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Lecture 3: Equilibrium States for −tτ
Goal for today: By considering the roof function as a potential,
we are able to access some equilibrium states for the flow.

Discuss sparse recurrence to singularities in the context of a
complexity conjecture. This relates to decay of correlations for
the MME for the map.

Generalize our discussion of the case t = 0 in Lecture 2 to
include the weight e−tτ , t ≥ 0. Controlling this for t large
enough, we prove existence of an MME for the billiard flow.

References: M. Demers and A. Korepanov, Rates of mixing for
the measure of maximal entropy for dispersing billiard maps,
preprint ’22.

J. Carrand, A family of natural equilibrium measures for Sinai
billiard flows, arXiv:2208.14444v2 (March, 2023).

V. Baladi, J. Carrand and M. Demers, Measure of maximal entropy
for finite horizon Sinai billiard flows, preprint ’22.
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Sparse Recurrence to Singularities

In Lecture 2, we proved existence and uniqueness of a MME µ0 for
a finite horizon Sinai billiard under an additional assumption of
sparse recurrence to singularities.

Recall h∗ = lim
n→∞

1

n
log(#Mn

0 ), Mn
0 = domains of continuity of Tn

Fix n0 ∈ N and an angle ϕ0 close to π/2.

Let s0 ∈ (0, 1) be the smallest number such that any orbit of
length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

Finite horizon guarantees that we can always choose n0 and ϕ0 so
that s0 < 1. (Indeed, no triple tangencies implies that s0 ≤ 2

3 .)

Assumption: h∗ > s0 log 2

We are not aware of any billiard table for which this assumption
fails.
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Complexity Conjecture

Recall the linear complexity bound of Bunimovich for a finite
horizon Sinai billiard:

There exists K > 0 depending only on the configuration of
scatterers such that N(Sn) ≤ Kn for all n ≥ 1.

In fact, a much stronger complexity bound is conjectured to hold.

Conjecture [Balint, Toth ’08]: For ‘typical’ finite horizon billiard
tables, the complexity is bounded, i.e.

∃K > 0 s.t. N(Sn) ≤ K for all n ≥ 0.

Lemma ([D., Korepanov ’22])

If T has bounded complexity then for any ε > 0, there exists ϕ0

and n0 such that s0(ϕ0, n0) < ε.

This implies that for ‘typical’ billiard tables, h∗ > s0 log 2 holds.
Mark Demers Thermodynamic Formalism for Dispersing Billiards



Rate of Mixing for MME

Main Idea: Construct a recurrence scheme to a Cantor rectangle
with hyperbolic product structure.

Key feature is to count the number of first returns to the
reference set rather than the measure of the set of points
which have not returned.

Tn

D D

An = set of vertical rectangles making a proper return at
time n

Rn = set of vertical rectangles making a ‘prime’ proper return
at time n
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Symbolic Model

Let rn = #Rn, n ≥ 1. Consider a directed graph as on the picture
below with rn arrows going from n to 1 .

1

2

3

... Label the edges from n
to 1 by elements of Rn,
and the edges
n → n + 1 by En.

∆ = set of two-sided
admissible sequences in
the alphabet
A = {Rn}n≥1 ∪ {En}n≥1

which visit 1 infinitely
often in the future.

σ : ∆→ ∆, left shift.
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Symbolic Model

Proposition

For each ε ∈
(
0, h∗

s0 log 2 − 1
)
, there exists C ≥ 1 s.t. for all n ≥ 0,

a) C−1enh∗ ≤ #An ≤ Cenh∗

b) #Rn ≤ Cenh∗n
− h∗
s0 log 2

+ε

(a) implies that the inducing scheme sees the full topological
entropy of the system.

(b) is a weak bound on the pressure at infinity.

Prove that
∑

n rne
−h∗n = 1.

