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Abstract

We construct Birkhoff cones for dispersing billiards, which are contracted by the action of
the transfer operator. This construction permits the study of statistical properties not only of
regular dispersing billiards but also of sequential billiards (the billiard changes at each collision
in a prescribed manner), open billiards (the dynamics exits some region or dies when hitting
some obstacle) and many other examples. In particular, we include applications to chaotic
scattering and the random Lorentz gas.

1 Introduction

Billiards are a ubiquitous source of models in physics, in particular in Statistical Mechanics. The
study of the ergodic properties of billiards is of paramount importance for such applications and
also a source of innovative ideas in Ergodic Theory. In particular, starting with at least [Kry], it
has become clear that a quantitive estimate of the speed of convergence to equilibrium is pivotal
for this research program. The first strong result of this type dates back to Bunimovich, Sinai and
Chernov [BSC] in 1990, but it relies on a Markov-partition-like technology that is not very well
suited to producing optimal results. The next breakthrough is due to Lai-Sang Young [Y98, Y99]
who put forward two techniques, towers and coupling, well suited to study the decay of correlations
for a large class of systems, billiards included. The idea of coupling was subsequently refined by
Dolgopyat [Do04a, Do04b, Do05] who introduced the notion of standard pairs, which have proved
a formidable tool to study the statistical properties of dynamical systems in general and billiards
in particular [C1, C2, CD, CZ]. See [CM, Chapter 7] for a detailed exposition of these ideas and
related references.

In the meantime another powerful idea has appeared, following the seminal work of Ruelle
[RS, Ru76] and Lasota-Yorke [LY], to study the spectral properties of the associated transfer
operator acting on spaces of functions adapted to the dynamics. After some preliminary attempts
[Fr86, Ru96, Ki99], the functional approach for hyperbolic systems was launched by the seminal
paper [BKL], which was quickly followed and refined by a series of authors, including [B1, GL, BT,
GL2]. Such an approach, when applicable, has provided the strongest results so far, see [B2] for a
recent review. In particular, building on a preliminary result by Demers and Liverani [DL], it has
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been applied to billiards by Demers and collaborators [DZ1, DZ2, DZ3, D2, BD1, BD2]. This has
led to manifold results, notably the proof of exponential decay of correlations for certain billiard
flows [BDL].

Yet, lately there has been a growing interest in non-stationary systems, when the dynamical
system changes with time. Since most systems of interest are not isolated, not even in first ap-
proximation, the possibility of a change to the system due to external factors clearly has physical
relevance. Another important scenario in which non-stationarity appears is in dynamical systems in
random media, e.g. [AL]. The functional approach as such seems not to be well suited to treat these
situations since it is based on the study of an operator via spectral theory. In the non-stationary
case a single operator is substituted by a product of different operators and spectral theory does
not apply.

There exist several approaches that can be used to overcome this problem, notably:

1. consider random systems; in this case, especially in the annealed case, it is possible to re-
cover an averaged transfer operator to which the theory applies. More recently, the idea
has emerged to study quenched systems via infinite dimensional Oseledets theory, see e.g.
[DFGV1, DFGV2] and references therein;

2. consider only slowly changing systems that can be treated using the perturbation theory in
[KL99, GL]. For example, see [DS], and references therein, for some recent work in this
direction;

3. use the technology of standard pairs, which has the advantage of being very flexible and
applicable to the non-stationary case [SYZ]. Note that the standard pair technology and the
above perturbation ideas can be profitably combined together, see [DeL1, DeL2, DLPV];

4. use the cone and Hilbert metric technology introduced in [Bir, L95a, L95b, LM], which has
also been extended to the random setting [AL, AFGV].

The first two approaches, although effective, impose severe limitations on the class of nonstationary
systems that can be studied. The second two approaches are more general and seem more or less
equivalent. However, coupling arguments are often cumbersome to write in detail and usually
provide weaker quantitative estimates compared to the cone method.

Therefore, in the present article we develop the cone method and demonstrate that it can be
successfully applied to billiards. Indeed, we introduce a relatively simple cone that is contracted
by a large class of billiards. This implies that one can easily prove a loss of memory result for
sequences of billiard maps. To show that the previous results have concrete applications we devote
one third of this paper to developing applications to several physically relevant classes of models.

We emphasize that the present paper does not exhaust the possible applications of the present
ideas. To have a more complete theory one should consider, to mention just a few, billiards with
corner points, billiards with electric or magnetic fields, billiards with more general reflection laws,
measures different from the SRB measure (that is transfer operators with generalized potentials as
in [BD1, BD2]), etc. We believe that most of these cases can be treated by small modifications of
the present theory; however, the precise implementation does require a non-negligible amount of
work and hence exceeds the scope of this presentation, which aims only at introducing the basic
ideas and producing a viable cone for dispersing billiards.

