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Overview of Mini-Course

Main Goal of Lectures: Introduce functional analytic framework
to study transfer operators associated to hyperbolic systems, and
use these tools to present recent progress regarding equilibrium
states and topological pressure for dispersing billiard maps and
flows.

Plan for Lectures

1. Introduction to Banach spaces for hyperbolic systems
Smooth expanding maps, contracting map, Baker’s map
Geometry of dispersing billiards

2. Thermodynamic formalism for billiard map
Geometric potentials and topological pressure, −t logJuT ,
t > 0.
Measure of maximal entropy at t = 0, loss of spectral gap

3. Measure of maximal entropy for billiard flow
Family of potentials for map −tτ , t ≥ 0.
Equilibrium state for t = htop(Φ1) yields MME for flow.
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Transfer Operator or Ruelle-Perron-Frobenius Operator

Transformation T : X 	. Transfer operator L associated to T
acts on a distribution µ by

Lµ(ψ) = µ(ψ ◦ T ), ψ a test function, say Cα.

If dµ = fdm is a measure abs. cont. w.r.t. m, then
∫

Lf ψ dm =

∫
f ψ ◦ T dm,

so that pointwise

Lf(x) =
∑

y∈T−1x

f(y)

JT (y)
,

where JT is the Jacobian of T with respect to m, represents the
density of the measure T∗µ, i.e. d(T∗µ) = Lf dm.

L = Linear operator which governs evolution of measures, acting
on some Banach space of functions, measures or distributions.
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Weighted or Generalized Transfer Operator

Generalize the transfer operator by including a potential function g,

Lgµ(ψ) = µ(eg ψ ◦ T ) .

This allows the transfer operator to be used to study a variety of
equilibrium states associated with some classes of potentials (often
Hölder continuous). For example, the measure of maximal entropy.

In this case, one constructs an invariant measure µ using the left
and right maximal eigenvectors of Lg:
Lgν = λν and L∗

gν̃ = λν̃, where L∗
g is the dual to Lg on a suitable

Banach space. Then
µ(ψ) = ν(ψν̃),

is an invariant measure for T (Parry construction).

Today: Discuss the case g = 0.
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Spectral Decomposition of L via Quasi-Compactness

Goal: Use spectral properties of L acting on an appropriate
Banach space to gain dynamical information about T .

Method: Prove L is quasi-compact on some Banach space B:
∃ρ < 1 s.t. the spectrum of L outside disk of radius ρ is
finite-dimensional.

Eigenspace corresponding to 1 =
invariant measures

Periodic behavior of L
corresponds to eigenvalues other
than 1 on the unit circle

1

ρ

If 1 is a simple eigenvalue and we can eliminate periodicity, we
can conclude that L has a spectral gap
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Consequences of the Spectral Gap

∫
f ψ ◦ T n dm = µf (ψ ◦ T n) = Lnµf (ψ) , where dµf = fdm.

The presence of a spectral gap allows us to establish exponential
decay of correlations and convergence to equilibrium, along with
many limit theorems:

Central Limit Theorem

Large deviation estimates

Almost-sure invariance principles

The functional analytic framework gives a unified (and often
simplified) approach for handling perturbations as well, either
through classical perturbation theory, or the weakened form due to
[Keller, Liverani ’99].

How can we apply this approach to specific systems?
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Quasi-Compactness via Dynamical Inequalities

Dynamical method to estimate the essential spectral radius
[Hennion ’93] following [Doeblin, Fortet ’37], [Ionescu-Tulcea,
Marinescu ’50], [Lasota, Yorke ’73].

Essential ingredients:

Two Banach spaces (B, ‖ · ‖) and (Bw, | · |w), with an
embedding B →֒ Bw such that |f |w ≤ ‖f‖ for f ∈ B
The unit ball of B is compactly embedded in Bw
(Lasota-Yorke/Doeblin-Fortet inequalities)
∃ C > 0 and ρ < 1 such that for all f ∈ B, n ≥ 0,

‖Lnf‖ ≤ Cρn‖f‖+ C|f |w
|Lnf |w ≤ C|f |w

Then L : B 	 has essential spectral radius ≤ ρ.