Since
∑

n nrne
−h∗n <∞, we can define a Markov measure

µ∆ with entropy eh∗ .
(σ,∆, µ∆) is a Young tower. Rate of decay of correlations
follows from [Young ’99]
The projection of µ∆ to M has entropy eh∗ . By uniqueness, it
must be the MME µ0.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Rate of Mixing for MME

Theorem ([D., Korepanov ’22])

Assume h∗ > 2s0 log 2. For each α > 0 and ε ∈
(
0, h∗

s0 log 2 − 2
)
,

there exists there exists C > 0 s.t. for all f, g ∈ Cα(M),∣∣∣∣∫ f g ◦ Tn dµ0 −
∫
f dµ0

∫
g dµ0

∣∣∣∣ ≤ C|f |Cα |g|Cαn− h∗
s0 log 2

+2+ε
.

If h∗ > 4s0 log 2, this rate of decay also implies limit theorems
such as the Central Limit Theorem and the Almost-Sure Invariance
Principle.

Corollary

If T has bounded complexity, then h∗ > 4s0 log 2 holds. µ0 has
super-polynomial decay of correlations for Hölder observables, and
enjoys the CLT and Almost-Sure Invariance Principle.
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MME for the Billiard Fllow

Goal: Prove the existence and uniqueness of a MME for the
billiard flow

Flow is partially hyperbolic, so the transfer operator is difficult
to work with directly.

Using the roof function as a potential, can access equilibrium
states for the flow via the transfer operator for the map.

Similar situation to t = 0 from Lecture 2: the relevant
operator will not have a spectral gap.
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The Billiard Flow

Let Q = T2 \ ∪iBi denote the billiard table; scatterers Bi, ∂Bi are
C3 with strictly positive curvature.

The phase space for the flow is

Ω = {(x, y, ω) ∈ T3 : (x, y) ∈ Q, ω ∈ S1}/ ∼

where at collisions, (x, y, ω−) ∼ (x, y, ω+).

Between collisions, the billiard flow is defined by

Φt(x, y, ω) = (x+ t cosω, y + t sinω, ω),

While at collisions,

x+ = x−, y+ = y−, ω+ = ω− + π − 2ϕ,

where ϕ is the angle between the post-collision velocity and the
outward normal to the boundary at the point of collision.

The flow is continuous, but DΦt blows up at tangential collisions.
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Statistical Properties w.r.t. Smooth Invariant Measures

The flow Φt preserves Lebesgue measure on Ω.

The map T preserves a smooth measure on M , µSRB = cosϕdr dϕ

With respect to these measures, many statistical properties are
known:

ergodic and mixing

map and flow [Sinai ’70]

Bernoulli

map and flow [Gallavotti, Ornstein ’74]

many limit theorems:

CLT map [Bunimovich, Sinai ’81], flow [Melbourne, Torok ’04]
ASIP map and flow [Melbourne, Nicol ’05],

exponential decay of correlations

map [L.-S. Young ’98]
flow [Baladi, D., Liverani ’18]
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Abramov Formula

For x ∈M , define τ(x) = distance from x to T (x) in Q.

View the billiard flow Φt as a suspension of T with roof function τ .

1-1 correspondence between invariant measures for the map and
the flow.

ν invariant probability measure for Φ1 satisfies, ν =
µ∫
τ dµ

⊗ Leb,

where µ is a T -invariant probability measure.

Abramov’s formula =⇒ hν(Φ1) =
hµ(T )∫
τ dµ

.
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Family of Potentials for the Map, −tτ
Define the pressure of the potential, −tτ , t ∈ R,

P (t) = sup{hµ(T )− t
∫
M τ dµ : µ inv. prob. for T }

µt is an equilibrium state for −tτ if µt attains the supremum.

t = 0 corresponds to MME for map
P (t) = 0 ⇐⇒ t = htop(Φ1) and any corresponding
equilibrium state µhtop(Φ1) lifts to an MME νhtop(Φ1) for the
flow

Pf: Since τmin ≤ τ ≤ τmax, ∃! t? > 0 s.t. P (t?) = 0.
By Abramov, if ν is the lift of µ, then

0 ≥
hµ(T )− t?

∫
τ dµ∫

τ dµ
= hν(Φ1)− t? .