The plan of the paper is as follows. In Section 2 we introduce the class of billiards from
which we will draw our sequential dynamics and summarize our main analytical results regarding
cone contraction. In Section 3 we present the uniform properties of hyperbolicity and singularity
sets enjoyed by our class of maps, listed as (H1)-(H5); we also prove a Growth Lemma for our
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sequences of maps and introduce one of our main characters, the transfer operator. In Section 4
we introduce our protagonist, the cone (see Section 4.3). Section 5 is devoted to showing that the
cone so defined is invariant under the action of the transfer operators of the billiards in question.
In Section 6 we show that in fact the cone is eventually strictly invariant (the image has finite
diameter in the associated Hilbert metric) thanks to some mixing properties of the dynamics on
a finite scale. The strict cone contraction implies exponential mixing for a very large class of
observables and densities as is explained in Section 7. Finally, Section 8 contains the announced
applications, first to sequential systems with holes (open systems), then to chaotic scattering and
finally to the random Lorentz gas.

2 Setting and Summary of Main Results

Since we are interested in studying sequential billiards, below we define a set of billiard tables
that will have uniform hyperbolicity constants, following [DZ2]. Other classes of billiards are also
studied in [DZ2], such as infinite horizon billiards, billiards under small external forces and some
types of nonelastic reflections. While such classes of billiards are amenable to the present technique,
we do not treat the most general case here since the greater number of technicalities would obscure
the main ideas we are trying to present.

2.1 Families of billiard tables with uniform properties

We first choose K ∈ N and numbers `i > 0, i = 1, . . .K. Let M = ∪Ki=1Ii× [−π
2 ,

π
2 ], where for each

i, Ii = [0, `i]/ ∼ is an interval of length `i with endpoints identified. M will be the phase space
common to our collection of billiard maps.

Given K and {`i}Ki=1, we use the notation Q = Q({Bi}Ki=1) to denote the billiard table T2 \
(∪Ki=1Bi), where each Bi is a closed, convex set whose boundary has arclength `i. We assume
that the scatterers Bi are pairwise disjoint and that each ∂Bi is a C3 curve with strictly positive
curvature.

The billiard flow is defined by the motion of a point particle traveling at unit speed in Q :=
T2 \ (∪iBi) and reflecting elastically at collisions. The associated billiard map T is the discrete-
time collision map which maps a point on ∂Q to its next collision. Parameterizing ∂Q according
to an arclength parameter r (oriented clockwise on each obstacle Bi) and denoting by ϕ the angle
made by the post-collision velocity vector and the outward pointing normal to the boundary yields
the canonical coordinates for the phase space M of the billiard map. In these coordinates, M =
∪iIi × [−π

2 ,
π
2 ], as defined previously.

For x = (r, ϕ) ∈ M , let τ(x) denote the time until the next collision for x under the flow.
We assume that τ is bounded on M , i.e. the billiard has finite horizon. Thus since the scatterers
are disjoint, there exist constants τmin(Q), τmax(Q) > 0 depending on the configuration Q such
that τmin(Q) ≤ τ(x) ≤ τmax(Q) < ∞ for all x ∈ M . Moreover, by assumption there exists
Kmin(Q),Kmax(Q) > 0 such that if K(r) denotes the curvature of the boundary at coordinate r,
then Kmin(Q) ≤ K(r) ≤ Kmax(Q). Finally, let Emax(Q) denote the maximum value of the C3 norm
of the curves comprising ∂Q when parametrized according to arclength.

Now fix τ∗,K∗, E∗ ∈ R+, and let Q(τ∗,K∗, E∗) denote the collection of all billiard tables
Q({Bi}Ki=1) such that

τ∗ ≤ τmin(Q) ≤ τmax(Q) ≤ τ−1
∗ , K∗ ≤ Kmin(Q) ≤ Kmax(Q) ≤ K−1

∗ , and K∗ ≤ Emax(Q) ≤ E∗.

To each table in Q ∈ Q(τ∗,K∗, E∗) corresponds a billiard flow and hence a billiard map T = T (Q)
and associated collision times. Let F(τ∗,K∗, E∗) denote the collection of billiard maps induced by
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configurations in Q(τ∗,K∗, E∗), i.e.,

F(τ∗,K∗, E∗) = {T = T (Q) : Q ∈ Q(τ∗,K∗, E∗)}, .

