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Lecture 2: Geometric Potentials and Pressure

Goal for today: Introduce geometric potentials and formulate
definition of associated topological pressure for finite horizon
Lorentz gas.

t > 0: the standard picture holds and the transfer operator
has a spectral gap. Associated equilibrium state is unique and
exponentially mixing.

t = 0: the standard setup fails and the transfer operator has
no spectral gap. We are still able to use the Banach spaces to
construct a unique measure of maximal entropy.

References: V. Baladi and M. Demers, On the measure of

maximal entropy for finite horizon Sinai billiard maps, Journal
Amer. Math. Soc. (2020).

V. Baladi and M. Demers, Thermodynamic formalism for

dispersing billiards, Journal of Modern Dynamics (2022).
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Periodic Lorentz gas (Sinai Billiard) [Sinai ’68]

Billiard table Q = T
2\∪iBi;

scatterers Bi.

Boundaries of scatterers are
C3 and have strictly positive
curvature.

Billiard flow is given by a
point particle moving at
unit speed with elastic
collisions at the boundary

Assume Finite Horizon condition: there is an upper bound on the
free flight time between collisions.
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The Associated Billiard Map

r

ϕ

M =
(
∪i ∂Bi

)
× [−π

2 ,
π
2 ], the

natural “collision” cross-section
for the billiard flow.

T : (r, ϕ) → (r′, ϕ′) is the first
return map: the billiard map.

r = position coordinate
oriented clockwise on
boundary of scatterer ∂Bi

ϕ = angle outgoing
trajectory makes with
normal to scatterer

ϕ

M

r

a hyperbolic map with singularities
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Pressure and Equilibrium States

Given a function φ, define the pressure of φ by,

P (φ) := sup
{
hν(T ) +

∫
φdν : ν invariant prob. measure

}

If µ is an invariant probability for T satisfying
hµ(T ) +

∫
φdµ = P (φ), then µ is an equilibrium state for φ.

For Hölder continuous φ, the existence and uniqueness of
equilibrium states has been established for many systems.

uniformly hyperbolic systems (Anosov and Axiom A)
[Sinai ’72], [Bowen ’74], [Ruelle ’78]

nonuniformly hyperbolic maps and flows

Markov partitions [Sarig ’11], [Lima, Matheus ’18], [Buzzi,
Crovisier, Sarig ’19]
Young towers [Pesin, Senti, Zhang ’16]
non-uniform specification [Climenhaga, Thompson ’13],
[Burns, Climenhaga, Fisher, Thompson ’18]
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Geometric Potentials

Important family of potentials: geometric potentials,

tφ = −t log JuT, t ∈ R .

t = 1 gives the smooth invariant measure µSRB = cosϕdrdϕ.
This is an equilibrium state for φ and uniqueness is proved in
a class of measures whose support decays sufficiently near
singularities [Katok, Strelcyn ’86].

t = 0 yields the measure of maximal entropy [Baladi, D. ’20].
This is Bernoulli (and hence mixing) and globally unique, but
its rate of mixing is not known.

t < 0 implies P (t) = ∞ when there is a periodic orbit with
grazing collisions. Today restrict to t ≥ 0.

[Chen, Wang, Zhang ’20] proves existence (but not uniqueness)
of equilibrium state for t near 1 using Young towers.
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Associated Transfer Operator

The main tool we will use is the transfer operator associated to the
potential tφ = −t log JuT .

For a smooth hyperbolic system, the transfer operator with
spectral radius eP (tφ) is

L̃tf =
f ◦ T−1

((JuT )tJsT ) ◦ T−1

For a billiard, setting E(x) = sin(∠(Es(x), Eu(x))),

cosϕ(x)

cosϕ(Tx)
= JLebT (x) = JsT (x)JuT (x)

E(Tx)

E(x)
,

=⇒ (JuT )tJsT =

(
E cosϕ

(E cosϕ) ◦ T

)t
(JsT )1−t

So L̃t has the same spectrum as

Ltf =
f ◦ T−1

(JsT )1−t ◦ T−1
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Associated Transfer Operator

Ltf =
f ◦ T−1

(JsT )1−t ◦ T−1

For t = 1, this corresponds to using µSRB as the conformal
measure. We will identify a function f with the measure
dµ = fdµSRB. Then acting on distributions,

Ltµ(ψ) = µ

(
ψ ◦ T

(JsT )1−t

)
, test function ψ

Construct equilibrium state µt out of left and right eigenvectors of
Lt corresponding to the eigenvalue of maximum modulus.