(Note: The above inequalities imply that the spectral radius is
≤ 1, but for reasonable choices of B, it is actually 1.)
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Ex 1: Expanding maps of the interval

[Lasota, Yorke ’73]

T : [0, 1] 	, piecewise C2, ∃λ < 1 s.t. |T ′| ≥ λ−1 > 1
m denotes Lebesgue measure

Weak space, Bw = L1(m)

Strong space, B = BV with norm

‖f‖BV = sup
ψ∈C1,|ψ|∞≤1

∫
f ψ′ dm

Lf(x) =
∑

y∈T−1x

f(y)

|T ′(y)| for f ∈ L1(m)

One Lasota-Yorke inequality is immediate: |Lnf |1 ≤ |f |1 since

∫
|Lf | dm ≤

∫
L|f | dm =

∫
|f | dm .
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Ex 1: Expanding maps of the interval

Estimate in the smooth case:

∫
Lf ψ′ dm =

∫
f ψ′ ◦ T dm =

∫
f

(
ψ ◦ T
T ′

)′

dm+

∫
f
ψ ◦ T
(T ′)2

T ′′ dm

≤ ‖f‖BV |ψ|∞λ+ |f |1|ψ|∞Cdist

Taking appropriate suprema,

‖Lf‖BV ≤ λ‖f‖BV + C|f |1

The case with discontinuities is handled similarly by splitting the
integral over intervals of differentiability for T .

So L acting on BV is quasi-compact. If T is mixing, then L has a
spectral gap.

Note: essential spectral radius bounded by λ = sup
x∈I

1

|T ′(x)| < 1.
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Ex 2: A contracting map of the interval

[Liverani ’04]

T : [0, 1] 	, T ∈ C1, ∃λ < 1 s.t. |T ′| ≤ λ, ∃c ∈ I, T (c) = c

Expect convergence of measures to δc so usual function
spaces will not work

Consider spaces of distributions: Dual spaces to Hölder
continuous test functions

|ψ|Cα = |ψ|C0 +Hα(ψ) , Hα(ψ) = sup
x 6=y

|ψ(x)− ψ(y)|
|x− y|α

Let f ∈ C1(I) and let dµ = fdm. Choose α < 1 and define

|µ|w = sup
|ψ|C1≤1

|µ(ψ)| and ‖µ‖ = sup
|ψ|Cα≤1

|µ(ψ)|

B is the completion of C1 in the ‖ · ‖-norm
Bw is the completion of C1 in the | · |w-norm
Unit ball of B compact in Bw since C1 compact in Cα
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Ex 2: A contracting map of the interval

For ψ ∈ Cα, let ψ =
∫
ψ ◦ T dm. Then

Lµ(ψ) = µ(ψ ◦ T − ψ) + µ(ψ) ≤ ‖µ‖|ψ ◦ T − ψ|Cα + |µ|w|ψ|C1

Estimate |ψ ◦ T − ψ|Cα by

|ψ ◦ T (x)− ψ(x)| = |ψ ◦ T (x)− ψ ◦ T (z)| ≤ |ψ|Cαλα

|ψ ◦ T (x)− ψ(x)− ψ ◦ T (y) + ψ(y)| ≤ |ψ|Cαλα|x− y|α

Also, |ψ|C1 ≤ |ψ|∞ = 1, so that

‖Lµ‖ ≤ λα‖µ‖+ |µ|w

A similar estimate shows that |Lµ|w ≤ |µ|w
• Note: We cannot choose α = 0 so B must be larger than

the space of measures
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Norms for Hyperbolic systems

Conclusions we can draw from these simple examples:

When T is expanding, L improves regularity of functions

When T is contracting, L improves regularity in certain spaces
of distributions

Moral: Hyperbolic systems have both contracting and expanding
directions so by choosing spaces of distributions that are regular in
the unstable direction and by averaging (integrating) along stable
curves, we are able to define norms in which L improves regularity.

By integrating against Hölder continuous functions on stable
curves, we are in spirit defining a notion that is dual to that of
standard pairs, developed by Dolgopyat and Chernov, which
considers the evolution of Hölder densities on unstable curves.
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Ex 3: Generalized Baker’s Map

M = [0, 1]2. Fix κ ∈ N, κ ≥ 2, and λ ∈ R such that 0 < λ ≤ 1/κ.

