅ for all 0 ≤ ` ≤ n′. Since W ′ is nonempty and can terminate
only at T `(∂Bn′−`) or ∂sD, we conclude that W ′ fully crosses D.

Using regularity of W , let Q ⊂ Tn(D)∩AnW be an unstable leaf which crosses D extra properly.

Let P be the rectangle with unstable boundaries D∩W and D∩Q. Then T−k(P ) is a rectangle for

all 0 ≤ k ≤ n and T−n(P ) ⊂ D. Moreover, T−n
′
(P ) ⊂ D because T−n

′
(W ) ⊂ V which is a prime

node of Wn′ . Thus Tn
′
(D) ∩ An′W ′ contains the whole P , and in particular Q ∩D which crosses D

extra properly.
The claim is verified and the proof is complete. �

For an unstable leaf W we denote by W δ the (possibly empty) part of W obtained by deleting
the δ-neighborhood of each endpoint of W .

Lemma 3.33. Let ε, δ > 0. For all sufficiently small b0,

#{W ∈ Gn(Wroot) : ∆
D∩AkW
W δ (T k(Ej)) 6= ∅ for some 0 ≤ j ≤ k ≤ n} ≤ εehn.

Proof. In this proof the generic constants C do not depend on b0.
For x ∈M denote

qn,k(x) = #{W ∈ Gn(Wroot) : ∆
D∩AkW
W δ (x) 6= ∅}.

If W is as in the right hand side above, then W is contained in the same element of M−k as x.
That is, the itinerary of T−j(W ), 0 ≤ j ≤ k, is fixed by x. Hence

(3.8) qn,k(x) ≤ #Gn−k(Wroot) ≤ Ceh(n−k).

Suppose W is an unstable leaf and y ∈ ∆
D∩AkW
W (T k(Ej)) with j ≤ k. Let γ denote a stable curve

in D ∩ AkW with one endpoint at y and the other in T k(Ej). Then T−k is continuous on γ and

T−k(γ) is still a stable curve with length |T−k(γ)| ≤ C and T−(k−j)(γ) is a stable curve connecting

T−(k−j)(y) with T j(Wroot) ∩ ∂Bj . It follows from (2.3) that

|T−(k−j)(γ)| ≤ CΛ−j .

On the other hand, since γ ⊂ D, by (F4.d) we have |γ| ≤ Ceb0/2, and so by (F2.b) applied to
stable curves,

|T−(k−j)(γ)| ≤ Cb2−s0(k−j)
0 .

Putting the two upper bounds on |T−(k−j)(γ)| together (namely using the inequality min{A,B} ≤√
AB) and using the triangle inequality, we conclude that

d(T−(k−j)(y),S1) ≤ Cb2−s0(k−j)−1

0 Λ−j/2.

Using (F2.b) again, the distance from y to the closest endpoint of W is at most

dj,k = Ctj,k(b0)(Λ−j)2−s0(k−j)−1
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where tj,k(b0) are some nonnegative functions bounded above by 1 with limb0→0 tj,k(b0) → 0 for
each j, k. Choose a (sufficiently large) R > 0 independent of b0 so that

dj,k < δ and hence qn,k(T
k(Ej)) = 0 whenever k − s−1

0 log2 k +R ≤ j ≤ k.
Let N ≥ 1 large (depending on ε, see below) and choose b0 sufficiently small so that

dj,k < δ and hence qn,k(T
k(Ej)) = 0 whenever j ≤ k ≤ N.

Using #Ej ≤ Cehj and (3.8),∑
0≤j≤k≤n

∑
x∈Tk(Ej)

qn,k(x) ≤ C
∑

N<k≤n
0≤j≤k−s−1

0 log2 k+R

ehj+h(n−k) ≤ Cehn
∑

N<k≤n
k
− h
s0 log 2 .

The constants C do not depend on b0 or N , and h > s0 log 2, thus we obtain the desired result by
choosing N large (and b0 small). �

Lemma 3.34. Let ε, δ > 0. For all sufficiently small b0,

(3.9) #{W ∈ Gn(Wroot) : W δ ∩ T k(Bn−k) 6= ∅ for some 0 ≤ k ≤ n} ≤ εehn.

Proof. As in the proof of the previous lemma, here the generic constants C do not depend on b0.
Suppose that W ′ ∈ Gm(Wroot) and denote by W ′′ one connected component of W ′ ∩ Bm. By

(F3),

(3.10) |T k(W ′′)| ≤ C1|W ′′|2
−s0k ≤ Cb2−s0k0 Λ−m2−s0k ,

for all k such that the right hand side is less than δ′, where δ′ > 0 is from (F1). By Lemma 3.29

and (F2.b), #Gk(W ′′) ≤ eh
′(k+N ′) for all k ≤ 1

s0
χ(m, b0), where χ(m, b0) = −C + log2(m + 1) +

ψ(b0,m); here ψ is some nonnegative function with limb0→0 ψ(b0,m) = +∞ for eachm but otherwise
unimportant.

Then for k ≤ 1
s0
χ(m, b0),

#{W ∈ Gk(W ′) : W ∩ T k(Bm) 6= ∅} ≤ NS#Gk(W ′′) ≤ Ceh
′k.

Setting m = n − k, summing over W ′ ∈ Gn−k(Wroot) and using #Gn−k(Wroot) ≤ Ceh(n−k), for
k ≤ 1

s0
χ(n− k, b0) we have

(3.11) #{W ∈ Gn(Wroot) : W ∩ T k(Bn−k) 6= ∅} ≤ Ceh(n−k)+h′k.

Similarly, for k > 1
s0
χ(n−k, b0), we may apply Lemma 3.29 for the first 1

s0
χ(n−k, b0) iterates after

an intersection with Bn−k and then (F2.a) after that to obtain,

(3.12)

#{W ∈ Gn(Wroot) : W ∩ T k(Bn−k) 6= ∅} ≤ Ce
h′ 1
s0
χ(n−k,b0)+h(n− 1

s0
χ(n−k,b0))

= Ce
hn−h−h

′
s0

(log2(n−k+1)+ψ(b0,n−k))
= C

e
hn−h−h

′
s0

ψ(b0,n−k)

(n− k + 1)α
.

