Thermodynamic Formalism for Dispersing Billiard Maps and Flows Lecture 2: Geometric Potentials, Topological Pressure and Entropy

Mark Demers Fairfield University Research supported in part by NSF grant DMS 2055070

> Summer School: Partial Hyperbolicity Brin Mathematics Research Center University of Maryland May 30 - June 9, 2023

Lecture 2: Geometric Potentials and Pressure

Goal for today: Introduce geometric potentials and formulate definition of associated topological pressure for finite horizon Lorentz gas.

- t > 0: the standard picture holds and the transfer operator has a spectral gap. Associated equilibrium state is unique and exponentially mixing.
- t = 0: the standard setup fails and the transfer operator has no spectral gap. We are still able to use the Banach spaces to construct a unique measure of maximal entropy.

References: V. Baladi and M. Demers, *On the measure of maximal entropy for finite horizon Sinai billiard maps*, Journal Amer. Math. Soc. (2020).

V. Baladi and M. Demers, *Thermodynamic formalism for dispersing billiards*, Journal of Modern Dynamics (2022).

Periodic Lorentz gas (Sinai Billiard) [Sinai '68]

- Billiard table $\mathcal{Q} = \mathbb{T}^2 \setminus \bigcup_i B_i$; scatterers B_i .
- Boundaries of scatterers are C^3 and have strictly positive curvature.
- Billiard flow is given by a point particle moving at unit speed with elastic collisions at the boundary

Assume **Finite Horizon** condition: there is an upper bound on the free flight time between collisions.

The Associated Billiard Map

 $M = \left(\cup_i \partial B_i \right) \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \text{ the natural "collision" cross-section for the billiard flow.}$

 $T:(r,\varphi)\to (r',\varphi') \text{ is the first}$ return map: the billiard map.

• a hyperbolic map with singularities

- r =position coordinate oriented clockwise on boundary of scatterer ∂B_i
- $\varphi =$ angle outgoing trajectory makes with normal to scatterer

Pressure and Equilibrium States

Given a function $\phi,$ define the \ensure of ϕ by,

$$P(\phi) := \sup \left\{ h_{\nu}(T) + \int \phi \, d\nu : \nu \text{ invariant prob. measure} \right\}$$

If μ is an invariant probability for T satisfying $h_{\mu}(T) + \int \phi \, d\mu = P(\phi)$, then μ is an **equilibrium state** for ϕ .

For Hölder continuous ϕ , the existence and uniqueness of equilibrium states has been established for many systems.

• uniformly hyperbolic systems (Anosov and Axiom A) [Sinai '72], [Bowen '74], [Ruelle '78]

nonuniformly hyperbolic maps and flows

- Markov partitions [Sarig '11], [Lima, Matheus '18], [Buzzi, Crovisier, Sarig '19]
- Young towers [Pesin, Senti, Zhang '16]
- non-uniform specification [Climenhaga, Thompson '13], [Burns, Climenhaga, Fisher, Thompson '18]

Geometric Potentials

Important family of potentials: geometric potentials,

$$t\phi = -t\log J^u T, \quad t \in \mathbb{R}.$$

- t = 1 gives the smooth invariant measure $\mu_{\text{SRB}} = \cos \varphi dr d\varphi$. This is an equilibrium state for ϕ and uniqueness is proved in a class of measures whose support decays sufficiently near singularities [Katok, Strelcyn '86].
- t = 0 yields the measure of maximal entropy [Baladi, D. '20]. This is Bernoulli (and hence mixing) and globally unique, but its rate of mixing is not known.
- t < 0 implies $P(t) = \infty$ when there is a periodic orbit with grazing collisions. Today restrict to $t \ge 0$.
- [Chen, Wang, Zhang '20] proves existence (but not uniqueness) of equilibrium state for t near 1 using Young towers.

Associated Transfer Operator

The main tool we will use is the transfer operator associated to the potential $t\phi = -t \log J^u T$.

For a smooth hyperbolic system, the transfer operator with spectral radius $e^{P(t\phi)}$ is

$$\widetilde{\mathcal{L}}_t f = \frac{f \circ T^{-1}}{((J^u T)^t J^s T) \circ T^{-1}}$$

For a billiard, setting $E(x)=\sin(\angle(E^s(x),E^u(x))),$

$$\frac{\cos\varphi(x)}{\cos\varphi(Tx)} = J_{\text{Leb}}T(x) = J^sT(x)J^uT(x)\frac{E(Tx)}{E(x)},$$
$$\implies (J^uT)^tJ^sT = \left(\frac{E\cos\varphi}{(E\cos\varphi)\circ T}\right)^t(J^sT)^{1-t},$$

So $\widetilde{\mathcal{L}}_t$ has the same spectrum as

$$\mathcal{L}_t f = \frac{f \circ T^{-1}}{(J^s T)^{1-t} \circ T^{-1}}$$

Associated Transfer Operator

$$\mathcal{L}_t f = \frac{f \circ T^{-1}}{(J^s T)^{1-t} \circ T^{-1}}$$

For t = 1, this corresponds to using μ_{SRB} as the conformal measure. We will identify a function f with the measure $d\mu = f d\mu_{\text{SRB}}$. Then acting on distributions,

$$\mathcal{L}_t \mu(\psi) = \mu\left(\frac{\psi \circ T}{(J^s T)^{1-t}}\right) \,, \quad \text{test function } \psi$$

Construct equilibrium state μ_t out of left and right eigenvectors of \mathcal{L}_t corresponding to the eigenvalue of maximum modulus.