Sources of difficulty:

T has discontinuities so a topological definition of pressure
must overcome the effect of this cutting.
The potential is not Hölder continuous

JsT ≈ cosϕ so the potential is unbounded
JsT is not continuous on any open set
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Weight Function for Topological Pressure

To control the evolution of Lnt f , must control integrals of the type,
∫

W
Lnt f ψ dmW =

∫

T−nW
f ψ ◦ T n |JsT n|t dmT−nW .

W ∈ Ws
H , the set of (weakly) homogeneous local stable

manifolds with uniformly bounded curvature

mW is arclength measure on W

ψ ∈ Cα(W ) is a Hölder continuous test function

f is an element of our Banach space (closure of C1(M) in
some norm)

T−nW = ∪iWi, Wi ∈ Gn(W ), homogeneous components.

We need to estimate precisely how
∑

Wi
|JsT n|tC0(Wi)

grows as a
function of n and W . This resembles the expression from our
growth lemma in Lecture 1.
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Homogeneity Strips and Modified One-step Expansion

H±k = {(r, ϕ) ∈M : (k + 1)−q ≤ |ϕ∓
π

2
| ≤ k−q} , k ≥ k0

For V ∈ Ŵs, let Vi denote the homogeneous connected
components of T−1V .

Lemma (Modified One-step Expansion)

Fix t0 > 0 and q ≥ 2/t0. There exists θ(t0) < 1, k0(t0), δ0(t0) > 0

such that for all V ∈ Ŵs,

sup
|V |≤δ0

∑

Vi

|JViT |
t
∗ < θt , for all t ≥ t0.

The proof is similar to the standard estimate: near a tangential
collision,

∑
k≥k0

|JViT |
t
∗ ∼

∑
k≥k0

k−qt ≤ Ck−1
0 . Then k0 can be

chosen large enough (and δ0 small enough) to make θt arbitrarily
close to Λ−t, where Λ = 1 + 2Kminτmin.
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A Definition of Topological Pressure

Define Sn = ∪ni=0T
−iS0,

SH
n = ∪ni=0T

−iSH
0

Let Mn
0 = connected components

of M \ Sn,

Mn,H
0 = connected components of

M \ (SH
n−1 ∪ T

−nS0)

M \ Sn
Define for t > 0,

Qn(t) :=
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsT n(x)|t, M ′ =M \ (∪n∈ZSn)

P∗(t) := lim
n→∞

1

n
logQn(t)

The limit exists since the sequence logQn(t) is subadditive:
Qn+k(t) ≤ Qn(t)Qk(t). It follows, Qn(t) ≥ enP∗(t).
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Properties of P∗(t) and Variational Inequality

Theorem

For a finite horizon Sinai billiard:

a) P∗(t) is a convex, continuous, decreasing function for t > 0;

b) P∗(t) satisfies a variational inequality,

P∗(t) ≥ P (t) = sup
{
hµ(T )−t

∫
log JuT dµ : µ T -inv. prob.

}

Proof. (a) follows from Qn(αt+ (1− α)s) ≤ Qn(t)
αQn(s)

1−α.
(b) relies on the continuation of singularities property. This implies
that setting P = M1

0, then the elements of Pn
−n =

∨n
i=−n T

−iP
are simply connected. This plus the uniform hyperbolicity of T
implies P is a generating partition. Then using that∫
M log JsT dµ = −

∫
M log JuT dµ for an invariant measure µ, a

standard estimate (e.g. [Walters ’82]) implies
hµ(T )− t

∫
M log JuT dµ ≤ P∗(t). ✷
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Definition of t∗ > 1

Want to prove that P∗(t) = P (t) for t ∈ (0, t∗) for some t∗ > 1.