Let N ≥ 0 be large (depending on ε, see below). Taking a sum of the right hand sides of (3.11)
and (3.12) over N ≤ k ≤ n, we have

#{W ∈ Gn(Wroot) : W ∩ T k(Bn−k) 6= ∅ for some N ≤ k ≤ n}

≤ Cehn
(
e−(h−h′)N +

∞∑
m=0

e
−h−h

′
s0

ψ(b0,m)

(m+ 1)α

)
.

Recall that α > 1, so the series above converges. Now fix δ, ε > 0. Choose N sufficiently large and
b0 sufficiently small so that the right hand side above is bounded by εehn. Finally, using (3.10),
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choose b0 small enough so that the left hand side of (3.9) has no elements with k ≤ N , and (3.9)
follows. �

Lemma 3.35. For each sufficiently small b0 there exist Cb0 > 0 and Nb0 ≥ 1 such that

#{W ∈Wn : W is regular } ≥ Cb0ehn for all n ≥ Nb0 .

Proof. By (F2.c), for all sufficiently large n,

(3.13) #{W ∈ Gn(Wroot) : |W | ≥ 3δ1} ≥ Cehn.
Applying Lemmas 3.33 and 3.34 with δ = δ1 and ε sufficiently small, we see that for all sufficiently
large n,

(3.14)
#
{
W ∈ Gn(Wroot) : |W | ≥ 3δ1, W

δ1 ∩ T k(Bn−k) = ∅ for all 0 ≤ k ≤ n,

∆
D∩AkW
W δ1

(T k(Ej)) = ∅ for all 0 ≤ j ≤ k ≤ n
}
≥ Cehn.

Since |W δ1 | ≥ δ1, let W ′ ∈ GN2(W δ1) be as in (F4.e). Clearly, W ′ ∈ Gn+N2(Wroot). It is now a
direct verification that W ′ ∈Wn+N2 and W ′ is regular. �

Proof of Proposition 3.24. The upper bound on #An follows from Lemma 3.28 and (F2.a). The
lower bound follows from Lemmas 3.32 and 3.35. �

3.5. Proof of Proposition 3.25.

Definition 3.36. Suppose W ∈ Wn. We say that V ∈ Wn+k is a first prime descendant of W if
V is a prime descendant of W and there are no other prime nodes between W and V .

Definition 3.37. For an unstable leaf U write U ⊥Wk if there is no Q ∈Wk with AkU = AkQ.

Lemma 3.38. There exist h′′ ∈ (0, h) and C ′′ > 0 such that the following hold. Suppose W ∈Wn+k

with n ≥ 0, k ≥ 1, and either n = 0 or n ≥ 1, the ancestor of W at height n is prime and W ⊥Wk.
Then the number of first prime descendants of W of height n+ k+ ` is bounded by C ′′ exp eh

′′` for
all ` ≥ 0.

Proof. We only consider the case n ≥ 1. The case n = 0 is similar and simpler.
Let W ∈Wn+k be as in the statement of the lemma and let WW denote the subtree of W rooted

at W . So that, for instance, WW
j are the descendants of W in Wn+k+j .

For U ∈WW
` let Gj(U) denote the set of all descendants of U in WW

`+j , or {U} when j = 0. Let

Ğj(U) ⊂ Gj(U) denote the collection of descendants of U which are not prime and do not have an
ancestor in WW that is prime, except possibly W itself. If U ⊂WW

` is not an individual node but

a collection of nodes, define Gj(U) = ∪u∈UGj(u) and Ğj(U) = ∪u∈U Ğj(u).
We note that for U ∈WW , a single element V ∈ Gj(U) can contain at most N ′S = NS + 2N1 + 1

nodes in Gj(U). Indeed, by the construction of the tree and (F3), V can be cut into at most NS+1
nodes by intersections with Bn+k+j . In addition, endpoints of nodes can be generated by cuts at

∂sD, and by (F4.b), V intersects ∪`≥0T
`(∂sD) in at most 2N1 points.

Hence

(3.15) #Gj(U) ≤ N ′S#Gj(U).

For U ⊂WW
` , define

P (U) = sup
j≥0

e−hj #Gj(U).

Observe that:

(a) P (U ∪ V ) ≤ P (U) + P (V ).
(b) #U ≤ P (U) ≤ C1N

′
S#U by (3.15) and (F2.a).
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(c) P (Gj(U)) ≤ ejhP (U).

Choose N = j0N
′, where N ′ is from (F1) and j0 ∈ N is sufficiently large that C1N

′
Se

(h′−h)N <

1/2. Set N̆ = N +N2, where N2 is from (F4.e). Also, using (F2.c) and Proposition 3.24, let C3 > 0
be such that

(3.16) if V properly crosses D, then Gj(V ) ≥ C3e
jh for all j ≥ 0.

Now we consider two possibilities for a node U ∈WW :

• For each V ∈ GjN ′(U) and 0 ≤ j ≤ j0, |V | ≤ δ1. Then applying (F1) inductively for each

j ≤ j0, we get #GN (U) ≤ eh′NN ′S . Write

P (GN̆ (U)) ≤
∑

V ∈GN (U)

P (GN2(V )) ≤ #GN (U)ehN2 sup
V ∈GN (U)

P (V )

≤ eh′N+hN2C1N
′
S ≤ 1

2e
hN̆P (U).

• There exists i ∈ [0, j0] and u ∈ GiN ′(U) such that |u| ≥ δ1. Then by (F4.e), there exists
V ∈ GiN ′+N2(U) such that V properly crosses D. Since W ⊥Wk, V is either a first prime
descendant of W or has an ancestor in WW that is such. For simplicity, we shall still denote
by V the first prime descendant of U . Subsequently, using (3.16), we eliminate the subtree
starting at V to estimate,

#Gj(ĞN̆ (U)) ≤ #Gj(GN̆ (U))− C3e
jh for all j ≥ 0.

Then using (c),

P (ĞN̆ (U)) = sup
j≥0

e−jh#Gj(ĞN̆ (U)) ≤ sup
j≥0

e−jh#Gj(GN̆ (U))− C3

= P (GN̆ (U))− C3 ≤ eN̆hP (U)− C3 ≤ eN̆hP (U)(1− e−N̆hC3).

In either case, with δ = min{1/2, e−N̆hC3}, for every U ∈WW we have

(3.17) P (ĞN̆ (U)) ≤ (1− δ)ehN̆P (U).