Sources of difficulty:

- T has discontinuities so a topological definition of pressure must overcome the effect of this cutting.
- The potential is not Hölder continuous
 - $J^sT \approx \cos \varphi$ so the potential is unbounded
 - $\bullet \ J^sT$ is not continuous on any open set

Weight Function for Topological Pressure

To control the evolution of $\mathcal{L}_t^n f$, must control integrals of the type,

$$\int_W \mathcal{L}^n_t f \,\psi \, dm_W = \int_{T^{-n}W} f \,\psi \circ T^n \, |J^s T^n|^t \, dm_{T^{-n}W} \,.$$

- $W \in \mathcal{W}_{H}^{s}$, the set of (weakly) homogeneous local stable manifolds with uniformly bounded curvature
- m_W is arclength measure on W
- ${\bullet}\;\psi\in C^{\alpha}(W)$ is a Hölder continuous test function
- f is an element of our Banach space (closure of $C^1(M)$ in some norm)

 $T^{-n}W = \cup_i W_i$, $W_i \in \mathcal{G}_n(W)$, homogeneous components.

We need to estimate precisely how $\sum_{W_i} |J^s T^n|_{C^0(W_i)}^t$ grows as a function of n and W. This resembles the expression from our growth lemma in Lecture 1.

Homogeneity Strips and Modified One-step Expansion

$$H_{\pm k} = \{ (r, \varphi) \in M : (k+1)^{-q} \le |\varphi \mp \frac{\pi}{2}| \le k^{-q} \}, \quad k \ge k_0$$

For $V \in \widehat{\mathcal{W}}^s$, let V_i denote the homogeneous connected components of $T^{-1}V$.

Lemma (Modified One-step Expansion)

Fix $t_0 > 0$ and $q \ge 2/t_0$. There exists $\theta(t_0) < 1$, $k_0(t_0), \delta_0(t_0) > 0$ such that for all $V \in \widehat{\mathcal{W}}^s$,

$$\sup_{|V| \le \delta_0} \sum_{V_i} |J_{V_i} T|^t_* < \theta^t \,, \quad \text{for all } t \ge t_0.$$

The proof is similar to the standard estimate: near a tangential collision, $\sum_{k\geq k_0} |J_{V_i}T|_*^t \sim \sum_{k\geq k_0} k^{-qt} \leq Ck_0^{-1}$. Then k_0 can be chosen large enough (and δ_0 small enough) to make θ^t arbitrarily close to Λ^{-t} , where $\Lambda = 1 + 2\mathcal{K}_{\min}\tau_{\min}$.

A Definition of Topological Pressure

• Define
$$S_n = \bigcup_{i=0}^n T^{-i} S_0$$
,
 $S_n^{\mathbb{H}} = \bigcup_{i=0}^n T^{-i} S_0^{\mathbb{H}}$
• Let $\mathcal{M}_0^n = \text{connected components}$
of $M \setminus S_n$,
• $\mathcal{M}_0^{n,\mathbb{H}} = \text{connected components of}$
 $M \setminus (S_{n-1}^{\mathbb{H}} \cup T^{-n} S_0)$
Define for $t > 0$,
• $Q_n(t) := \sum_{A \in \mathcal{M}_0^{n,\mathbb{H}}} \sup_{x \in A \cap M'} |J^s T^n(x)|^t$, $M' = M \setminus (\bigcup_{n \in \mathbb{Z}} S_n)$
• $P_*(t) := \lim_{n \to \infty} \frac{1}{n} \log Q_n(t)$

• The limit exists since the sequence $\log Q_n(t)$ is subadditive: $Q_{n+k}(t) \leq Q_n(t)Q_k(t)$. It follows, $Q_n(t) \geq e^{nP_*(t)}$.

Properties of $P_*(t)$ and Variational Inequality

Theorem

For a finite horizon Sinai billiard:

- a) $P_*(t)$ is a convex, continuous, decreasing function for t > 0;
- b) $P_*(t)$ satisfies a variational inequality,

$$P_*(t) \ge P(t) = \sup\left\{h_{\mu}(T) - t \int \log J^u T \, d\mu : \mu \text{ } T\text{-inv. prob.}\right\}$$

Proof. (a) follows from $Q_n(\alpha t + (1 - \alpha)s) \leq Q_n(t)^{\alpha}Q_n(s)^{1-\alpha}$. (b) relies on the continuation of singularities property. This implies that setting $\mathcal{P} = \mathcal{M}_0^1$, then the elements of $\mathcal{P}_{-n}^n = \bigvee_{i=-n}^n T^{-i}\mathcal{P}$ are simply connected. This plus the uniform hyperbolicity of T implies \mathcal{P} is a generating partition. Then using that $\int_M \log J^s T \, d\mu = -\int_M \log J^u T \, d\mu$ for an invariant measure μ , a standard estimate (e.g. [Walters '82]) implies $h_\mu(T) - t \int_M \log J^u T \, d\mu \leq P_*(t)$.

Definition of $t_* > 1$

Want to prove that $P_*(t) = P(t)$ for $t \in (0, t_*)$ for some $t_* > 1$. To do this, need to prove exact exponential growth of $Q_n(t)$:

$$\exists C_2 > 0 \ s.t. \ e^{nP_*(t)} \le Q_n(t) \le C_2 e^{nP_*(t)},$$

and uniform growth along stable curves,

$$\exists c_0 > 0 \, s.t. \, \forall W \in \widehat{\mathcal{W}}^s, |W| \ge \delta_1, \sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_0 Q_n(t) \, .$$

- $t_* := \sup\{t > 0 : -t \log \Lambda < P(t)\}$ Pressure Gap: $\Lambda^{-t} < e^{P(t)}$ for $t < t_*$
- Fix $t_0 > 0$ and $t_1 < t_*$.
- Choose $\theta < 1$ s.t. the intersection of $t \log \theta$ and P(t) is to the right of t_1 .
- Choose q, k_0 and δ_0 so that the one-step expansion holds for θ uniformly for all $t \in [t_0, t_1]$.