To do this, need to prove exact exponential growth of Qn(t):

∃C2 > 0 s.t. enP∗(t) ≤ Qn(t) ≤ C2e
nP∗(t) ,

and uniform growth along stable curves,

∃c0 > 0 s.t.∀W ∈ Ŵs, |W | ≥ δ1,
∑

Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ c0Qn(t) .

t
t∗1

P (t)

−t log Λ

t∗ := sup{t > 0 : −t log Λ < P (t)}
Pressure Gap: Λ−t < eP (t) for t < t∗

Fix t0 > 0 and t1 < t∗.

Choose θ < 1 s.t. the intersection of
t log θ and P (t) is to the right of t1.

Choose q, k0 and δ0 so that the
one-step expansion holds for θ
uniformly for all t ∈ [t0, t1].
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Growth lemmas and prevalence of ‘long’ partition elements

For δ1 < δ0, let G
δ1
n (W ) denote the analogous collection as

Gn(W ), but with respect to the length scale δ1 rather than δ0.

Lemma (’Long’ elements of Gn(W ) carry most weight)

∀ε > 0 ∃δ1, n1 > 0 s.t ∀W ∈ Ŵs with |W | ≥ δ1/3 and all n ≥ n1,

∑

Wi∈G
δ1
n (Wi)

|Wi|<δ1/3

|JWiT
n|tC0(Wi)

≤ ε
∑

Wi∈G
δ1
n (W )

|JWiT
n|tC0(Wi)

Define An(δ) = {A ∈ Mn,H
0 : diamu(T nA) ≥ δ/3}.

Lemma (‘Long’ elements of M0,H
−n carry most weight)

There exist δ2 > 0 and c0 > 0 such that

∑

A∈An(δ2)

sup
x∈A

|JsT n(x)|t ≥ c0Qn(t) , ∀n ∈ N , ∀t ∈ [t0, t1] .
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Uniform Growth for W ∈ Ŵs and Supermultiplicativity

Proposition

a) There exists c1 > 0 s.t. for any W ∈ Ŵs with |W | ≥ δ1/3,

∑

Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ c1Qn(t) , ∀n ≥ 1 , ∀t ∈ [t0, t1] .

b) There exists c2 > 0 s.t. for all k, n ≥ 1,

Qn+k(t) ≥ c2Qn(t)Qk(t) .

(b) follows from (a) and first growth lemma, since
∑

Wi∈G
δ1
n+k(W )

|JWiT
n+k|tC0 ≥ C

∑

Vj∈L
δ1
n (W )

|JVjT
n|tC0

∑

Wi∈G
δ1
k (Vj)

|JWiT
k|tC0

Immediate corollary of (b) is exact exponential growth of Qn(t):

enP∗(t) ≤ Qn(t) ≤ 2c−1
2 enP∗(t) ∀n ≥ 1 , ∀t ∈ [t0, t1] .
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Definition of Norms: Weak Norm

Fix 0 < α ≤ 1/(q + 1).

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

H

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫

W
f ψ dmW .

Define Bw to be the completion of C1(M) in the | · |w norm.

Remark: Norms defined on stable manifolds Ws rather than
cone-stable curves Ŵs. We make this choice because JsT varies
Hölder continuously along W ∈ Ws, but only measurably
transverse to stable direction. These norms are not well suited to
study perturbations of the dynamics.

For t = 1, JsT disappears and one can use Ŵs instead. Such
norms are robust under perturbations [D., Zhang ’13].
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Definition of Norms: Strong Norm

Choose p > q + 1, β ∈ (1/p, α) and γ < min{1/p, α − β}.