Iterating (3.17) and using (a) we see that for all j ≥ 0,

P (ĞjN̆ (W )) ≤ (1− δ)jehjN̆P (W ).

The result follows by (b) since each first prime descendant of W at time ` must descend from an

element of Ğ`−1(W ). �

Lemma 3.39. Suppose that n ≥ 1 and W ∈Wn is prime. For k ≥ 1 let

P 6⊥k = {V ∈Wn+k : V is a first prime descendant of W with V 6⊥Wk}.

Then #P 6⊥k ≤ Ce
hkk
− h
s0 log2 for all k. In particular, #P 6⊥k ≤ Ce

hkk−α.

Proof. Let V ∈ P 6⊥k and let AkV denote the element of M−k containing V . By uniform hyperbol-

icity (2.3), the stable diameter of AkV is at most CΛ−k. Without loss of generality, we assume

CΛ−k < δ3/2. Thus since V is prime, AkV crosses D fully in the unstable direction; in particular,

D divides AkV \D into two connected components, one to the left and one to the right of D. Note

that ∂AkV comprises elements of S−k and so cannot intersect the unstable manifolds in D.

Since V 6⊥ Wk, there exists U ∈ Wk such that U ⊂ AkV and, moreover, by definition of a prime

node, D ∩ AkV ∩ U = ∅. Without loss of generality, suppose that the relative positioning of U and
V is as in Figure 3(a).
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(a)

D

V

U
x

γ

(b)

S ∈ S1

U ′
x′

V ′

γ′

Figure 3. (a) A prime node V properly crossing D and U ⊂ T k(Wroot) contained
in AkV \D. (b) The preimages under T i with U ′ = T−i(U), γ′ = T−i(γ) and so on.
Stable curves are approximately vertical and unstable curves are approximately
horizontal.

By construction, the left endpoint x of U belongs to T i(∂Bk−i) for some 0 < i < k. Let Ai ∈M−i
denote the element of M−i containing U and V . Let γ ⊂ Ai be a stable curve passing through x,
fully crossing Ai and not crossing the boundaries of D.

Consider the preimages U ′ = T−i(U), V ′ = T−i(V ), γ′ = T−i(γ) and x′ = T−i(x). Since T is
orientation preserving, we may represent them as in Figure 3(b). Note that γ′ is a stable curve fully

crossing T−i(Ai). Since x ∈ T i(∂Bk−i), there is a stable curve S ∈ S1 with d(x′, S) = b0Λ−(k−i).
Using the continuation of singularities property, suppose that S is long in the vertical direction,
say that it fully crosses M .

Since U ′ and V ′ belong to the same element ofM−(k−i), they are close in the stable direction in

the sense that there is an unstable curve so that both U ′ and V ′ are in its CΛ−(k−i)-neighborhood.
Using transversality of stable and unstable cones, we observe that

(3.18) |V ′| ≤ CΛ−(k−i).

Indeed, if |V ′| ≥ CΛ−(k−i) with a sufficiently large C, then V ′ has to cross γ′ which is impossible
by construction. Note that V ′ cannot go below or above γ′ because V ′ ⊂ T−i(Ai) which γ′ fully
crosses.

We are ready to estimate #P 6⊥k . Each V ∈ P 6⊥k is associated with an element U ∈ Wk, or more

conveniently to its endpoint x as in Figure 3. Then x ∈ T k(Ek−i) and |T−i(V )| ≤ CΛ−(k−i) for

some 0 < i < k. For each i there are at most #Ek−i ≤ Ceh(k−i) options for x, and to each x there
corresponds at most one V . Furthermore, by (F2.b) and (3.18),

|V | ≤ C|T−i(V )|2−s0i ≤ CΛ−(k−i)2−s0i .

Since V is sufficiently long to fully cross D, |V | ≥ δ2 by (F4.c), we necessarily have (k − i)2−s0i ≤
− log2(δ2/C)

log Λ , and hence i ≥ 1
s0

log2(k − i)− C. In particular,

i ≥ min
{
j : j ≥ 1

s0
log2(k − j)− C

}
≥ 1

s0
log2 k − C.

This allows us to bound

#P 6⊥k ≤ C
∑

i≥ 1
s0

log2 k−C

eh(k−i) ≤ Cehk−
h
s0

log2 k = Cehkk
− h
s0 log2 ,

as required. �
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The following estimate will be useful for the subsequent lemma.

Lemma 3.40. Suppose a > 0 and b ∈ R. There exists Ca,b > 0, depending only on a, b such that
for all n ≥ 1:

n∑
j=1

eajjb ≤ Ca,beannb.

Proof. Without loss of generality suppose that n is sufficiently large so that eaj/2jb ≤ nbean/2 for
all 1 ≤ j ≤ n. Then eajjb ≤ eannbe−a(n−j)/2 and

n∑
j=1

eajjb ≤ eannb
n∑
j=1

e−a(n−j)/2 ≤ eannb(1− e−a/2)−1.

�

Lemma 3.41. Suppose that W ∈Wn is prime and for k ≥ 1 let

P⊥k = {V ∈Wn+k : V is a first prime descendant of W with V ⊥Wk}.
Then #P⊥k ≤ Cehkk−α for all k.

Proof. We will call U ∈ Wn+` a first perp descendant of W if (a) U is a descendant of W , (b)
U ⊥ W`, and (c) each ancestor of U , U ′ ∈ Wn+j , j < `, satisfies U ′ 6⊥ Wj . Since each V ∈ P⊥k
is descended from a first perp descendant U of W , U ∈ Wn+` for some ` ≤ k, our goal will be to
estimate the number of first perp descendants of W and their first prime descendants.

Let U ∈ Wn+` be a first perp descendant of W and let U ′ ∈ Wn+`−1 be the parent of U . Then
T−1(U) ⊂ U ′ and U ′ 6⊥W`−1.

Let U ′′ ∈ Wn+`−2 be the parent of U ′ and consider the curve T (U ′′). By construction, U ′ is
formed from T (U ′′) after removing intersections of T (U ′′) with Bn+`−1 and possibly cutting at

∂sD. Since U ′ 6⊥W`−1, there exists Q′ ∈W`−1 such that A`−1
Q′ = A`−1

U ′ . Let Q′′ ∈W`−2 denote the

parent of Q′. Then Q′ is formed from T (Q′′) after we remove intersections of T (Q′′) with B`−1 and
possibly cut at ∂sD. See Figure 4.