Mark Demers Thermodynamic Formalism for Dispersing Billiards

Growth lemmas and prevalence of 'long' partition elements

For $\delta_1 < \delta_0$, let $\mathcal{G}_n^{\delta_1}(W)$ denote the analogous collection as $\mathcal{G}_n(W)$, but with respect to the length scale δ_1 rather than δ_0 .

Lemma ('Long' elements of $\mathcal{G}_n(W)$ carry most weight)

 $\forall \varepsilon > 0 \ \exists \delta_1, n_1 > 0 \ s.t \ \forall W \in \widehat{\mathcal{W}}^s \ with \ |W| \ge \delta_1/3 \ and \ all \ n \ge n_1$,

$$\sum_{\substack{W_i \in \mathcal{G}_n^{\delta_1}(W_i) \\ |W_i| < \delta_1/3}} |J_{W_i} T^n|_{C^0(W_i)}^t \le \varepsilon \sum_{W_i \in \mathcal{G}_n^{\delta_1}(W)} |J_{W_i} T^n|_{C^0(W_i)}^t$$

Define $\mathcal{A}_n(\delta) = \{A \in \mathcal{M}_0^{n,\mathbb{H}} : \operatorname{diam}^u(T^n A) \ge \delta/3\}.$

Lemma ('Long' elements of $\mathcal{M}_{-n}^{0,\mathbb{H}}$ carry most weight) There exist $\delta_2 > 0$ and $c_0 > 0$ such that

$$\sum_{A \in \mathcal{A}_n(\delta_2)} \sup_{x \in A} |J^s T^n(x)|^t \ge c_0 Q_n(t), \ \forall n \in \mathbb{N}, \ \forall t \in [t_0, t_1].$$

Uniform Growth for $W \in \widehat{\mathcal{W}}^s$ and Supermultiplicativity

Proposition

a) There exists $c_1 > 0$ s.t. for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$\sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_1 Q_n(t) , \, \forall n \ge 1 \,, \, \forall t \in [t_0, t_1] \,.$$

b) There exists $c_2 > 0$ s.t. for all $k, n \ge 1$,

$$Q_{n+k}(t) \ge c_2 Q_n(t) Q_k(t) \,.$$

(b) follows from (a) and first growth lemma, since

$$\sum_{W_i \in \mathcal{G}_{n+k}^{\delta_1}(W)} |J_{W_i} T^{n+k}|_{C^0}^t \ge C \sum_{V_j \in L_n^{\delta_1}(W)} |J_{V_j} T^n|_{C^0}^t \sum_{W_i \in \mathcal{G}_k^{\delta_1}(V_j)} |J_{W_i} T^k|_{C^0}^t$$

Immediate corollary of (b) is exact exponential growth of $Q_n(t)$:

$$e^{nP_*(t)} \le Q_n(t) \le 2c_2^{-1}e^{nP_*(t)} \quad \forall n \ge 1, \, \forall t \in [t_0, t_1].$$

Fix $0 < \alpha \leq 1/(q+1)$. For $f \in C^1(M)$, define the weak norm of f by $|f|_w = \sup_{W \in \mathcal{W}_H^s} \sup_{\psi \in \mathcal{C}^\alpha(W)} \int_W f \psi \, dm_W$.

Define \mathcal{B}_w to be the completion of $C^1(M)$ in the $|\cdot|_w$ norm.

 $|\psi|_{\mathcal{C}^{\alpha}(W)} \leq 1$

Remark: Norms defined on stable manifolds \mathcal{W}^s rather than cone-stable curves $\widehat{\mathcal{W}}^s$. We make this choice because J^sT varies Hölder continuously along $W \in \mathcal{W}^s$, but only measurably transverse to stable direction. These norms are not well suited to study perturbations of the dynamics.

For t = 1, J^sT disappears and one can use $\widehat{\mathcal{W}}^s$ instead. Such norms are robust under perturbations [D., Zhang '13].

Definition of Norms: Strong Norm

Choose p > q + 1, $\beta \in (1/p, \alpha)$ and $\gamma < \min\{1/p, \alpha - \beta\}$. Define the strong stable norm of f by

$$||f||_{s} = \sup_{W \in \mathcal{W}_{H}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\beta}(W) \\ |\psi|_{\mathcal{C}^{\beta}(W)} \le |W|^{-1/p}}} \int_{W} f \, \psi \, dm_{W}$$

Define the strong unstable norm of f by

$$\|f\|_{u} = \sup_{\varepsilon \le \varepsilon_{0}} \sup_{\substack{W_{1}, W_{2} \in \mathcal{W}_{H}^{s} \ |\psi_{i}|_{\mathcal{C}^{\alpha}(W_{i})} \le 1 \\ d(W_{1}, W_{2}) \le \varepsilon}} \sup_{d_{0}(\psi_{1}, \psi_{2}) = 0}} \varepsilon^{-\gamma} \left| \int_{W_{1}} f\psi_{1} - \int_{W_{2}} f\psi_{2} \right|$$

The strong norm of f is defined to be $||f||_{\mathcal{B}} = ||f||_s + c_u ||f||_u$, Define \mathcal{B} to be the completion of $C^1(M)$ in the $|| \cdot ||_{\mathcal{B}}$ norm.