Define the strong stable norm of f by

‖f‖s = sup
W∈Ws

H

sup
ψ∈Cβ(W )

|ψ|
Cβ(W )

≤|W |−1/p

∫

W
f ψ dmW

Define the strong unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

H
d(W1,W2)≤ε

sup
|ψi|Cα(Wi)

≤1

d0(ψ1,ψ2)=0

ε−γ
∣∣∣∣
∫

W1

fψ1 −

∫

W2

fψ2

∣∣∣∣

The strong norm of f is defined to be ‖f‖B = ‖f‖s + cu‖f‖u,

Define B to be the completion of C1(M) in the ‖ · ‖B norm.
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Lasota-Yorke: Unmatched Pieces

For strong unstable norm, estimate
∣∣∣
∫
W1

Lnt f ψ1 −
∫
W2

Lnt f ψ2

∣∣∣

W1

W2

S−n

T−n

Gn(W1)

Gn(W2)

Unmatched pieces have length at most Λ−jε is they are cut
by a singularity curve at time −j.

Use the strong stable norm to estimate,
∫

Wi

Lnt f ψ =

∫

Vj

Ln−jt f ψ◦T j |JVjT
j|t ≤ Λ−j/pε1/p‖Ln−jt f‖s|JVjT

j|tC0

‖ · ‖s acts as ‘weak norm’ for ‖ · ‖u to control unmatched
pieces.
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Banach Spaces

Theorem ([Baladi, D. ’22])

We have a sequence of continuous inclusions,

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

There exist C,Cn > 0 such that for all f ∈ B, n ≥ 0,

|Lnt f |w ≤ CQn(t)|f |w ,

‖Lnt f‖s ≤ C
(
Λ−(β−1/p)nQn(t) + θ(t−1/p)n

)
‖f‖s + Cn|f |w)

‖Lnt f‖u ≤ CQn(t)
(
nγΛ−γn‖f‖u + Cn‖f‖s

)
.

Implies the spectral radius of Lt on B is at most eP∗(t) and its
essential spectral radius < eP∗(t) if θt < eP∗(t) (pressure gap).

To prove Lt is quasi-compact, we need a lower bound on the
spectral radius.
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Lower Bound on Spectral Radius

The lower bound follows from our uniform growth result:

There exists c1 > 0 s.t. for any W ∈ Ŵs with |W | ≥ δ1/3,

∑

Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ c1Qn(t) , ∀n ≥ 1 , ∀t ∈ [t0, 1] .

Let W ∈ Ws
H with |W | ≥ δ1/3, choose ψ ≡ 1. For any n ≥ 1,

∫

W
Lnt 1 =

∑

Wi∈Gn(W )

∫

Wi

|JWiT
n|t ≥ e−Cd

∑

Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ e−Cdc1Qn(t) ≥ e−Cdc1e
nP∗(t)

Thus ‖Ln1‖s ≥ CenP∗(t) and so the spectral radius of L is eP∗(t).
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Spectral Decomposition of Lt

Our exact exponential growth implies:

‖Lnt ‖B ≤ CQn(t) ≤ C ′enP∗(t) ,

so that the peripheral spectrum of Lt has no Jordan blocks.

There exist a finite set {θj}
N
j=0, θ0 = 0, linear operators

Πj , R : B 	 satisfying ΠiΠj = ΠjR = RΠj = 0 with spectral
radius of R < 1, such that

e−P∗(t)Lt =
N∑

j=1

e2πiθjΠj +R

Proof of spectral gap follows similar lines as for Baker’s map:
Define νt = Π01. Show all eigenvectors corresponding to the
peripheral spectrum are measures absolutely continuous wrt νt,
and θj must be rational. Use mixing to show 1 is simple for Lkt for
k ≥ 1. (Lack of smoothness complicates argument.)
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A Spectral Gap for Lt

Theorem ([Baladi, D. ’22])

For each t0 > 0 and t1 < t∗, there exists a Banach space
B = B(t0, t1) such that Lt has a spectral gap:

eP∗(t) is the eigenvalue of maximum modulus, it is simple, and
the remainder of the spectrum of Lt is contained in a disk of
radius σ̄eP∗(t), where σ̄ < 1 is uniform for t ∈ [t0, t1].

Letting νt and ν̃t denote the maximal right and and left
eigenvectors for Lt, define

µt(ψ) =
〈νt, ψν̃t〉

〈νt, ν̃t〉
, ψ ∈ Cα(M) .