T (Q′′)

T (U ′′)

∂B`−1

S1 S1 S1 S1
S1

x

T `−1−j(∂Bj)U ′
U ′ U ′

U ′ U ′ U ′

Figure 4. Intersection of T (U ′′) and T (Q′′) with S1 and possible locations of U ′

leading to U ⊥W`.

Nodes U ′ that lead to U ⊥Wk can be formed in two ways.

(1) U ′ ⊂ ∆M
T (U ′′)(T (Q′′)), i.e. U ′ can be connected to T (Q′′) by a foliation of stable curves. Yet

U ′ is necessarily separated from T (Q′′) \ B`−1 by curves in S1. Since curves in S1 lie in
the stable cone, U ′ ⊂ ∆M

T (U ′′)(T (Q′′) ∩ B`−1). Both the length of T (Q′′) ∩ B`−1 and the
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distance between T (U ′′) and T (Q′′) along stable curves is at most Cb0Λ−`+1, so using the
transversality of the stable and unstable cones,

|U ′| ≤ Cb0Λ−`+1.

See for example the three left-most possible U ′ in Figure 4. There are at most NS + 1
possible such U ′ stemming from U ′′ ∈W`−2 and at most Ceh` possible such U ′′.

(2) U ′ 6⊂ ∆M
T (U ′′)(T (Q′′)). This can happen at one of the two ends of T (U ′′). In this case, U ′

may be long or short, see for example the right-most three possible U ′ in Figure 4. Yet in
such a case, the corresponding endpoint x of T (Q′′) was created at some time j < `− 1 by

an intersection with Bj , i.e. T−(`−1−j)(x) ∈ ∂Bj (and in turn T−(`−1)(x) ∈ Ej).
Let γ be the stable line with maximum slope −Kmin (see (2.2)) through x, contained and

fully crossing the element of M−(`−1−j) containing x. Then no element of S1 may both
intersect T (U ′′) to the left of γ and pass to the right of x. Thus U ′ must lie on the right of
γ.

S ∈ S1

T−(`−1−j)(U ′)

T−(`−j)(Q′′)

T−(`−1−j)(γ)

T−(`−1−j)(x)

Figure 5. Preimages of U ′ and Q′′ near the singularity curve.

Considering the preimages of U ′ and T (Q′′) under T `−1−j as in Figure 5, where

T−(`−1−j)(x) is at the distance b0Λ−j of some stable curve S ∈ S1, and following the
logic of the proof of Lemma 3.39, we observe that

(3.19) |T−(`−1−j)(U ′)| ≤ Cb0Λ−j .

There are at most NS + 1 possible U ′ created for each such endpoint x ∈ T `−1(Ej), and

there are at most #Ej ≤ Cehj options for x.

Our analysis can be summarized as follows: each first perp descendant U ∈ Wn+` of W is, for
some 0 ≤ j < `, a child of one of at most Cehj parents U ′ ∈Wn+`−1 satisfying (3.19). Subsequently,

|U | ≤ Zj,` with Zj,` = C(Λ−j)2−s0(`−j)
.

Set Lj,` = max{0, s−1
0 log2 j − (`− j)−R}, where R > 0 is so large that if |U | ≤ Zj,` then every

leaf in Gm(U), 0 ≤ m < Lj,`, has length at most min{δ′, δ2/2}. In particular, #Gm(U) ≤ Ceh
′m

and U has no prime descendants in Wn+`+m, counting U itself.
For m > Lj,`, either U is prime itself, or the first prime descendants of U are created with rate

at most C ′′eh
′′(m−Lj,`) according to Lemma 3.38. Putting our estimates together, summing over U

and its first prime descendants, we get

#P⊥k ≤ C
∑

j≤`≤k−Lj,`

exp{hj + h′Lj,` + h′′(k − `− Lj,`)}.

Observe that since h′, h′′ > 0, the summand above decreases exponentially with `. Hence taking
the sum over ` ≥ j,

#P⊥k ≤ C
∑

j≤k−Lj,j

exp{hj + h′Lj,j + h′′(k − j − Lj,j)}.
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Since Lj,j = s−1
0 log2 j −R for j ≥ 2s0R, we define

k′ = max{j : j + s−1
0 log2 j ≤ k} ≤ k − s−1

0 log2 k + C,

so that

#P⊥k ≤ Cekh
′′∑
j≤k′

exp{(h− h′′)j + (h′ − h′′)s−1
0 log2 j}

≤ C exp{kh′′ + (h− h′′)k′ + (h′ − h′′)s−1
0 log2 k

′}

≤ C exp{kh− (h− h′)s−1
0 log2 k} = Cekhk−α,

where for the second inequality we used Lemma 3.40, and for the third inequality we used k− k′ ≤
C + log2 k and log2 k − log2 k

′ ≤ C. �

Corollary 3.42. Suppose that W ∈ Wn and either n = 0 and W = Wroot or n ≥ 1 and W is
prime. Then the number of first prime descendants of W in Wn+k is bounded above by Cehkk−α.

Proof. The bound for n = 0 follows from Lemma 3.38, and the bound for n ≥ 1 follows from
Lemmas 3.39 and 3.41. �

Proof of Proposition 3.25. We will combine our estimates from Corollary 3.42 and Proposition 3.24
with the probabilistic argument from Proposition A.1 in the appendix.

Let Wr
n be the set of return nodes in Wn, namely

Wr
n = {W ∈Wn : W properly crosses D and A−nW ∈ An}.

By Proposition 3.24, C−1ehn ≤ #Wr
n ≤ Cehn.

Fix a large n and supply Wr
n with the normalized probability counting measure P. For W ∈Wr

n

and 0 ≤ j ≤ n, denote by Wj the ancestor of W at height j.
Let τ(W ) = #{1 ≤ j ≤ n : Wj is prime} and define tk(W ) for 0 ≤ k ≤ τ(W ) by t0(W ) = 0 and

tk+1 = min{j > tk : Wj is prime} recursively. Set Xj = (tj − tj−1)1τ≥j and S =
∑

j≥1Xj .
Suppose V ∈Wr

` with 1 ≤ ` < n. By Proposition 3.24 and Lemma 3.28, the number of elements
of Wr

n that are descended from V and have no prime ancestors at heights ` + 1, . . . , n is at least
Ceh(n−`). Applying this with ` = tj yields

P
(
τ = j | τ ≥ j,X1, . . . , Xj

)
≥ 1− θ for all j ≥ 1

with some θ ∈ (0, 1) independent of j or n. Similarly, by Corollary 3.42,

P
(
Xj+1 = k | τ ≥ j + 1, X1, . . . , Xj

)
≤ Ck−α for all j ≥ 0, k ≥ 1.