Lasota-Yorke: Unmatched Pieces

For strong unstable norm, estimate $\left| \int_{W_1} \mathcal{L}_t^n f \psi_1 - \int_{W_2} \mathcal{L}_t^n f \psi_2 \right|$ $\mathcal{G}_n(W_1)$ $\mathcal{G}_n(W_2)$ $\mathcal{G}_n(W_2)$ W_1 $\mathcal{G}_n(W_2)$

- Unmatched pieces have length at most $\Lambda^{-j}\varepsilon$ is they are cut by a singularity curve at time -j.
- Use the strong stable norm to estimate,

$$\int_{W_i} \mathcal{L}_t^n f \, \psi = \int_{V_j} \mathcal{L}_t^{n-j} f \, \psi \circ T^j |J_{V_j} T^j|^t \le \Lambda^{-j/p} \varepsilon^{1/p} \|\mathcal{L}_t^{n-j} f\|_s |J_{V_j} T^j|_{C^0}^t$$

• $\|\cdot\|_s$ acts as 'weak norm' for $\|\cdot\|_u$ to control unmatched pieces.

Banach Spaces

Theorem ([Baladi, D. '22])

• We have a sequence of continuous inclusions,

 $\mathcal{C}^1(M) \subset \mathcal{B} \subset \mathcal{B}_w \subset (\mathcal{C}^\alpha(M))^*.$

• The embedding of the unit ball of \mathcal{B} in \mathcal{B}_w is compact.

• There exist $C, C_n > 0$ such that for all $f \in \mathcal{B}$, $n \ge 0$,

 $\begin{aligned} & \|\mathcal{L}_t^n f\|_w \le CQ_n(t) \|f\|_w, \\ & \|\mathcal{L}_t^n f\|_s \le C \big(\Lambda^{-(\beta-1/p)n} Q_n(t) + \theta^{(t-1/p)n}\big) \|f\|_s + C_n \|f\|_w) \\ & \|\mathcal{L}_t^n f\|_u \le CQ_n(t) \big(n^{\gamma} \Lambda^{-\gamma n} \|f\|_u + C_n \|f\|_s\big). \end{aligned}$

Implies the spectral radius of \mathcal{L}_t on \mathcal{B} is at most $e^{P_*(t)}$ and its essential spectral radius $\langle e^{P_*(t)}$ if $\theta^t \langle e^{P_*(t)}$ (pressure gap).

To prove \mathcal{L}_t is quasi-compact, we need a **lower bound** on the spectral radius.

The lower bound follows from our uniform growth result: There exists $c_1 > 0$ s.t. for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$\sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_1 Q_n(t) , \, \forall n \ge 1 \,, \, \forall t \in [t_0, 1] \,.$$

Let $W \in \mathcal{W}_{H}^{s}$ with $|W| \geq \delta_{1}/3$, choose $\psi \equiv 1$. For any $n \geq 1$,

$$\int_{W} \mathcal{L}_{t}^{n} 1 = \sum_{W_{i} \in \mathcal{G}_{n}(W)} \int_{W_{i}} |J_{W_{i}}T^{n}|^{t} \ge e^{-C_{d}} \sum_{W_{i} \in \mathcal{G}_{n}(W)} |J_{W_{i}}T^{n}|_{C^{0}(W_{i})}^{t}$$
$$\ge e^{-C_{d}} c_{1}Q_{n}(t) \ge e^{-C_{d}} c_{1}e^{nP_{*}(t)}$$

Thus $\|\mathcal{L}^n 1\|_s \ge Ce^{nP_*(t)}$ and so the spectral radius of \mathcal{L} is $e^{P_*(t)}$.

Spectral Decomposition of \mathcal{L}_t

Our exact exponential growth implies:

$$\|\mathcal{L}_t^n\|_{\mathcal{B}} \le CQ_n(t) \le C'e^{nP_*(t)},$$

so that the peripheral spectrum of \mathcal{L}_t has no Jordan blocks.

There exist a finite set $\{\theta_j\}_{j=0}^N$, $\theta_0 = 0$, linear operators $\Pi_j, R : \mathcal{B} \circlearrowleft$ satisfying $\Pi_i \Pi_j = \Pi_j R = R \Pi_j = 0$ with spectral radius of R < 1, such that

$$e^{-P_*(t)}\mathcal{L}_t = \sum_{j=1}^N e^{2\pi i\theta_j} \Pi_j + R$$

Proof of spectral gap follows similar lines as for Baker's map: Define $\nu_t = \Pi_0 1$. Show all eigenvectors corresponding to the peripheral spectrum are measures absolutely continuous wrt ν_t , and θ_j must be rational. Use mixing to show 1 is simple for \mathcal{L}_t^k for $k \geq 1$. (Lack of smoothness complicates argument.)

A Spectral Gap for \mathcal{L}_t

Theorem ([Baladi, D. '22])

For each $t_0 > 0$ and $t_1 < t_*$, there exists a Banach space $\mathcal{B} = \mathcal{B}(t_0, t_1)$ such that \mathcal{L}_t has a spectral gap:

• $e^{P_*(t)}$ is the eigenvalue of maximum modulus, it is simple, and the remainder of the spectrum of \mathcal{L}_t is contained in a disk of radius $\bar{\sigma}e^{P_*(t)}$, where $\bar{\sigma} < 1$ is uniform for $t \in [t_0, t_1]$.

Letting ν_t and $\tilde{\nu}_t$ denote the maximal right and left eigenvectors for \mathcal{L}_t , define

$$\mu_t(\psi) = \frac{\langle \nu_t, \psi \tilde{\nu}_t \rangle}{\langle \nu_t, \tilde{\nu}_t \rangle}, \quad \psi \in C^{\alpha}(M).$$

Then μ_t is an invariant probability measure for T, and enjoys exponential decay of correlations against Hölder observables.