Moreover, if µt? is an equilibrium state for −t?τ and νt? is its
lift, then

hνt? (Φ1) = t? = sup{hν(Φ1) : ν inv. prob. for Φt} = htop(Φ1).
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Family of Potentials for the Map, −tτ

We would like to establish good control of the transfer operator for
all t ∈ [0, htop(Φ1)].

t

htop(Φ1)

h∗

P∗(t)

As we saw in Lecture 2, this will require us to obtain uniform
control on the growth of stable curves and the size of domains of
continuity for Tn, weighted by e−tτ .
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Recall: Topological Pressure for the Map

Let Mn
0 = connected

components of M \ Sn,
Sn = ∪ni=0T

−iS0

M \ Sn

Let τn =
∑n−1

i=0 τ ◦ T i. Define for t ≥ 0

Qn(t) =
∑

A∈Mn
0

|e−tτn |C0(A), P∗(t) = lim
n→∞

1

n
logQn(t)

The limit exists since the sequence logQn(t) is subadditive.

When t = 0, Qn(t) = #Mn
0 and P∗(0) =: h∗ is the

topological entropy of the map.
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Plan for constructing the equilibrium states

Two steps:

Prove uniform exponential growth of Qn(t)

Construct µt from eigenfunctions corresponding to maximal
eigenvectors (use uniform growth to control spectral radius of
associated transfer operators)

Transfer operators: Ltf =

(
f

JsT
e−tτ

)
◦ T−1

Due to weight 1/JsT , Lt will not have a spectral gap for any
t ≥ 0. Yet we can follow the program outlined for t = 0 to
obtain similar results.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Weighted Sums on Stable Curves

The main task in proving the uniform exponential growth of Qn(t)
is controlling the effect of cutting due to singularities.

Ws set of local stable manifolds, W ∈ Ws. For δ > 0, define

Gδn(W ) = {connected components of T−nW , with pieces longer

than δ subdivided to have length between δ/2 and δ}
Sδn(W ) = {Wi ∈ Gδn(W ) : |Wi| < δ/3}

Define the weighted sums corresponding to these sets by

Gδn(W, t) =
∑

Wi∈G
δt
n (W )

|e−tτn |C0(Wi)

Sδn(W, t) =
∑

Wi∈S
δt
n (W )

|e−tτn |C0(Wi)

Note: Gδn(W, 0) = #Gδn(W ), Sδn(W, 0) = #Sδn(W ).
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Small Singular Pressure

We say Small Singular Pressure (SSP) holds at t ≥ 0 for
ε ∈ (0, 1/4] if there exist δt > 0 and nt ∈ N such that ∀n ≥ nt,

Sδtn (W, t) ≤ εGδtn (W, t), ∀W ∈ Ws with |W | ≥ δt/3,

and ∑
n≥1

sup
W∈Ws

|W |≥δt/3

e−ntτmin

Gδtn (W, t)
<∞

A key property for establishing (SSP) is the linear complexity
bound due to Bunimovich.

N(Sn) = maximal number of curves in Sn intersecting at one point

There exists K > 0 depending only on the configuration of
scatterers such that N(Sn) ≤ Kn for all n ≥ 1.
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Growth Lemmas and Uniform Exponential Growth

The importance of (SSP) is that it implies uniform growth of
pressure with respect to both W ∈ Ws and elements of Mn

0 .

Proposition ([Carrand ’22])

Suppose (SSP) holds for some t ≥ 0. There exists c1 > 0,
C2, C3 ≥ 1 s.t. for all W ∈ Ws with |W | ≥ δt and n ≥ 0,

c1Qn(t) ≤ Gδn(W, t) ≤ C2Qn(t)

enP∗(t) ≤ Qn(t) ≤ C3e
nP∗(t)

c1e
nP∗(t) ≤ Gδn(W, t) ≤ C2C3e

nP∗(t)

Pf: (SSP) =⇒ long elements of Gδn(W ) dominate the weighted
sums Gδn(W, t), and long elements of Mn

0 dominate Qn(t).