Then µt is an invariant probability measure for T , and enjoys
exponential decay of correlations against Hölder observables.

µt has no atoms, gives 0 weight to any C1 curve and is positive on
open sets. Moreover,

∫
| log d(x,S±1)| dµt <∞.
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Entropy of µt and a Variational Principle

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M , n ≥ 1, and y ∈ B(x, n, ε),

µt(B(x, n, ε)) ≤ Ce−nP∗(t)+t log JsTn(T−ny).

[Brin, Katok ’81] =⇒ for µt-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µt(B(x, n, ε)) = hµt(T ).

This plus the Proposition implies

hµt(T ) ≥ P∗(t)− t

∫
log JsT dµt = P∗(t) + t

∫
log JuT dµt

But P∗(t) ≥ hµt(T )− t
∫
log JuT dµt since P∗(t) ≥ P (t).

Conclude: P∗(t) = hµt(T )− t
∫
log JuT dµt = P (t).
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Part Two: Measure of Maximal Entropy

Goal for this section: Discuss the case t = 0. We must modify
the Banach spaces and we lose the spectral gap. Yet we are able
to maintain enough control of the transfer operator to construct a
unique measure of maximal entropy.

Reference: V. Baladi and M. Demers, On the measure of maximal

entropy for finite horizon Sinai billiard maps, Journal Amer. Math.
Soc. (2020).

Transfer operator for geometric potential with t = 0,

L0f =
f ◦ T−1

JsT ◦ T−1

JsT ≈ cosϕ so the potential is unbounded
JsT is not continuous on any open set
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Weight Function for Topological Entropy

To control the evolution of Ln0f , must control integrals of the type,
∫

W
Ln0f ψ dmW =

∫

T−nW
f ψ ◦ T n dmT−nW .

W ∈ Ws, the set of local stable manifolds with uniformly
bounded curvature

mW is arclength measure on W

ψ ∈ Cα(W ) is a Hölder continuous test function

f is an element of our Banach space (closure of C1(M) in
some norm)

T−nW = ∪iWi, smooth, connected components.

We need to estimate precisely how
∑

Wi
1 grows as a function of n

and W . Without a Jacobian, the growth lemmas will look

different; we cannot use homogeneity strips.
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn
The limit exists since the sequence log#Mn

0 is subadditive:
#Mn+m

0 ≤ #Mn
0 ·#Mm

0 .

h∗ is the exponential rate of growth of the number of pieces
created by the discontinuities of T . It does not depend on a
choice of metric.

h∗ satisfies a variational inequality,

h∗ ≥ sup{hµ(T ) : µ is a T -invariant Borel prob. measure}

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Gn(W ) and Linear Complexity Bound

To obtain a precise estimate on the spectral radius of L0, we will
need precise estimates on the growth rates of #Mn

0 and #Gn(W ).

Define Gn(W ) without homogeneity strips

For W ∈ Ŵs, define G1(W ) to be the maximal, connected
components of T−1W subdivided to length at most δ0 (t.b.d.)

Define Gn(W ) = {G1(Wi) :Wi ∈ Gn−1(W )}.

Recall the linear complexity bound.

For x ∈M , let N(Sn, x) denote the number of singularity curves
in Sn that meet at x. Define N(Sn) = supx∈M N(Sn, x).

Lemma (Bunimovich, Chernov, Sinai ’90)

Assume finite horizon. There exists K > 0 depending only on the

configuration of scatterers such that N(Sn) ≤ Kn for all n ≥ 1.

Choose n0 s.t. n−1
0 log(Kn0 + 1) < h∗. Choose δ0 s.t. any stable

curve of length ≤ δ0 is cut into at most Kn0 + 1 pieces by S−n0 .
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Fragmentation Lemma (Growth Lemma)

Let Lδn(W ) = {Wi ∈ Gδn(W ) : |W | ≥ δ/3}.
Shδn(W ) = Gδn(W ) \ Lδn(W ).