Having verified the hypotheses of Proposition A.1, we conclude that P(S = k) ≤ Ck−α for all k ≥ 1.
The desired result follows. �
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4. Symbolic model

Let rn, n ≥ 1 be a sequence of nonnegative integers, not all of them 0. Consider a directed graph
as on the picture below with rn arrows going from n to 1 .

(4.1)

1

2

3

...

We label the edges from n to 1 by elements of some set Rn with #Rn = rn, and the edges

n → n + 1 by En. Let R be the disjoint union tnRn. Let Λ > 1.

Remark 4.1. In Section 5 we will associate Rn, R and Λ with those from Section 3, but for now
these are abstract.

According to (4.1), let ∆ be the set of two-sided admissible sequences in the alphabet A =

R ∪ {En}n≥1 which visit 1 infinitely often in the future, and let σ : ∆ → ∆ be the left shift.
Naturally, σ defines a topological Markov chain.

Let ∆0 ⊂ ∆ be the set of paths which “start from 1 ”, i.e. with the zero-indexed symbol in
{E1} ∪ R1. Let τ : ∆0 → {1, 2, . . .} be the first return time to ∆0,

τ(x) = min{n ≥ 1 : σn(x) ∈ ∆0}.
Then the induced map στ : ∆0 → ∆0, στ (x) = στ(x)(x) is a full shift on the alphabet R. (Techni-
cally, the alphabet is {(E1, . . . , E|R|−1, R) : R ∈ R}, but it is naturally identified with R.)

An x = (. . . , x−1, x0, x1, . . .) ∈ ∆ can be described by the sequence of times tn when the orbit
of x visits ∆0, with t−1 < 0 ≤ t0, and the corresponding sequence Rn = xtn+1−1 ∈ Rtn+1−tn of
choices of return path to ∆0. With x′ given by t′n and R′n, define the separation time and separation
distance by

(4.2)
s(x, x′) = inf

{
n ≥ 0 : t±n 6= t′±n or R±n 6= R′±n

}
,

d(x, x′) = Λ−s(x,x
′).

Note that the separation time s(x, x′) measures time with respect to number of returns to ∆0. Now
d is a metric on ∆, and for the rest of this section ∆ is a metric space.

Theorem 4.2. Let λ > 1 and suppose that
∑

n≥1 nλ
−nrn < ∞. Then there exists a σ-invariant

probability µ∆ on ∆ with the following properties.
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(a) If rn = O(λn/nα) with α > 2 and gcd{n : rn > 0} = 1, then for all γ ∈ (0, 1] there exists
Cγ > 0 such that for all u, v ∈ Cγ(∆) we have the correlation bound∣∣∣∣∫ u v ◦ σn dµ∆ −

∫
u dµ∆

∫
v dµ∆

∣∣∣∣ ≤ Cγ |u|Cγ |v|Cγ n−α+2 for all n ≥ 1.

(b) If rn = O(λn/nα) with α > 3 and v : ∆ → R is Hölder continuous with
∫
v dµ∆ = 0, then

for each ε > (α − 1)−1 the partial sums Sn =
∑n−1

k=0 v ◦ σk, as a random process on the
probability space (∆, µ∆), satisfy the ASIP with rate o(nε).

(c) If
∑

n≥1 λ
−nrn = 1, then µ∆ has entropy equal to log λ.

Remark 4.3. There can be at most one nonnegative λ satisfying the relation
∑

n≥1 λ
−nrn = 1, but

its existence is not guaranteed. For example, with rn = b2n−1/n2c the sum is smaller than 1 for
λ ≥ 2 and infinite for λ < 2.

Remark 4.4. If rn = O(βn) for some β < λ, then the rate of decay of correlations is exponential,
following the same proof and using the same references. But we will not need this result here.

Proof of Theorem 4.2. Set

S =
∑
n≥1

nλ−nrn, wn = S−1
∑
k≥n

λ−krk, pn =
wn − wn+1

wnrn
.

First we define µ∆ on the space of one-sided paths on (4.1) by prescribing its values on all n-cylinders
in the alphabet A. For 1-cylinders, let

µ∆([En]) = wn+1 and µ∆([R]) = S−1λ−n for R ∈ Rn.

Then, for a cylinder [A1, . . . , Ak] of length at least 2, let

µ∆([A1, . . . , Ak]) = µ∆([A1, . . . , Ak−1])Π(Ak−1, Ak),

where the transition probabilities Π(Ak−1, Ak) are given by

Π(·, En) =
wn+1

wn
and Π(·, R) = pn for R ∈ Rn,

as long as the corresponding transitions are compatible with the graph (4.1), and otherwise Π(·, ·)
is zero.

The above defines µ∆ as a probability measure on the space of one-sided paths. Observe that
µ∆ is Markov and shift-invariant, hence it extends to a σ-invariant measure on all of ∆.

To prove (a), observe that σ : ∆ → ∆ is a suspension over στ : ∆0 → ∆0 with roof function
τ . The map στ is a Bernoulli shift both topologically and measure theoretically (with respect to
the στ -invariant probability measure µ∆/µ∆(∆0)). Hence we deal with a particularly simple (zero
distortion, first return inducing scheme) Young tower [Y98, Y99]. From

gcd
{
n : µ∆(τ = n) > 0

}
= 1

and the return time tail bound

µ∆

(
τ(x) ≥ n

)
=
wn
w1

= O(n−α+1)

we get the required mixing rate for Hölder observables on ∆, see [KKM19] (based on [CG12, MT14]).
The ASIP (b) is a standard result for one-sided Young towers [MN05, CDKM20]. The ASIP

with our particular error rate for general Hölder observables on a two-sided tower is a recent
improvement, see [CDKM23].
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Finally, we prove (c), assuming
∑

n≥1 λ
−nrn = 1. Since µ∆ is a Markov measure, its entropy can

be computed explicitly [W75, Theorem 4.27]:

hµ∆ = −
∑

A,B∈A
µ∆([A])Π(A,B) log Π(A,B)