Define a generalized (κ, λ) Baker’s transformation Tκ,λ:

Subdivide M into κ vertical rectangles Ri of width 1/κ.

Tκ,λ affine on each Ri: expands by factor κ horizontally,
contracts by factor λ vertically

{Tκ,λ(Ri)}i have disjoint interiors.

Ri

M

λ

κ

T (M)

T (Ri)

The map T = Tκ,λ with κ = 4 and λ < 1/4.

If λ = 1/κ, then T is area preserving; otherwise, dissipative.
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Transfer Operator

Ws/u := {vertical/horizontal line segments of length 1 in M}
Ws/u = local stable/unstable manifolds for T = Tκ,λ

For α ∈ [0, 1], define |ψ|Cα(Ws) = supW∈Ws |ψ|Cα(W ).

If ψ ∈ Cα(Ws), then ψ ◦ T ∈ Cα(Ws).

Now define L acting on (Cα(Ws))∗ by

Lf(ψ) = f(ψ ◦ T ), ∀ψ ∈ Cα(Ws), f ∈ (Cα(Ws))∗

If f ∈ C1(M), then associate f with the measure fdm, m =
Lebesgue measure. Then pointwise,

Lf(x) = f ◦ T−1(x)

κλ

Note Lf = 0 on M \ T (M) and m is conformal, i.e. L∗m = m.
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Definition of Norms

Let f ∈ C1(Wu).

Define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈C1(W )
|ψ|C1(W )≤1

∫

W
f ψ dmW

mw = arclength measure on W .

Let α ∈ (0, 1) and define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫

W
f ψ dmW

On each W ∈ Ws, these are simply the norms for the contracting
map.
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Definition of Norms

The strong norm should provide regularity in the unstable direction.

Write W ∈ Ws in coordinates:

W = {(s, t) ∈M : s = sW , t ∈ [0, 1]}

Then define d(W1,W2) = |sW1 − sW2 |,
and for test functions ψi ∈ C1(Wi), define

d0(ψ1, ψ2) = sup
t∈[0,1]

|ψ1(sW1 , t)− ψ2(sW2 , t)|

Choose β ∈ (0, 1) with β ≤ 1− α.

Define the strong unstable norm of f by

‖f‖u = sup
W1,W2∈Ws

sup
ψi∈C1(Wi)
|ψi|C1(Wi)

≤1

d0(ψ1,ψ2)=0

d(W1,W2)
−β

∣∣∣∣
∫

W1

f ψ1 −
∫

W2

f ψ2

∣∣∣∣
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Banach spaces B and Bw

The strong norm of f is ‖f‖B = ‖f‖s + ‖f‖u
Define the weak space Bw to be the completion of C1(Wu) in the
| · |w norm.

Define the strong space B to be the completion of C1(Wu) in the
‖ · ‖B norm.

Lemma (Embedding Lemma)

We have the following sequence of continuous embeddings,

C1(M) →֒ B →֒ Bw →֒ (C1(Ws))∗.

Moreover, the embedding B →֒ Bw is relatively compact.
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Proof of Relative Compactness

Fix ε > 0. Let C1
1 (W ) denote the unit ball of C1(W ).

Choose {ψi}Nε
i=1 ⊂ C1([0, 1]) which forms an ε-cover of

C1
1 (W ) in the Cα(W ) norm for all W ∈ Ws.

Choose {Wj}Jεj=1 ⊂ Ws which forms an ε-cover of Ws in the
metric d(·, ·).

Take f ∈ C1(Wu), W ∈ Ws, ψ ∈ C1
1 (W ). Choose ψi s.t.

|ψ − ψi|Cα(W ) ≤ ε and Wj s.t. d(W,Wj) ≤ ε. Then,
∣∣∣∣∣

∫

W
fψ −

∫

Wj

fψi

∣∣∣∣∣ ≤
∣∣∣∣
∫

W
f(ψ − ψi)

∣∣∣∣+
∣∣∣∣∣

∫

W
f ψi −

∫

Wj

f ψi

∣∣∣∣∣
≤ ‖f‖s|ψ − ψi|Cα + d(W,Wj)