Lemma ([Baladi, D. ’20])

For all ε > 0 there exists n1, δ > 0 s.t. for all n ≥ n1,

#Shδn(W ) ≤ ε#Gδn(W ) for all W ∈ Ŵs with |W | ≥ δ/3.

Idea of Proof: Choose ε > 0 and n1 s.t. 3C−1
0 (Kn1 +1)Λ−n1 < ε.

Choose δ > 0 s.t. if |W | < δ then T−n1W comprises at most
Kn1 + 1 connected components of length at most δ0.

Then Shδn1
(W ) contains at most Kn1 + 1 elements while

|T−n1W | ≥ C0Λ
n1δ/3, where Λ = 1 + 2Kminτmin.

Thus #Gδn1
(W ) ≥ C0Λ

n1/3 and so
#Shδn1

(W )

#Gδ
n1

(W )
≤ ε by choice of n1.

Argument can be iterated, grouping by most recent long ancestor.
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Fragmentation of Mn
0

This lemma can also be formulated for elements of Mn
0 and M0

−n.

Let δ1, n1 ≥ n0 correspond to ε = 1/4 in fragmentation lemma:

For all W ∈ Ŵs with |W | ≥ δ1/3,

#Lδ1n (W ) ≥ 3
4#Gδ1n (W ) , ∀n ≥ n1 .

Define Ls(M
n
0 ) := {A ∈ Mn

0 : diams(A) ≥ δ1/3}

Lu(M
0
−n) := {B ∈ M0

−n : diamu(B) ≥ δ1/3}

Lemma

There exists c0 > 0 s.t. for all n ≥ 1,

#Ls(M
n
0 ) ≥ c0δ1#Mn

0 and #Lu(M
0
−n) ≥ c0δ1#M0

−n .
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Fragmentation Lemmas =⇒ Uniform Bounds on Growth

Proposition

a) ∃ c1 > 0 such that for any W ∈ Ŵs with |W | ≥ δ1/3,

#Gn(W ) ≥ c1#Mn
0 ∀n ≥ 1 .

b) There exists c2 > 0 such that for all k, n ≥ 1,

#Mn+k
0 ≥ c2#Mn

0 ·#Mk
0 .

(b) implies exact exponential growth of #Mn
0 ,

enh∗ ≤ #Mn
0 ≤ 2c−1

2 enh∗ for all n ≥ 1.

(a) + fragmentation lemma =⇒ (b) since

#Gn+k(W ) ≥
∑

Vj∈L
δ1
n (W )

#Gk(Vj) ≥ #Lδ1n (W )c1#Mk
0

≥ 3c1
4 #Gδ1n (W )#Mk

0 ≥
3c21
4

#Mn
0#Mk

0
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New Assumption: ‘Sparse Recurrence’ to Singularities

In order to leverage these growth and fragmentation lemmas to
control L0, we need the following additional assumption on T .

Fix n0 ∈ N and an angle ϕ0 close to π/2.

Let s0 ∈ (0, 1) be the smallest number such that any orbit of
length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

Finite horizon guarantees that we can always choose n0 and ϕ0 so
that s0 < 1. (Indeed, no triple tangencies implies that s0 ≤

2
3 .)

Assumption: h∗ > s0 log 2

Fact: If W is a local stable manifold, then |T−1W | ≤ C|W |1/2.

Our assumption ensures that the growth due to tangential collisions
does not exceed the exponential rate of growth given by h∗.
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Toy Calculation in Previous Norms

Recall that the strong stable norm for t > 0 was

‖f‖s = sup
W∈Ws

sup
|ψ|Cα(W )≤|W |−1/p

∫

W
fψ dmW ,

and the weight |W |−1/p was needed to control the contribution
from unmatched pieces in the strong unstable norm estimate.

But now we have no Jacobian or homogeneity strips. So suppose
W ∈ Ws s.t. T−1W has a single component with
|T−1W | ≈ |W |1/2. Then if ψ = |W |−1/p,

∫

W
L0f ψ = |W |−1/p

∫

T−1W
f ≤ ‖f‖s

|T−1W |1/p

|W |1/p
≈ ‖f‖s|W |−1/2p

and taking sup over W ∈ Ws yields ∞. The spectral radius of
L0 = ∞ on such a space, for any p > 0.