= −
∑
n≥1

µ∆([En])
[wn+2

wn+1
log
(wn+2

wn+1

)
+ rn+1pn+1 log pn+1

]
−
∑
n≥1

∑
R∈Rn

µ∆([R])
[w2

w1
log
(w2

w1

)
+ r1p1 log p1

]
= −

∑
n≥1

wn+2 log
(wn+2

wn+1

)
+ (wn+1 − wn+2) log pn+1

− w2 log
(w2

w1

)
+ (w1 − w2) log p1,

where we have used the fact that
∑

n≥1

∑
R∈Rn µ∆([R]) = w1 and wnrnpn = wn − wn+1. Then,

using also pn = (Sλnwn)−1 and
∑

n≥1 λ
−nrn = 1,

hµ∆ = −
∑
n≥1

[
(wn − wn+1) log

λ−n

Swn
+ wn+1 logwn+1 − wn+1 logwn

]
= w1 logw1 −

∑
n≥1

(wn − wn+1) log
λ−n

S

= − logS

S
+

logS

S

∑
n≥1

λ−nrn +
log λ

S

∑
n≥1

nλ−nrn

= log λ.

�

5. Proof of Theorems 2.1 and 2.6

Here we relate the abstract setup of Section 4 to the billiard coding from Section 3. As in
Section 3, let A,R denote the collections of cylinders, let Λ denote the hyperbolicity constant from
(2.3), and let rn = #Rn. In this setting, let σ : ∆→ ∆ be the Markov chain as in Section 4.

Recall that h > s0 log 4 is the topological entropy of the billiard. In Propositions 3.24 and 3.25
we established that #An grows as ehn, and that #Rn = O(ehn/nα) where α = (h− h′)/(s0 log 2),
and h′ is sufficiently small so that α > 2. This implies in particular that

∑
n≥1 ne

−hnrn < ∞,
which is the summability condition needed for Theorem 4.2.

Since #An > 0 for all sufficiently large n, we have gcd{n : rn > 0} = 1.
We proceed with the more delicate task of verifying the condition needed for part (c) of Theo-

rem 4.2: there exists λ > 1 with
∑

n≥1 λ
−nrn = 1, and moreover, λ = eh.

Proposition 5.1.
∑

n≥1 e
−hnrn = 1.

The main ingredients in the proof of Proposition 5.1 are the asymptotics of #An and the following
simple lemma.

For x = (x1, x2, . . .) let |x|1 =
∑

n≥1 |xn| denote the `1-norm. We say that x is nonnegative if all
its coordinates are nonnegative.
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Lemma 5.2. Suppose r′1, r
′
2, . . . ≥ 0 and

R′ =


r′1 1
r′2 1
r′3 1
...

. . .

.
(a) If

∑
i≥1 r

′
i < 1, then |(R′)nx|1 → 0 for all nonnegative x ∈ `1.

(b) If
∑

i≥1 r
′
i > 1, then |(R′)nx|1 →∞ for all nonnegative nonzero x ∈ `1.

Proof. Set

β =
∑
i≥1

r′i.

Without loss of generality, assume that β is finite. Let x ∈ `1 be nonnegative. Then |R′x|1 =
|x|1 + (β − 1)x1, in particular R′x ∈ `1. By induction,

(5.1)
∣∣(R′)nx∣∣

1
= |x|1 + (β − 1)

n−1∑
k=0

(
(R′)kx

)
1
.

Using the definition of R′ and that x is nonnegative, we have ((R′)kx)1 ≥ xk+1.
If β < 1, then choose n1 sufficiently large that

∑
k>n1

xk ≤ (
√
β − β)|x|1. Then,∣∣(R′)n1x

∣∣
1
≤ |x|1 + (β − 1)

n1∑
k=1

xk ≤
√
β|x|1.

We iterate this relation, choosing n2 sufficiently large so that
∑

k>n2
(R′x)k ≤ (

√
β − β)|R′x|1.

Then, ∣∣(R′)n1+n2x
∣∣
1
≤ β|x|1.

Proceeding in this way, we obtain a sequence of integers nj such that∣∣(R′)∑j≤k njx
∣∣
1
≤ βk/2|x|1 for each k ≥ 1.

This shows convergence of |(R′)nx|1 → 0 along a subsequence. Combining this with the fact that
when β < 1, (5.1) implies |(R′)nx|1 ≤ |x|1 whenever x is nonnegative, we obtain (a).

To prove (b) when β > 1, we proceed similarly, choosing n1 sufficiently large so that
∑

k>n1
xk ≤

β−
√
β

β−1 |x|1. Then applying this to (5.1),

∣∣(R′)n1x
∣∣
1
≥ |x|1 + (β − 1)

n1∑
k=1

xk ≥
√
β|x|1.

Iterating as before we show that |(R′)nx|1 →∞ along a subsequence. Using that when β > 1, (5.1)
implies |(R′)nx|1 ≥ |x|1 whenever x is nonnegative, we obtain (b). �

Proof of Proposition 5.1. Define the connectivity matrix for our Markov chain

R =


r1 1
r2 1
r3 1
...

. . .

.
For a vector x = (x1, x2, . . .), define x′ = (x′1, x

′
2, . . .) = (x1e

−h, x2e
−2h, . . .). In other words,

x′ = Hx where H = diag(e−h, e−2h, . . .). Accordingly, let r = (r1, r2, . . .) and r′ = Hr.
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To the transformation x 7→ e−hRx there corresponds the conjugate transformationx
′
1

x′2
...

 7→ R′x′ = x′1

r
′
1

r′2
...

+

x
′
2

x′3
...

, where R′ =


r′1 1
r′2 1
r′3 1
...

. . .

.
That is, e−hHRx = R′Hx. Since H is invertible, in fact diagonal, we have (R′)n = e−hnHRnH−1

for each n. In particular, for each i ≥ 1,

(5.2)
(
(R′)n

)
i,1

= e−hne−h(i−1)(Rn)i,1.

Let C denote various positive constants which depend only on {rn} and α.
Let x = (1, 0, 0, . . .). We claim that for all sufficiently large n,

(5.3) C−1 ≤
∣∣(R′)nx∣∣

1
≤ C.

Then by Lemma 5.2,
∑

i≥1 r
′
i =

∑
i≥1 e

−hiri = 1, as required.