Then a positive fraction of long elements in Gδn(W ) fully cross a
positive fraction of long elements of Mn

0 =⇒ the growth rates
are comparable.
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Verify (SSP) at t = htop(Φ1) Using a Bootstrapping
Argument

(SSP) holds at t = 0 [Baladi, D. ’20] and for small t > 0 [Carrand
’22], but we need to extend to t = htop(Φ1).

t
htop(Φ1)

t0

h∗

P∗(t)

s1 t1

Suppose (SSP) ends at t = t0 < htop(Φ1).
For θ ∈ (e−τmin , e−τmin/2), choose s1 < t0 and t1 > t0 so that
θt1/2e|P

′
∗(s1)|(t1−s1) = 1.

Possible since τmin ≤ |P ′∗| ≤ τmax.
Prove: for t ∈ (s1, t1), ∀δ > 0, ∀W ∈ Ws, |W | ≥ δ/3,

Gδn(W, t) ≥ c(t, δ)en
(
P∗(s1)−|P ′∗(s1)|(t−s1)

)
, ∀n ≥ 1.
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Verify (SSP) at htop(Φ1) Via Bootstrapping

Prove: for t ∈ (s1, t1), ∀δ > 0, ∀W ∈ Ws, |W | ≥ δ/3,

Gδn(W, t) ≥ c(t, δ)en
(
P∗(s1)−|P ′∗(s1)|(t−s1)

)
, ∀n ≥ 1.

Idea: Bootstrap via Hölder inequality: For ai > 0, s < t0 < t and
η ∈ (0, 1) s.t. ηt+ (1− η)s = t0,∑

i

at0i ≤
(∑

i

ati

)η(∑
i

asi

)1−η

=⇒
∑
i

ati ≥
(∑

i

at0i

)1/η(∑
i

asi

)1−1/η

Apply this to ai = |e−tτn |C0(Wi) for Wi ∈ Gδn(W ). Then good

lower bounds on Gδn(W, s), s < t0 and upper bounds on Gδn(W, t0)
imply good lower bounds on Gδn(W, t), t ∈ (t0, t1). 2

(1) =⇒ (SSP) for t ∈ (s1, t1), so t0 < htop(Φ1) is impossible.
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Sparse Recurrence to Singularities

Next we want to use the uniform bounds on Gδn(W, t) and Qn(t) to
control norm estimates in an appropriate Banach space.

For this we need to modify our assumption of sparse recurrence to
singularities. Recall:

Fix n0 ∈ N and an angle ϕ0 < π/2.

s0 := s0(ϕ0, n0) ∈ (0, 1), the smallest number such that any
orbit of length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

Finite horizon condition =⇒ ∃n0, ϕ0 so that s0 < 1.

Assumption for map MME: P∗(0) = h∗ > s0 log 2
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Sparse Recurrence to Singularities

To extend our estimates to t = htop(Φ1), we need a slightly
stronger assumption.

Assumption for flow MME: htop(Φ1)τmin > s0 log 2

The function P∗(t) + tτmin is decreasing for t ≥ 0, so

htop(Φ1)τmin > s0 log 2 implies

P∗(t) + tτmin > s0 log 2, for t < htop(Φ1).

In particular, it implies h∗ > s0 log 2, which is our assumption for
the map MME.

If the complexity conjecture holds, this is satisfied for typical finite
horizon Sinai billiard tables.
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Definition of Norms

Use the same norms as for t = 0.

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W
f ψ dmW .

Define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|Cβ(W )
≤| log |W | |γ

∫
W
f ψ dmW

Define the strong unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

d(W1,W2)≤ε

sup
|ψi|Cα(Wi)

≤1

d0(ψ1,ψ2)=0

| log ε|ς
∣∣∣∣∫
W1

fψ1 −
∫
W2

fψ2

∣∣∣∣
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Banach Spaces and Inequalities

Theorem ([Baldi, D. ’20], [Carrand ’22], [Baladi, Carrand, D. ’22])

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

Assume htop(Φ1)τmin > s0 log 2. There exists C > 0 such
that for all t ∈ [0, htop(Φ1)], all f ∈ B and n ≥ 0,

|Lnt f |w ≤ C|f |wenP∗(t)

‖Lnt f‖s ≤ C(σn‖f‖s + |f |w)enP∗(t) , for some σ < 1

‖Lnt f‖u ≤ C(‖f‖u + ‖f‖s)enP∗(t)

Not true Lasota-Yorke inequalities due to lack of contraction in the
strong unstable norm.