β‖f‖u ≤ εβ‖f‖B
Taking the supremum over W and ψ implies that

min
i,j

| |f |w − ℓi,j(f)| ≤ εβ‖f‖B , where ℓi,j(f) =

∫

Wj

f ψi . ✷
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Dynamical Inequalities

Proposition

For any n ≥ 0 and f ∈ B,

‖Lnf‖s ≤ λαn‖f‖s + |f |w, (1)

‖Lnf‖u ≤ κ−βn‖f‖u, (2)

|Lnf |w ≤ |f |w. (3)

Proof: By density of C1(Wu) in both B and Bw, it suffices to
prove the bounds for f ∈ C1(Wu).

Proofs of (1) and (3) are similar to those for the contracting map.
We will prove (2).
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Proof of Strong Unstable Norm Contraction

(2) W 1, W 2 ∈W s, |ψj |C1(W j) ≤ 1 s.t. d0(ψ1, ψ2) = 0.

There is a 1-1 correspondence between elements of
T−nW 1 = ∪iW 1

i and T−nW 2 = ∪iW 2
i : For each i, W

1
i ,W

2
i lie in

a vertical rectangle on which T n is smooth.

Also, since T preserves horizontal lines, d0(ψ1 ◦ T n, ψ2 ◦ T n) = 0
on each pair W 1

i ,W
2
i .

∫

W 1

Lnf ψ1 −
∫

W 2

Lnf ψ2 = κ−n
∑

i

∫

W 1
i

f ψ1 ◦ T n −
∫

W 2
i

f ψ2 ◦ T n

≤ κ−n
∑

i

d(W 1
i ,W

2
i )
β‖f‖u ≤ κ−βnd(W 1,W 2)β‖f‖u

Dividing through by d(W 1,W 2)β and taking the appropriate
suprema proves (2): ‖Lnf‖u ≤ κ−βn‖f‖u. ✷
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Quasi-Compactness and a Spectral Gap

Theorem

L is quasi-compact as an operator of B with spectral radius 1 and

essential spectral radius at most max{λα, κ−β} < 1.
Moreover, L has a spectral gap on B.

The upper bounds on the essential spectral radius and the spectral
radius follow from the dynamical inequality:

‖Lnf‖B = ‖Lnf‖s + ‖Lnf‖u ≤ max{λαn, κ−βn}‖f‖B + |f |w .

The fact that L∗m = m implies that the spectral radius is 1, (since
1 is in the spectrum of L∗ and so also of L) so that L is
quasi-compact. Also, the peripheral spectrum contains no Jordan
blocks since ‖Ln‖B is uniformly bounded.
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Peripheral Spectrum: Sketch of Proof

From quasi-compactness and the absence of Jordan blocks,

L =

N∑

j=0

e2πiθjΠj +R, ‖R‖B < 1, ΠjΠk = RΠj = ΠjR = 0

Since there are no Jordan blocks, Πj = lim
n→∞

1

n

n−1∑

k=0

e−2πiθjkLk.

Set θ0 = 0 and µ0 = Π01. Let Vj = Πj(C
1).

a) Elements of V = ⊕jVj are measures abs. cont. wrt µ0
- Since Πj(C

1) = Vj , for each µ ∈ Vj , ∃f ∈ C1(M) s.t.

|µ(ψ)| = |Πjf(ψ)| ≤ lim
n

n−1∑

k=0

|f(ψ ◦ T k)| ≤ |f |∞|ψ|∞ ,

and also µ(ψ) ≤ |f |∞µ0(ψ) if ψ ≥ 0.
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Peripheral Spectrum: Sketch of Proof

b) ∃ finite # qk ∈ N st ∪Nj=0{θj} = ∪k{ p
qk

: 0 ≤ p < qk, p ∈ N}
- Let µ ∈ Vj . By (a) ∃fµ ∈ L∞(µ0) s.t. dµ = fµdµ0. Then,

e2πiθjµ(ψ) = µ(ψ ◦ T ) =
∫
ψ ◦ T fµdµ0 =

∫
ψ fµ ◦ T−1dµ0

so fµ ◦ T−1 = e2πiθjfµ. For k > 1, µk = (fµ)
kµ0 satisfies

Lµk = e2πiθjkµk, i.e. kθj is in the peripheral spectrum of L.
c) M has a single ergodic component of pos. µ0 measure.