It remains to verify (5.3). The lower bound is straightforward: observing that (Rn)1,1 = #An
and using the bound #An ≥ Cehn from Proposition 3.24, for all sufficiently large n,∣∣(R′)nx∣∣

1
≥
(
(R′)n

)
1,1

= e−hn(Rn)1,1 = e−hn#An ≥ C.

To justify the upper bound, observe that (Rn)i,1 denotes the number of paths of length n from i

to 1 . Thus, with a convention #A0 = 1,

(Rn)i,1 =
n∑
t=1

ri+t−1#An−t.

Further, using the bounds rn ≤ Cehn/nα from Proposition 3.25 and An ≤ Cehn from Proposi-
tion 3.24,

(5.4) (Rn)i,1 ≤ C
n∑
t=1

eh(n+i)/(i+ t− 1)α.

By (5.2),

(5.5)
∣∣(R′)nx∣∣

1
=
∑
i≥1

(
(R′)n

)
i,1

=
∑
i≥1

e−hne−h(i−1)(Rn)i,1.

Assembling (5.2) and (5.4) and using α > 2,∣∣(R′)nx|1 ≤ C∑
i≥1

n∑
t=1

(i+ t− 1)−α ≤ C
∑
i≥1

i−α+1 ≤ C.

The upper bound in (5.3) is proved. �

At this point, the assumptions of Theorem 4.2 are verified, namely
∑

n e
−hnrn = 1 for part (c),

and rn = O(ehn/nα), assuming that α = h−h′
s0 log 2 > 2 for part (a) and α > 3 for part (b). Both of

these imply that
∑

n ne
−hnrn <∞.

It remains to associate µ∆ with the measure of maximal entropy µ0 on M , and to show that
decay of correlations and ASIP on ∆ translate to the billiard.

There is a natural association between paths on ∆ and orbits of T . We make this formal by
defining the semiconjugacy π : ∆→M (i.e. π ◦ σ = T ◦ π). First we define π on ∆0. Suppose that
x ∈ ∆0 follows forward trajectory R0, R1, . . . in the sense that

x = (. . . , x−2, x−1, E1, . . . , E|R0|−1, R0, E1, . . . , E|R1|−1, R1, . . .).
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On the billiard, let Qn be the maximal s-subrectangle of D contained in D ∩ R0 · · ·Rn. Here D
is the rectangle from (F4) which we use as a “base” for symbolic dynamics, and R0 · · ·Rn denotes
concatenation of cylinders. Recall that each Rk contains an s-subrectangle of D whose image under
T |Rk| u-crosses D.

According to our construction, Qn are nonempty, closed and nested; different sequences
R0, . . . , Rn result in disjoint Qn. Due to the hyperbolicity of the billiard map, the Qn are exponen-
tially thin in the unstable direction (while fully crossing D in the stable direction), so limn→∞Qn
is a stable leaf fully crossing D.

We see that for x ∈ ∆0, its future symbolic itinerary defines a stable leaf fully crossing D, say
W s. (And to different x there correspond different leaves.) Similarly, the past itinerary of x defines
a unique unstable leaf W u fully crossing D. Set π(x) = W s ∩W u. Thus we define π on ∆0, and
the semiconjugacy property defines an extension to the whole of ∆: for a general x ∈ ∆ there is n
such that σn(x) ∈ ∆0, and we set π(x) = T−nπ(σn(x)).

Observe that by construction:

• π is indeed a semiconjugacy, i.e. π ◦ σ = T ◦ π,
• π in injective on ∆0, and
• π(∆0) ⊂ D∗, where D∗ is the Cantor rectangle corresponding to D as in Definition 3.10.

Lemma 5.3. If ν is a probability measure on ∆ and µ = π∗ν, then ν and µ have equal entropies.
In particular, π∗µ∆ is the measure of maximal entropy µ0.

Proof. Restricted to ∆0, the map π is injective. Moreover, since T and σ are invertible, π is
injective on σn(∆0) for each n. Since ∆ = ∪nσn(∆0) and every z ∈ M has at most one preimage
in each σn(∆0), we observe that π is at most countable-to-one. By [B99, Proposition 2.8], the
entropy of π∗µ∆ is equal to that of µ∆, and π∗µ∆ = µ0 by uniqueness of the measure of maximal
entropy [BD20, Theorem 2.4]. �

Lemma 5.4. π is Lipschitz continuous.

Proof. Let x, x′ ∈ ∆ with the associated times tn, t
′
n of visits to ∆0 and separation time s(x, x′) as

in (4.2). Using that |tj | ≥ j and hyperbolicity (2.3), one has

d(π(x), π(x′)) ≤ C−1
e Λ−min{ts(x,x′)−1,−t−s(x,x′)+1} ≤ ΛC−1

e d(x, x′).

�

Lemmas 5.3 and 5.4 complete the proof of Theorems 2.1 and 2.6. Indeed, if u, v : M → R are
Hölder observables on M , then their lifts ũ = u◦π and ṽ = v ◦π are Hölder on ∆. From π∗µ∆ = µ0

and v ◦ Tn ◦ π = ṽ ◦ σn, we have∫
M
u v ◦ Tn dµ0 =

∫
∆
ũ ṽ ◦ σn dµ∆.

Similarly, the random process (v◦Tn)n on the probability space (M,µ0) is equal in law to the random
process (ṽ ◦ σn)n on (∆, µ∆). Thus decay of correlations and the ASIP for Hölder observables on
M follow from the corresponding results on ∆.

Theorems 2.1 and 2.6 are proved.

5.1. Super-polynomial mixing for typical dispersing billiard tables. In this section, we
prove Corollary 2.3. That is, we prove that the rate of mixing for a dispersing billiard is super-
polynomial if the sequence of complexities is bounded:

(5.6) There exists K > 0 such that Kn ≤ K for all n ≥ 0,

where Kn denotes the maximal number of curves in Sn intersecting at one point. Assuming Con-
jecture 2.2, this property holds for typical configurations of finite horizon dispersing billiards.
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The main consequence of (5.6) is that the parameter s0 in (2.1) can be chosen as small as desired
by choosing n0 large and ϕ0 close to π/2.

Proposition 5.5. If the billiard table satisfies (5.6), then for any ε0 > 0, there exists n0 > 0 and
ϕ0 ∈ (0, π/2) such that s0(ϕ0, n0) < ε0.