 μ_t has no atoms, gives 0 weight to any C^1 curve and is positive on open sets. Moreover, $\int |\log d(x, \mathcal{S}_{\pm 1})| d\mu_t < \infty$.

Entropy of μ_t and a Variational Principle

 $\text{Define }B(x,n,\varepsilon)=\{y\in M: d(T^{-i}x,T^{-i}y)\leq \varepsilon, \forall i\in [0,n]\}.$

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all $x \in M$, $n \ge 1$, and $y \in B(x, n, \varepsilon)$,

$$\mu_t(B(x, n, \varepsilon)) \le C e^{-nP_*(t) + t \log J^s T^n(T^{-n}y)}$$

• [Brin, Katok '81] \implies for μ_t -a.e. $x \in M$, $\lim \lim \sup -\frac{1}{-} \log \mu_t(B(x, n, \varepsilon)) = h_{\mu_t}(T).$

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_t(D(x, n, \varepsilon)) - n \mu_t$$

• This plus the Proposition implies

$$h_{\mu_t}(T) \ge P_*(t) - t \int \log J^s T \, d\mu_t = P_*(t) + t \int \log J^u T \, d\mu_t$$

P But $P_*(t) \ge h_{\mu_t}(T) - t \int \log J^u T \, d\mu_t$ since $P_*(t) \ge P(t)$.
P Conclude: $P_*(t) = h_{\mu_t}(T) - t \int \log J^u T \, d\mu_t = P(t)$.

Goal for this section: Discuss the case t = 0. We must modify the Banach spaces and we lose the spectral gap. Yet we are able to maintain enough control of the transfer operator to construct a unique measure of maximal entropy.

Reference: V. Baladi and M. Demers, *On the measure of maximal entropy for finite horizon Sinai billiard maps*, Journal Amer. Math. Soc. (2020).

• Transfer operator for geometric potential with t = 0,

$$\mathcal{L}_0 f = \frac{f \circ T^{-1}}{J^s T \circ T^{-1}}$$

• $J^sT \approx \cos \varphi$ so the potential is unbounded

• $J^{s}T$ is not continuous on any open set

Weight Function for Topological Entropy

To control the evolution of $\mathcal{L}_0^n f$, must control integrals of the type,

$$\int_W \mathcal{L}_0^n f \,\psi \, dm_W = \int_{T^{-n}W} f \,\psi \circ T^n \, dm_{T^{-n}W} \,.$$

- $\bullet \; W \in \mathcal{W}^s,$ the set of local stable manifolds with uniformly bounded curvature
- m_W is arclength measure on W
- ${\bullet}\;\psi\in C^{\alpha}(W)$ is a Hölder continuous test function
- f is an element of our Banach space (closure of $C^1(M)$ in some norm)

 $T^{-n}W = \cup_i W_i$, smooth, connected components.

We need to estimate precisely how $\sum_{W_i} 1$ grows as a function of n and W. Without a Jacobian, the growth lemmas will look different; we cannot use homogeneity strips.

Step 1: A Definition of Topological Entropy

• Let $\mathcal{M}_{-k}^n = \text{connected}$ components of $M \setminus (\mathcal{S}_{-k} \cup \mathcal{S}_n)$.

Define

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n$$

$$M \setminus \mathcal{S}_n$$

- The limit exists since the sequence $\log \# \mathcal{M}_0^n$ is subadditive: $\# \mathcal{M}_0^{n+m} \leq \# \mathcal{M}_0^n \cdot \# \mathcal{M}_0^m$.
- h_* is the exponential rate of growth of the number of pieces created by the discontinuities of T. It does not depend on a choice of metric.
- h_* satisfies a variational inequality,

 $h_* \ge \sup\{h_\mu(T): \mu \text{ is a } T \text{-invariant Borel prob. measure}\}$

$\mathcal{G}_n(W)$ and Linear Complexity Bound

To obtain a precise estimate on the spectral radius of \mathcal{L}_0 , we will need precise estimates on the growth rates of $\#\mathcal{M}_0^n$ and $\#\mathcal{G}_n(W)$.

- \bullet Define $\mathcal{G}_n(W)$ without homogeneity strips
- For $W \in \widehat{\mathcal{W}}^s$, define $\mathcal{G}_1(W)$ to be the maximal, connected components of $T^{-1}W$ subdivided to length at most δ_0 (t.b.d.)
- Define $\mathcal{G}_n(W) = \{\mathcal{G}_1(W_i) : W_i \in \mathcal{G}_{n-1}(W)\}.$

Recall the linear complexity bound.

For $x \in M$, let $N(\mathcal{S}_n, x)$ denote the number of singularity curves in \mathcal{S}_n that meet at x. Define $N(\mathcal{S}_n) = \sup_{x \in M} N(\mathcal{S}_n, x)$.

Lemma (Bunimovich, Chernov, Sinai '90)

Assume finite horizon. There exists K > 0 depending only on the configuration of scatterers such that $N(S_n) \leq Kn$ for all $n \geq 1$.

Choose n_0 s.t. $n_0^{-1} \log(Kn_0 + 1) < h_*$. Choose δ_0 s.t. any stable curve of length $\leq \delta_0$ is cut into at most $Kn_0 + 1$ pieces by S_{-n_0} .