- Use the fact that Ws and Wu fully cross M and the definition
of µ0 = Π01 as a limit.

(c) implies 1 is a simple eigenvalue of L.
If µ ∈ Vj , then θj = p/q by (b) so that Lqµ = µ. But if T = Tκ,λ,
then T q = Tκq,λq is another generalized Baker’s map, so that 1 is a
simple eigenvalue of Lq as well. Thus µ = µ0 and θj = 0, i.e. 1 is
the only eigenvalue of modulus 1 and it is simple. ✷
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Applications to Hyperbolic Maps

Real-analytic hyperbolic diffeomorphisms [Rugh ’94], [Fried ’95]

Anosov and Axiom A diffeomorphisms [Blank, Keller, Liverani

’01], [Baladi ’05], [Gouëzel, Liverani ’06, ’08], [Baladi, Tsujii ’07],

[Faure, Roy, Sjöstrand ’08]

Piecewise hyperbolic maps [D., Liverani ’08], [Baladi, Gouëzel

’09, ’10]

Planar billiard maps

Dispersing billiards and perturbations [D., Zhang ’11,’13, ’14]
Measure of maximal entropy for map [Baladi, D., ’20]
Geometric potentials [Baladi, D. ’22]
More general Hölder potentials [Carrand, preprint ’22]
Measure of maximal entropy for flow [Baladi, Carrand, D.
preprint ’22]
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Part Two: Geometry of Dispersing Billiards

Goal for this section: Recall some geometric facts about
dispersing billiards that we will use in subsequent lectures:
hyperbolicity, distortion, complexity, growth lemma.

Reference: N. Chernov and R. Markarian, Chaotic Billiards,
Mathematical Surveys and Monographs 127 (2006), 330 pp.
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Periodic Lorentz Gas (Sinai Billiard) [Sinai ’68]

Billiard table Q = T2\∪iBi;
scatterers Bi.

Boundaries of scatterers are
C3 and have strictly positive
curvature.

Billiard flow is given by a
point particle moving at
unit speed with elastic
collisions at the boundary

Finite horizon condition: there is an upper bound on the free
flight time between collisions. Otherwise Infinite horizon.
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The Associated Billiard Map

r

ϕ

M =
(
∪i ∂Bi

)
× [−π

2 ,
π
2 ], the

natural “collision” cross-section
for the billiard flow.

T : (r, ϕ) → (r′, ϕ′) is the first
return map: the billiard map.

r = position coordinate
oriented clockwise on
boundary of scatterer ∂Bi

ϕ = angle outgoing
trajectory makes with
normal to scatterer

ϕ

M

r

a hyperbolic map with singularities
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Statistical Properties with respect to SRB Measure

T preserves a smooth invariant measure on M , µSRB = cosϕdr dϕ

With respect to this measure, many statistical properties have
been proved using a variety of techniques.

µSRB is ergodic [Sinai ’70] and Bernoulli [Gallavotti, Ornstein ’74]

Countable Markov partitions and Markov “sieves”
[Bunimovich, Sinai ’80, ’81], [Bunimovich, Chernov, Sinai ’90, ’91]

- Central Limit Theorem

Young Towers
- exponential decay of correlations, [Young ’98]
- almost sure invariance principle [Melbourne, Nicol ’05]
- local moderate and large deviations, [Melbourne, Nicol ’08],

[Young, Rey-Bellet ’08]

Coupling arguments via standard pairs [Chernov ’06],
[Chernov, Dolgopyat ’09]

Transfer operator techniques [D., Zhang ’11, ’13, ’14]
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Hyperbolicity away from Singularities

Bi

A dispersing wavefront before
and after collision.

r

ϕ

The wavefront projects to a
curve with positive slope on Bi.