Proof. Let ε0 > 0 and choose n0 ∈ N such that K/n0 < ε0. The singularity set Sn0 contains finitely
many curves, and thus finitely many intersection points of these curves, which we label {zi}Li=1,
where L depends on n0 (indeed, L grows exponentially as a function of n0). We denote by Nε(·)
the ε-neighborhood of a set in M .

By assumption, the number of curves in Sn0 intersecting at each zi is at most K. So for ε > 0
sufficiently small, the ε-neighborhood of zi is split into at most K + 1 sectors by these curves. In
particular, the curves intersecting at zi belong to ∪jT−τij (S0) for at most K times τij ∈ [0, n0].

By the continuity of Tn0 on each sector, there exist ε1(zi), ε2(zi) > 0 such that if x ∈ Nε1(zi),
then Tn(x) can only enter Nε2(S0) at the times τij . For j = 1, 2, set εj = mini εj(zi), and note that
ε1, ε2 > 0. Then

#
{

0 ≤ n ≤ n0 : Tn(x) ∈ Nε2(S0)
}
≤ K for all x ∈ ∪iNε1(zi).

Now we turn our attention to the elements of Mn0 , the partition of M \ Sn0 into connected
components. Let A ∈ Mn0 and A� = A \ ∪iNε1(zi). For each x ∈ ∂A� ∩ Sn0 , we have #{0 ≤ n ≤
n0 : Tn(x) ∈ S0} ≤ 1. Remark that each connected component S ∈ ∂A� ∩Sn0 is adjacent to A and
another cell, A′, and Tn0 is continuous on either A ∪ S or A′ ∪ S. In the former case, there exist
ε3, ε4 > 0 such that

#
{

0 ≤ n ≤ n0 : Tn(x) ∈ Nε4(S0)
}

= 1 for all x ∈ Nε3(S).

In the latter case, there exist ε3, ε4 > 0 such that

#
{

0 ≤ n ≤ n0 : Tn(x) ∈ Nε4(S0)
}

= 0 for all x ∈ Nε3(S).

Finally, by continuity of Tn0 on A \Nε3(∂A), there exists ε5 > 0 such that

#
{

0 ≤ n ≤ n0 : Tn(x) ∈ Nε5(S0)
}

= 0 for all x ∈ A \Nε3(∂A).

By the finiteness ofMn0 and Sn0 , we may choose ε3, ε4, ε5 > 0 which work for every A ∈Mn0 and
S as above.

Set ϕ0 = π/2−min{ε1, ε2, ε3, ε4, ε5}. Then s0(ϕ0, n0) ≤ K/n0 < ε0 as required. �

From the form of the exponent in Theorem 2.1, Proposition 5.5 immediately implies that the
rate of decay of correlations for µ0 is super-polynomial and Corollary 2.3 is proved.
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Appendix A. Induced polynomial tails

In this appendix we prove the following proposition:

Proposition A.1. Suppose that X1, X2, . . . and τ are {0, 1, 2, . . .}-valued random variables with

P(Xn+1 = k | X1, . . . , Xn, τ ≥ n+ 1) ≤ Ak−α for all k ≥ 1, n ≥ 0,

and
P(τ ≥ n+ 1 | X1, . . . , Xn, τ ≥ n) ≤ θ for all n ≥ 1,

where α > 1, A > 0 and θ ∈ (0, 1). Let S =
∑

n≤τ Xn. Then there is C > 0, depending only on A,

α and θ, such that P(S = k) ≤ Ck−α for all k ≥ 1.

Proof. Let η = θ1/2. Fix B,K,M,N large so that

Aθη−1CM ≤
1− θ1/4

4
, where CM = 21+α

∑
`≥M

`−α,

N +M

N

(K −M)−α

K−α
≤ θ−1/4,

A

B
θ−1/4 ≤ min

{
θ1/4,

1− θ1/4

4

}
.

Denote Sn =
∑n

k=1Xk. Observe that the following bound holds for n = 1:

(A.1) P(a ≤ Sn < b, τ ≥ n) ≤ Bηn(b− a)a−α for all a ≥ K and b− a ≥ N.
Suppose that (A.1) holds for n ≥ 1. Estimate for a ≥ K and b− a ≥ N :

P(a−M ≤ Sn < b, τ ≥ n+ 1) = P(τ ≥ n+ 1 | a−M ≤ Sn < b, τ ≥ n)P(a−M ≤ Sn < b, τ ≥ n)

≤ θBηn(b− a+M)(a−M)−α.

P(a−M ≤ Xn+1 < b, τ ≥ n+ 1) = P(a−M ≤ Xn+1 < b | τ ≥ n+ 1)P(τ ≥ n+ 1)

≤ A(b− a+M)(a−M)−αθn+1.∑
M≤`<a−M

P(Xn+1 = `, a− ` ≤ Sn < b− `, τ ≥ n+ 1)

=
∑

M≤`<a−M
P(Xn+1 = ` | a− ` ≤ Sn < b− `, τ ≥ n+ 1)

P(τ ≥ n+ 1 | a− ` ≤ Sn < b− `, τ ≥ n)P(a− ` ≤ Sn < b− `, τ ≥ n)

≤ ABθηn(b− a)
∑

M≤`<a−M
`−α(a− `)−α ≤ ABθηn(b− a)a−αCM .

Using the three estimates above,

P(a ≤ Sn+1 < b, τ ≥ n+ 1)

≤ P(a−M ≤ Sn < b, τ ≥ n+ 1) + P(a−M ≤ Xn+1 < b, τ ≥ n+ 1)

+
∑

M≤`<a−M
P(Xn+1 = `, a− ` ≤ Sn < b− `, τ ≥ n+ 1)

≤ Bηn+1(b− a)a−α
(
θη−1 b− a+M

b− a
(a−M)−α

a−α

+ θn+1η−(n+1)A

B

b− a+M

b− a
(a−M)−α

a−α
+Aθη−1CM

)
≤ Bηn+1(b− a)a−α.

This creates an induction step which shows that (A.1) holds for all n.
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Now, for k ≥ K,

P(S = k) =
∑
n≥1

P(Sn = k, τ = n) ≤
∑
n≥1

P(k ≤ Sn < k +N, τ ≥ n)

≤
∑
n≥1

BηnNk−α ≤ BNη

1− η
k−α.

The result follows. �
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