Fragmentation Lemma (Growth Lemma)

Let
$$L_n^{\delta}(W) = \{W_i \in \mathcal{G}_n^{\delta}(W) : |W| \ge \delta/3\}.$$

 $Sh_n^{\delta}(W) = \mathcal{G}_n^{\delta}(W) \setminus L_n^{\delta}(W).$

Lemma ([Baladi, D. '20])

For all $\varepsilon > 0$ there exists $n_1, \delta > 0$ s.t. for all $n \ge n_1$,

 $\#Sh_n^{\delta}(W) \leq \varepsilon \#\mathcal{G}_n^{\delta}(W) \quad \text{ for all } W \in \widehat{\mathcal{W}}^s \text{ with } |W| \geq \delta/3.$

Idea of Proof: Choose $\varepsilon > 0$ and n_1 s.t. $3C_0^{-1}(Kn_1+1)\Lambda^{-n_1} < \varepsilon$. Choose $\delta > 0$ s.t. if $|W| < \delta$ then $T^{-n_1}W$ comprises at most $Kn_1 + 1$ connected components of length at most δ_0 .

Then $Sh_{n_1}^{\delta}(W)$ contains at most $Kn_1 + 1$ elements while $|T^{-n_1}W| \ge C_0 \Lambda^{n_1} \delta/3$, where $\Lambda = 1 + 2\mathcal{K}_{\min}\tau_{\min}$.

Thus $\#\mathcal{G}_{n_1}^{\delta}(W) \ge C_0 \Lambda^{n_1}/3$ and so $\frac{\#Sh_{n_1}^{\delta}(W)}{\#\mathcal{G}_{n_1}^{\delta}(W)} \le \varepsilon$ by choice of n_1 .

Argument can be iterated, grouping by most recent long ancestor.

Fragmentation of \mathcal{M}_0^n

This lemma can also be formulated for elements of \mathcal{M}_0^n and \mathcal{M}_{-n}^0 . Let δ_1 , $n_1 \ge n_0$ correspond to $\varepsilon = 1/4$ in fragmentation lemma: For all $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$#L_n^{\delta_1}(W) \ge \frac{3}{4} #\mathcal{G}_n^{\delta_1}(W) \,, \quad \forall n \ge n_1 \,.$$

Lemma

There exists
$$c_0 > 0$$
 s.t. for all $n \ge 1$,

 $\#L_s(\mathcal{M}_0^n) \ge c_0 \delta_1 \# \mathcal{M}_0^n \quad \text{and} \quad \#L_u(\mathcal{M}_{-n}^0) \ge c_0 \delta_1 \# \mathcal{M}_{-n}^0 \,.$

Fragmentation Lemmas \implies Uniform Bounds on Growth

Proposition

a) $\exists c_1 > 0$ such that for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$#\mathcal{G}_n(W) \ge c_1 # \mathcal{M}_0^n \qquad \forall n \ge 1.$$

b) There exists $c_2 > 0$ such that for all $k, n \ge 1$,

$$\#\mathcal{M}_0^{n+k} \ge c_2 \#\mathcal{M}_0^n \cdot \#\mathcal{M}_0^k.$$

(b) implies exact exponential growth of $\#\mathcal{M}_0^n$,

$$e^{nh_*} \le \#\mathcal{M}_0^n \le 2c_2^{-1}e^{nh_*} \quad \text{for all } n \ge 1.$$

(a) + fragmentation lemma \implies (b) since

$$#\mathcal{G}_{n+k}(W) \ge \sum_{V_j \in L_n^{\delta_1}(W)} #\mathcal{G}_k(V_j) \ge #L_n^{\delta_1}(W)c_1 #\mathcal{M}_0^k$$

$$\geq \frac{3c_1}{4} \# \mathcal{G}_n^{\delta_1}(W) \# \mathcal{M}_0^k \geq \frac{3c_1^2}{4} \# \mathcal{M}_0^n \# \mathcal{M}_0^k$$

New Assumption: 'Sparse Recurrence' to Singularities

In order to leverage these growth and fragmentation lemmas to control \mathcal{L}_0 , we need the following additional assumption on T.

• Fix $n_0 \in \mathbb{N}$ and an angle φ_0 close to $\pi/2$.

• Let $s_0 \in (0,1)$ be the smallest number such that any orbit of length n_0 has at most $s_0 n_0$ collisions with $|\varphi| \ge \varphi_0$.

Finite horizon guarantees that we can always choose n_0 and φ_0 so that $s_0 < 1$. (Indeed, no triple tangencies implies that $s_0 \leq \frac{2}{3}$.)

Assumption: $h_* > s_0 \log 2$

Fact: If W is a local stable manifold, then $|T^{-1}W| \leq C|W|^{1/2}$.

Our assumption ensures that the growth due to tangential collisions does not exceed the exponential rate of growth given by h_* .

Toy Calculation in Previous Norms

Recall that the strong stable norm for t > 0 was

$$||f||_{s} = \sup_{W \in \mathcal{W}^{s}} \sup_{|\psi|_{C^{\alpha}(W)} \le |W|^{-1/p}} \int_{W} f\psi \, dm_{W},$$

and the weight $|W|^{-1/p}$ was needed to control the contribution from unmatched pieces in the strong unstable norm estimate.

But now we have no Jacobian or homogeneity strips. So suppose $W \in \mathcal{W}^s$ s.t. $T^{-1}W$ has a single component with $|T^{-1}W| \approx |W|^{1/2}$. Then if $\psi = |W|^{-1/p}$,

$$\int_{W} \mathcal{L}_0 f \, \psi = |W|^{-1/p} \int_{T^{-1}W} f \le ||f||_s \frac{|T^{-1}W|^{1/p}}{|W|^{1/p}} \approx ||f||_s |W|^{-1/2p}$$

and taking sup over $W \in W^s$ yields ∞ . The spectral radius of $\mathcal{L}_0 = \infty$ on such a space, for any p > 0.

To avoid this, we use a logarithmic weight instead.