To avoid this, we use a logarithmic weight instead.
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Definition of Norms: Weak Norm

Choose α, β, ς > 0 and γ > 1 such that

β < α ≤ 1/3, 2s0γ < eh∗ , ς < γ .

Choose n0 so that

1

n0
log(Kn0 + 1) < h∗ − γs0 log 2 ,

where K is from the linear bound on complexity.

Fix the length scale δ0 > 0 so that any W ∈ Ws (with |W | ≤ δ0)
is cut into at most Kn0 + 1 pieces by S−n0 .

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫

W
f ψ dmW .

Define Bw to be the completion of C1(M) in the | · |w norm.
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Definition of Norms: Strong Norm

Define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|
Cβ(W )

≤| log |W | |γ

∫

W
f ψ dmW

Define the strong unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

d(W1,W2)≤ε

sup
|ψi|Cα(Wi)

≤1

d0(ψ1,ψ2)=0

| log ε|ς
∣∣∣∣
∫

W1

fψ1 −

∫

W2

fψ2

∣∣∣∣

The strong norm of f is defined to be ‖f‖B = ‖f‖s + ‖f‖u,

Define B to be the completion of C1(M) in the ‖ · ‖B norm.
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No contraction of ‖ · ‖u

The logarithmic modulus of continuity in the strong unstable norm
prevents contraction of ‖ · ‖u.

For strong unstable norm, estimate
∣∣∣
∫
W1

Ln0f ψ1 −
∫
W2

Ln0f ψ2

∣∣∣

W1

W2

S−n

T−n

Gn(W1)

Gn(W2)

If d(W 1,W 2) ≤ ε, and if W 1
i ∈ Gn(W

1), W 2
i ∈ Gn(W

2
i ) are

matched, then d(W 1
i ,W

2
i ) ≤ CΛ−nε.

But the contraction is | logCΛ−nε|ς

| log ε|ς , and taking the supremum
over ε > 0 yields 1.
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Banach Spaces and Inequalities

Theorem ([Baldi, D. ’20])

We have a sequence of inclusions,

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

Assume h∗ > s0 log 2. There exists C > 0 such that for all
f ∈ B, n ≥ 0,

|Lnf |w ≤ C|f |w#Mn
0

‖Lnf‖s ≤ C(σn‖f‖s + |f |w)#Mn
0 , for some σ < 1

‖Lnf‖u ≤ C(‖f‖u + ‖f‖s)#Mn
0

The inequalities above are not true Lasota-Yorke inequalities due
to lack of contraction in the strong unstable norm.
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Bounds on the Spectral Radius of L0

Although we do not prove quasi-compactness of L0 on B, we do
have good control of ‖Ln0‖B.

Our upper bound #Mn
0 ≤ C2e

nh∗ plus our ‘Lasota-Yorke’
inequalities imply that ‖Ln0‖B ≤ Cenh∗, for all n ≥ 1.

Our lower bound on #Gn(W ) implies that

‖Ln01‖s ≥ |Ln01|w ≥

∫

W
Ln01 =

∑

Wi∈G
δ1
n (W )

|Wi|

≥
δ1
3

3

4
#Gδ1n (W ) ≥ Cenh∗ .

This implies that the sequence e−nh∗Ln01 is uniformly bounded
away from 0 and ∞ in the strong norm. We use this fact to
construct an eigenmeasure for L0 with eigenvalue eh∗ .
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Construction of µ∗

The sequence

νn =
1

n

n−1∑

k=0

e−kh∗Lk01, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.

Similarly, let ν̃ ∈ (Bw)
∗ be a limit point of the sequence

1

n

n−1∑

k=0

e−kh∗(L∗
0)
k(dµSRB).

Define µ∗(ψ) =
ν̃(ψν)

ν̃(ν)
, for ψ ∈ C1(M).

Since L0ν = eh∗ν and L∗
0ν̃ = eh∗ ν̃, we have µ∗(ψ ◦ T ) = µ∗(ψ),

i.e. µ∗ is an invariant measure for T .
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the | · |w norm that ‖ν‖B <∞.