Lower bound on Gδn(W, t) =⇒ ‖Lnt 1‖s ≥ c0δe
nP∗(t).

Use this to obtain eigenmeasures for eP∗(t) as limit points.
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Construction of µt

The sequence

νt,n =
1

n

n−1∑
k=0

e−kP∗(t)Lkt 1, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let νt ∈ Bw be a limit point of νt,n. νt is a measure.

Similarly, let ν̃t ∈ (Bw)∗ be a limit point of the sequence

1

n

n−1∑
k=0

e−kP∗(t)(L∗t )k(dµSRB).

Define µt(ψ) =
ν̃t(ψνt)

ν̃t(νt)
, for ψ ∈ C1(M).

Since Ltνt = eP∗(t)νt and L∗t ν̃t = eP∗(t)ν̃t, we have
µt(ψ ◦ T ) = µt(ψ), i.e. µt is an invariant measure for T .
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Hyperbolicity and Ergodicity of µ∗

Key Fact: Although νt ∈ Bw, it follows from the convergence of
νt,n to νt in the | · |w norm that ‖νt‖B <∞.

For any k ∈ Z, ∃Ck > 0 s.t. µt(Nε(Sk)) ≤ Ck(− log ε)−γ .
Nε(Sk) = ε-neighborhood of Sk in M , γ > 1.

µt-a.e. x ∈M has a stable and unstable manifold of positive
length. The same is true with respect to νt.

Lemma (Absolute continuity of holonomy)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to
the conditional measures of µt on stable manifolds.

Consequences:

Each Cantor rectangle R belongs to one ergodic component.

Since T is topologically mixing, we can force images of
rectangles to overlap =⇒ (Tn, µt) is ergodic for all n.
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Entropy of µt

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε, ∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M , n ≥ 1 and y ∈ B(x, n, ε),

µt(B(x, n, ε)) ≤ Ce−nP∗(t)−tτn(T−ny).

[Brin, Katok ’81] =⇒ for µt-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

− 1

n
logµt(B(x, n, ε)) = hµt(T

−1) = hµt(T ).

This plus the Proposition implies hµt(T ) ≥ P∗(t) + t
∫
τ dµt

But P∗(t) ≥ P (t) (easy estimate using classical argument)

Conclude: P∗(t) = hµt(T )− t
∫
τ dµt = P (t).
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Variational Principle and MME for Map and Flow

Theorem ([Baladi, D. ’20], [Carrand ’22], [Baladi, Carrand, D. ’22])

Let T be a finite horizon Sinai billiard map and let Φt be the
associated flow.
Assume htop(Φ1)τmin > s0 log 2. Then for all t ∈ [0, htop(Φ1)],

P∗(t) = P (t) (variational principle)

There is a unique equilibrium state µt.

µt is T -adapted, Bernoulli and positive on open sets.

Lifting the equilibrium state µt for t = htop(Φ1) yields the MME
for the flow.

Corollary ([Baladi, Carrand, D. ’22])

The measure νhtop :=
µhtop∫
τ dµhtop

⊗ Leb is the unique MME of the

billiard flow. It is Bernoulli and positive on all open sets.
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Some Open Questions

1) What about t /∈ [0, htop(Φ1)]?
Is there a phase transition for some t < 0 or t > htop(Φ1)?

2) Rate of correlation decay for µt?
Can we prove polynomial decay of correlations as for the case

t = 0, . n
− h∗
s0 log 2

+2+ε
?

3) How much of the previous program can be carried out for the
infinite horizon Sinai billiard?
[Chernov, Troubetzkoy ’96] =⇒ htop(T ) =∞.
But htop(Φ1) <∞ so can one prove similar results for Lt for t
near htop(Φ1)?

4) Can similar results (for map or flow) be proved for dispersing
billiards with corner points (no cusps)?
N -step expansion proved in [De Simoi, Toth ’14] may not be
sufficient. Stronger complexity bound needed.
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