Definition of Norms: Weak Norm

Choose $\alpha, \beta, \varsigma > 0$ and $\gamma > 1$ such that

$$\beta < \alpha \leq 1/3, \quad 2^{s_0\gamma} < e^{h_*}, \quad \varsigma < \gamma \, .$$

Choose n_0 so that

$$\frac{1}{n_0} \log(K n_0 + 1) < h_* - \gamma s_0 \log 2 \,,$$

where K is from the linear bound on complexity.

Fix the length scale $\delta_0 > 0$ so that any $W \in \mathcal{W}^s$ (with $|W| \le \delta_0$) is cut into at most $Kn_0 + 1$ pieces by \mathcal{S}_{-n_0} .

For $f \in C^1(M)$, define the weak norm of f by

$$|f|_{w} = \sup_{W \in \mathcal{W}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\alpha}(W) \\ |\psi|_{\mathcal{C}^{\alpha}(W)} \leq 1}} \int_{W} f \, \psi \, dm_{W} \, .$$

Define \mathcal{B}_w to be the completion of $C^1(M)$ in the $|\cdot|_w$ norm.

Define the strong stable norm of f by

$$\|f\|_{s} = \sup_{W \in \mathcal{W}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\beta}(W) \\ |\psi|_{\mathcal{C}^{\beta}(W)} \le |\log|W||^{\gamma}}} \int_{W} f \,\psi \, dm_{W}$$

Define the **strong unstable norm** of f by

$$\|f\|_{u} = \sup_{\varepsilon \le \varepsilon_{0}} \sup_{\substack{W_{1}, W_{2} \in \mathcal{W}^{s} \\ d(W_{1}, W_{2}) \le \varepsilon}} \sup_{\substack{|\psi_{i}|_{\mathcal{C}^{\alpha}(W_{i})} \le 1 \\ d_{0}(\psi_{1}, \psi_{2}) = 0}} \left|\log \varepsilon\right|^{\varsigma} \left| \int_{W_{1}} f\psi_{1} - \int_{W_{2}} f\psi_{2} \right|$$

The strong norm of f is defined to be $||f||_{\mathcal{B}} = ||f||_s + ||f||_u$, Define \mathcal{B} to be the completion of $C^1(M)$ in the $|| \cdot ||_{\mathcal{B}}$ norm.

No contraction of $\|\cdot\|_u$

The logarithmic modulus of continuity in the strong unstable norm prevents contraction of $\|\cdot\|_u$.

For strong unstable norm, estimate $\left|\int_{W_1} \mathcal{L}_0^n f \,\psi_1 - \int_{W_2} \mathcal{L}_0^n f \,\psi_2\right|$

- If $d(W^1, W^2) \leq \varepsilon$, and if $W_i^1 \in \mathcal{G}_n(W^1)$, $W_i^2 \in \mathcal{G}_n(W_i^2)$ are matched, then $d(W_i^1, W_i^2) \leq C\Lambda^{-n}\varepsilon$.
- But the contraction is $\frac{|\log C\Lambda^{-n}\varepsilon|^{\varsigma}}{|\log \varepsilon|^{\varsigma}}$, and taking the supremum over $\varepsilon > 0$ yields 1.

Theorem ([Baldi, D. '20])

• We have a sequence of inclusions,

$$\mathcal{C}^1(M) \subset \mathcal{B} \subset \mathcal{B}_w \subset (\mathcal{C}^\alpha(M))^*.$$

• The embedding of the unit ball of \mathcal{B} in \mathcal{B}_w is compact.

• Assume $h_* > s_0 \log 2$. There exists C > 0 such that for all $f \in \mathcal{B}$, $n \ge 0$,

$$\begin{split} |\mathcal{L}^n f|_w &\leq C |f|_w \# \mathcal{M}_0^n \\ \|\mathcal{L}^n f\|_s &\leq C(\sigma^n \|f\|_s + |f|_w) \# \mathcal{M}_0^n \,, \quad \text{for some } \sigma < 1 \\ \|\mathcal{L}^n f\|_u &\leq C(\|f\|_u + \|f\|_s) \# \mathcal{M}_0^n \end{split}$$

The inequalities above are not true Lasota-Yorke inequalities due to lack of contraction in the strong unstable norm.

Bounds on the Spectral Radius of \mathcal{L}_0

Although we do not prove quasi-compactness of \mathcal{L}_0 on \mathcal{B} , we do have good control of $\|\mathcal{L}_0^n\|_{\mathcal{B}}$.

- Our upper bound $\#\mathcal{M}_0^n \leq C_2 e^{nh_*}$ plus our 'Lasota-Yorke' inequalities imply that $\|\mathcal{L}_0^n\|_{\mathcal{B}} \leq C e^{nh_*}$, for all $n \geq 1$.
- Our lower bound on $\#\mathcal{G}_n(W)$ implies that

$$\begin{aligned} \|\mathcal{L}_{0}^{n}1\|_{s} &\geq |\mathcal{L}_{0}^{n}1|_{w} \geq \int_{W} \mathcal{L}_{0}^{n}1 = \sum_{W_{i} \in \mathcal{G}_{n}^{\delta_{1}}(W)} |W_{i}| \\ &\geq \frac{\delta_{1}}{3} \frac{3}{4} \# \mathcal{G}_{n}^{\delta_{1}}(W) \geq Ce^{nh_{*}} \,. \end{aligned}$$

This implies that the sequence $e^{-nh_*}\mathcal{L}_0^n 1$ is uniformly bounded away from 0 and ∞ in the strong norm. We use this fact to construct an eigenmeasure for \mathcal{L}_0 with eigenvalue e^{h_*} . • The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}_0^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

• Similarly, let $\tilde{\nu} \in (B_w)^*$ be a limit point of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} (\mathcal{L}_0^*)^k (d\mu_{\text{SRB}}).$

• Define
$$\mu_*(\psi) = \frac{\tilde{\nu}(\psi\nu)}{\tilde{\nu}(\nu)}$$
, for $\psi \in C^1(M)$.