Positive slope in M =⇒ unstable curve

Negative slope in M =⇒ stable curve
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Hyperbolicity: Stable and Unstable Cones

For both finite and infinite horizon, two global families of cones:

Cu =

{
(dr, dϕ) : Kmin ≤ dϕ

dr
≤ Kmax +

1

τmin

}

Cs =
{
(dr, dϕ) : −Kmin ≥ dϕ

dr
≥ −Kmax −

1

τmin

}

τmin > 0 is minimum time between consecutive collisions

Kmin /max = min/max curvature of scatterers

Strict invariance:

DT (x)Cu ( Cu and DT (x)−1Cs ( Cs

Minimum expansion: Λ := 1 + 2Kminτmin.

∃C0 > 0 s.t. ‖DT n(x)v‖ ≥ C0Λ
n‖v‖ ∀v ∈ Cu

and similarly for stable cone under DT−n(x).
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Invariant Families of Stable/Unstable Curves

Call a smooth curve W ⊂M stable (or cone-stable) if the
tangent vector to W at each point belongs to Cs.
Define

Ŵs = {stable curves with curvature bounded by D0 > 0

and length at most δ0 > 0 }

Since T is piecewise C2 and uniformly hyperbolic away from
its singularities, we can choose D0 > 0 such that Ŵs is
invariant under T−1, up to subdivision of long curves.

Define Ws ⊂ Ŵs real local stable manifolds

Similarly, define a T -invariant set Ŵu of (cone-) unstable
curves, and local unstable manifolds Wu.
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Singularities

Tangential collisions create singularity curves for T .

Let S0 = {ϕ = ±π
2}.

Sn =
⋃n
i=0 T

−iS0 is the singularity set for T n, n ≥ 1.

S−n =
⋃n
i=0 T

iS0 is the singularity set for T−n, n ≥ 1.

T n is discontinuous at the set of decreasing curves Sn and T−n is
discontinuous at the set of increasing curves S−n.

Important fact: Sn is uniformly transverse to Cu and S−n is
uniformly transverse to Cs.

Continuation of

Singularities

Every curve in Sn \ S0 is
part of a monotonic
piecewise smooth curve
belonging to Sn which
terminates on S0.

ϕ = π
2

ϕ = −π
2

S−1
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Linear Bound on Complexity

Want expansion due to hyperbolicity to beat cutting due to
singularities. In the finite horizon case, there is a linear bound due
to Bunimovich.

For x ∈M , let N(Sn, x) denote the number of singularity curves
in Sn that meet at x. Define N(Sn) = supx∈M N(Sn, x).
Lemma (Bunimovich, Chernov, Sinai ’90)

Assume finite horizon. There exists K > 0 depending only on the

configuration of scatterers such that N(Sn) ≤ Kn for all n ≥ 1.

Idea of Proof. Let x, x′ ∈M lie on a straight billiard trajectory
with one or more tangential collisions between.

x x′

B3

B1 B2B4

B5
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Linear Bound on Complexity

Let A, A′ be neighborhoods of x, x′ in M , partitioned into sectors
A1, . . . Ak ⊂ A and A′

1, . . . A
′
k ⊂ A such that T njAj = A′

j .

Note k ≤ τmax/τmin. Set T̂ |Aj := T nj

T̂

A A′

x x′

Assume N(Sn−1) ≤ K(n− 1).

Let N(Si|A′
j , x

′) denote the number of curves in Si passing
through x′ and lying in A′

j.

N(Sn, x) ≤ k+
∑

j N(Sn−nj |A′
j , x

′) ≤ k+
∑

j N(Sn−1|A′
j , x

′)

So N(Sn, x) ≤ k +K(n− 1) ≤ Kn if k ≤ K. ✷

The proof uses that the flow is continuous.
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Distortion Control and Extended Singularity Set

When T (x) is near S0, DT (x) becomes large:

‖DT (x)|Eu‖ ∼ 1

cosϕ(Tx)
∼ d(x,S1)

−1/2 , ‖DT (x)|Es‖ ∼ cosϕ(x)

Indeed, detDT (x) = cosϕ(x)
cosϕ(Tx) , which can be viewed as the

product of stable and unstable Jacobians.