This implies estimates of the form:

For any k ∈ Z, ∃Ck > 0 s.t.

ν(Nε(Sk)) ≤ Ck(− log ε)−γ , µ∗(Nε(Sk)) ≤ Ck(− log ε)−γ .

Nε(Sk) = ε-neighborhood of Sk in M , γ > 1.

∫

M
− log d(x,S±1) dµ∗(x) <∞ (µ∗ is T -adapted).

µ∗-a.e. x ∈M has a stable and unstable manifold of positive
length. The same is true with respect to ν.
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Ergodicity of µ∗

Since µ∗ is hyperbolic, we cover a
full measure set of M with Cantor
rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R

Lemma (Absolute continuity of holonomy)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to
the conditional measures of µ∗ on stable manifolds.

That ‖ν‖B <∞ is crucial to the proof of the lemma.

Consequences:

Each Cantor rectangle R belongs to one ergodic component.

Since T is topologically mixing, we can force images of
rectangles to overlap =⇒ (T n, µ∗) is ergodic for all n.
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Mixing and Bernoulli Property of µ∗

The local product structure of the Cantor rectangles, together
with a global argument showing that a full measure set of
points on each component of M can be connected by a
network of stable/unstable manifolds, enables us to prove that
(T, µ∗) is K-mixing, following techniques of [Pesin ’77, ’92].

K-mixing + hyperbolicity + absolute continuity of µ∗ +
bounds on µ∗(Nε(S±1))
=⇒ the partition M1

−1 is very weakly Bernoulli, following
the technique of [Chernov, Haskell ’96].

Since
∨∞
n=−∞ T−n(M1

−1) generates the full σ-algebra for T ,
this implies by [Ornstein, Weiss ’73] that (T, µ∗) is Bernoulli.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε,∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗.

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

−
1

n
log µ∗(B(x, n, ε)) = hµ∗(T

−1) = hµ∗(T ).

This plus the Proposition implies hµ∗(T ) ≥ h∗

But h∗ ≥ hµ∗(T ) by Theorem 1.

Conclude: h∗ = hµ∗(T ).
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Uniqueness of µ∗

The usual Bowen argument for uniqueness uses

∀ε > 0,∃C > 0 s.t. for µ∗-a.e. x ∈M, µ∗(B(x, n, ε)) ≥ Ce−nh∗.

This fails for billiards due to rate of approach to singularity set.
Rather: ∀η > 0 and µ∗-a.e. x ∈M ,

∃C = C(η, x) > 0 s.t. µ∗(B(x, n, ε)) ≥ Ce−n(h∗+η).

This is not sufficient for the Bowen argument.

However: fix δ > 0 small. For each n ≥ 1 ‘most’ x ∈M belong
to an element of Mj

0 at time n/2 ≤ j ≤ n that satisfies,

diams(A) ≥ δ and diamu(T jA) ≥ δ

=⇒ µ∗(A) ≥ Cδe
−jh∗ , for some Cδ > 0.

Together with a time shift to group elements of Mn
0 according to

Mj
0, this is sufficient to adapt the Bowen argument.
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Variational Principle and Measure of Maximal Entropy

Theorem ([Baladi, D. ’20])

Let T be the billiard map corresponding to a finite horizon periodic
Lorentz gas. Assume h∗ > s0 log 2. Then,

h∗ = lim
n→∞

1

n
log#Mn

0 = sup
µ
hµ(T ).

Moreover, there exists a unique T -invariant measure µ∗ such that

hµ∗(T ) = h∗

h∗ = P (0) = limt↓0 P (t) = limt↓0 P∗(t)

h∗ = htop(T,M
′)

(T, µ∗) is Bernoulli and positive on open sets∫
− log d(x,S±1) dµ∗(x) <∞

Last item implies that µ∗ is T -adapted. By [Lima, Matheus ’18],
Buzzi ’20], ∃C > 0 such that Pn(T ) ≥ Cenh∗, for n large.
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