Since $\mathcal{L}_0 \nu = e^{h_*} \nu$ and $\mathcal{L}_0^* \tilde{\nu} = e^{h_*} \tilde{\nu}$, we have $\mu_*(\psi \circ T) = \mu_*(\psi)$, i.e. μ_* is an invariant measure for T.

Hyperbolicity of μ_*

0

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the $|\cdot|_w$ norm that $\|\nu\|_{\mathcal{B}} < \infty$.

This implies estimates of the form:

• For any $k \in \mathbb{Z}$, $\exists C_k > 0$ s.t.

 $u(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}, \qquad \mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}.$

$$\mathcal{N}_{\varepsilon}(\mathcal{S}_k) = \varepsilon$$
-neighborhood of \mathcal{S}_k in M , $\gamma > 1$.

•
$$\int_M -\log d(x, \mathcal{S}_{\pm 1}) \, d\mu_*(x) < \infty \quad (\mu_* \text{ is } T \text{-adapted}).$$

• μ_* -a.e. $x \in M$ has a stable and unstable manifold of positive length. The same is true with respect to ν .

Ergodicity of μ_*

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle ${\cal R}$

Lemma (Absolute continuity of holonomy)

On each Cantor rectangle R, the holonomy map sliding along unstable manifolds in R is absolutely continuous with respect to the conditional measures of μ_* on stable manifolds.

That $\|\nu\|_{\mathcal{B}} < \infty$ is crucial to the proof of the lemma.

Consequences:

- Each Cantor rectangle R belongs to one ergodic component.
- Since T is topologically mixing, we can force images of rectangles to overlap $\implies (T^n, \mu_*)$ is ergodic for all n.

- The local product structure of the Cantor rectangles, together with a global argument showing that a full measure set of points on each component of M can be connected by a network of stable/unstable manifolds, enables us to prove that (T, μ_{*}) is K-mixing, following techniques of [Pesin '77, '92].
- K-mixing + hyperbolicity + absolute continuity of μ_* + bounds on $\mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_{\pm 1}))$

 \implies the partition \mathcal{M}_{-1}^1 is **very weakly Bernoulli**, following the technique of [Chernov, Haskell '96].

Since $\bigvee_{n=-\infty}^{\infty} T^{-n}(\mathcal{M}_{-1}^1)$ generates the full σ -algebra for T, this implies by [Ornstein, Weiss '73] that (T, μ_*) is Bernoulli.

Entropy of μ_*

Define
$$B(x, n, \varepsilon) = \{y \in M : d(T^{-i}x, T^{-i}y) \le \varepsilon, \forall i \in [0, n]\}.$$

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x,n,\varepsilon)) \le Ce^{-nh_*}.$

• [Brin, Katok '81]
$$\implies$$
 for μ_* -a.e. $x \in M$,
$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B(x, n, \varepsilon)) = h_{\mu_*}(T^{-1}) = h_{\mu_*}(T).$$

• This plus the Proposition implies $h_{\mu*}(T) \ge h_*$

- But $h_* \ge h_{\mu_*}(T)$ by Theorem 1.
- Conclude: $h_* = h_{\mu_*}(T)$.

Uniqueness of μ_*

The usual Bowen argument for uniqueness uses

 $\forall \varepsilon > 0, \exists C > 0 \text{ s.t. for } \mu_*\text{-a.e. } x \in M, \ \ \mu_*(B(x,n,\varepsilon)) \geq C e^{-nh_*}.$

This fails for billiards due to rate of approach to singularity set. Rather: $\forall \eta > 0$ and μ_* -a.e. $x \in M$,

$$\exists C=C(\eta,x)>0 \text{ s.t. } \mu_*(B(x,n,\varepsilon))\geq Ce^{-n(h_*+\eta)}.$$

This is not sufficient for the Bowen argument.

However: fix $\delta > 0$ small. For each $n \ge 1$ 'most' $x \in M$ belong to an element of \mathcal{M}_0^j at time $n/2 \le j \le n$ that satisfies,

$$\begin{split} \operatorname{diam}^{s}(A) &\geq \delta \quad \text{and} \quad \operatorname{diam}^{u}(T^{j}A) \geq \delta \\ \implies \mu_{*}(A) &\geq C_{\delta}e^{-jh_{*}} , \qquad \text{for some } C_{\delta} > 0. \end{split}$$

Together with a time shift to group elements of \mathcal{M}_0^n according to \mathcal{M}_0^j , this is sufficient to adapt the Bowen argument.

Theorem ([Baladi, D. '20])

Let T be the billiard map corresponding to a finite horizon periodic Lorentz gas. Assume $h_*>s_0\log 2.$ Then,

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n = \sup_{\mu} h_{\mu}(T).$$

Moreover, there exists a unique T-invariant measure μ_* such that

• $h_{\mu_*}(T) = h_*$ • $h_* = P(0) = \lim_{t \downarrow 0} P(t) = \lim_{t \downarrow 0} P_*(t)$ • $h_* = h_{top}(T, M')$ • (T, μ_*) is Bernoulli and positive on open sets • $\int -\log d(x, \mathcal{S}_{\pm 1}) d\mu_*(x) < \infty$

Last item implies that μ_* is *T*-adapted. By [Lima, Matheus '18], Buzzi '20], $\exists C > 0$ such that $P_n(T) \ge Ce^{nh_*}$, for n large.