To control distortion, partition M into homogeneity strips H±k,

Hk =

{
π

2
− 1

kq
< ϕ <

π

2
− 1

(k + 1)q

}

and similarly for H−k, |k| ≥ k0. Standard choice: q = 2
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Distortion Control and Extended Singularity Set

✻

✲

ϕ

r

π
2

−π
2

♣

♣

♣

♣

♣

♣

Hk

Define Ŵs
H = homogeneous elements of Ŵs

Distortion depends on the exponent q: If T iW ⊂ Ŵs
H,

i = 0, . . . , n, then

log
JWT

n(x)

JWT n(y)
≤ Cdd(x, y)

1/(q+1) ∀x, y ∈W

But the singularity set becomes countable:
SH
0 := S0 ∪ (∪|k|≥k0∂Hk), and SH

±n =
⋃n
i=0 T

∓iSH
0 .

Need a new complexity bound.
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One-step Expansion [Chernov ’06]

Define an adapted metric in the tangent space dx = (dr, dϕ) by,

‖dx‖∗ =
K(x) + |V|√

1 + V2
‖dx‖ ,

where V = dϕ/dr and K(x) is the curvature of the scatterer at x.

‖DT (x)−1dx‖∗ ≥ Λ‖dx‖∗ for all stable vectors dx,
where Λ = 1 + 2Kminτmin.

For V ∈ Ŵs
H, let {Vi}i = homogeneous connected comp. of T−1V .

Lemma (One-step expansion)

There exists θ < 1 such that for all V ∈ Ŵs
H,

lim sup
δ↓0

sup
|V |≤δ

∑

Vi

|JViT |∗ < θ ,

where | · |∗ denotes the sup norm in the adapted metric.
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Proof of One-step Expansion for Finite Horizon

B2

B1 B5B3

B4

A short stable curve can be cut by at most τmax/τmin

tangential collisions under T−1.
All but one of these collisions is nearly grazing.
Near the grazing collisions, Vk ⊂ Hk and,

∑

k≥k0

|JVkT |∗ ≤ C
∑

k≥k0

k−q ≤ C ′k1−q0 if q > 1

Fix ε > 0 and choose k0 large enough that kq−1
0

τmax
τmin

≤ ε.
Choose δ0 > 0 so that a stable curve of length δ0 must map
into homogeneity strips of index |k| ≥ k0 at the nearly
tangential collisions.
Then θ = Λ−1 + ε satisfies the lemma. ✷
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Growth Lemma

Consequence of one-step expansion is the following growth lemma.

For W ∈ Ŵs, partition T−1W into maximal connected
homogeneous components. Subdivide any curve longer than
δ0 into curves of length between δ0/2 and δ0. Call this
collection G1(W ).

Define inductively, Gn(W ) = {G1(Wi) : Wi ∈ Gn−1(W )}.
Let Ln(W ) denote those Wi ∈ Gn(W ) such that |Wi| ≥ δ0/3.

Let In(W ) denote those Wi ∈ Gn(W ) such that
T jWi ⊂ Vj ∈ Gn−j(W ) with |Vj | < δ0/3 for all
j = 0, . . . , n− 1. W is the most recent long ancestor of Wi.

Lemma

There exists C1 > 0 such that for all W ∈ Ŵs and all n ≥ 1,

∑

Wi∈Gn(W )

|JWiT
n|C0(Wi) ≤ C1 .
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Proof of Growth Lemma

Organize Wi ∈ Gn(W ) by most recent long ancestor.

If Wi ∈ Ln(W ), then Wi is its own most recent long ancestor.

Otherwise, Wi ∈ Ij(Vk) for some Vk ∈ Ln−j(W ), j ≥ 1.

Or W ∈ In(W ), whether W is long or short.
∑

Wi∈Gn(W )

|JWiT
n|C0 ≤

n∑

j=1

∑

Vk∈Gn−j(W )

|JVkT n−j|C0

∑

Wi∈Ij(Vk)

|JWiT
j|C0

≤ C∗θ
n +

n−1∑

j=1

∑

Vk∈Gn−j(W )

|JVkT n−j|C0C∗θ
j

≤ C∗θ
n +

n−1∑

j=1

∑

Vk∈Gn−j(W )

eCdδ
1/q
0

|T n−jVk|
|Vk|

C∗θ
j

≤ C∗θ
n +

n−1∑

j=1

C ′δ−1
0 |W |θj ≤ C∗θ

n + C ′′δ−1
0 |W |
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