Thus each T ∈ F(τ∗,K∗, E∗) is identified with1 a table Q ∈ Q(τ∗,K∗, E∗), which we denote by
Q(T ). Note that all T ∈ F(τ∗,K∗, E∗) have the same phase space M since we have fixed K and
the arclengths {`i}Ki=1.

It is a standard fact that all T ∈ F(τ∗,K∗, E∗) preserve the same smooth invariant probability
measure, dµSRB = c cosϕdr dϕ, where c = 1

2|∂Q| = 1
2
∑K
i=1 `i

is the normalizing constant [CM]. In

addition, all T ∈ F(τ∗,K∗, E∗) are mixing with respect to µSRB and so are topologically mixing [S]
(see also, [CM, Section 6.7]).

It is proved2 in [DZ2, Theorem 2.7] that all T ∈ F(τ∗,K∗, E∗) satisfy properties (H1)-(H5)
of that paper with uniform constants depending only on τ∗,K∗ and E∗. We recall the relevant
properties in Section 3 that we shall use throughout the paper and label them (H1)-(H5).

Remark 2.1. The assumption that all scatterers have the same arclength is made for convenience
so that there is a single cone C on which all our operators LT , T ∈ F , act. This can be relaxed
slightly once the hyperbolicity constant Λ := 1 + 2K∗τ∗ has been introduced in (H1) by allowing the
arclength of the boundary of each scatterer to change by no more than ε1, where ε1 <

Λ−1
Λ+1 , since

then rescaling the arclength parametrization of ∂Bi to be again [0, `i] yields a map with similar
properties (H1)-(H5), but with slightly weakened hyperbolicity constant Λ̃ = Λ1−ε1

1+ε1
> 1 (and θ0

from (H3) is weakened accordingly.)
To change the arclengths drastically would force us to consider a sequence of cones Cn on a

sequence of phase spaces Mn. This would require further suitable assumptions on the maps Tn :
Mn → Mn+1 in order to ensure hyperbolicity, and such assumptions could be tailored to specific
applications. We do not pursue this generality here, but remark that for example, it would be possible
to formulate such a generalization for the random Lorentz gas with gates described in Section 8.5,
in which the central scatterer in each cell is allowed to change arclength and the resulting billiard
map between cells would still satisfy (H1)-(H5) (albeit the normalization in (H5) would vary).

Next, we define a notion of distance in Q(τ∗,K∗, E∗) as follows. Each table Q comprises K
obstacles Bi. Each ∂Bi can be parametrized according to arclength by a function ui : Ii → R2

(unfolding T2). Since two arclength parametrizations of ∂Bi can differ only in their starting point,
the collection ui,θ, θ ∈ [0, `i), denotes the set of parametrizations associated with ∂Bi. Similarly,

for a configuration Q̃, denote the parametrizations of obstacles by ũi,θ, θ ∈ [0, ˜̀
i). Let ΠK denote

the set of permutations π on {1, . . .K} which satisfy ˜̀
π(i) = `i. Then define

d(Q, Q̃) = min
π∈ΠK

min
θ∈[0,`i)

K∑
i=1

|ui,0 − ũπ(i),θ|C2(Ii,R2) . (2.1)

Fix Q0 ∈ Q(τ∗,K∗, E∗) and choose κ ≤ 1
2 min{τ∗,K∗}. Let Q(Q0, E∗;κ) denote the set of

billiard tables Q with3
d(Q,Q0) < κ and Emax(Q) ≤ E∗, τmax ≤ 2/τ∗. Let F(Q0, E∗;κ) denote the

corresponding set of billiard maps. The following result is [DZ2, Theorem 2.8 and Section 6.2].

1We do not claim that each such T is unique. It may be that T (Q) = T (Q′) pointwise (consider a 90◦ rotation of
a given configuration Q), yet for our purposes they will be considered distinct elements of F(τ∗,K∗, E∗).

2The abstract set-up in [DZ2] also allows billiard tables with infinite horizon and those subjected to external
forces, but we are not concerned with the most general case here.

3Indeed, the distance d allows configurations to move from finite to infinite horizon (see [DZ2, Section 6.2]), but
we will not need that here as we will restrict ourselves to finite horizon configurations.
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Proposition 2.2. Let Q0 ∈ Q(τ∗,K∗, E∗). For all κ ≤ 1
2 min{τ∗,K∗}, we have Q(Q0, E∗;κ) ⊂

Q( τ∗2 ,
K∗
2 , E∗). Moreover, there exists C > 0 such that for any T1, T2 ∈ F(Q0, E∗;κ),

a) dH(ST1
−1,S

T1
−1) ≤ Cκ1/2, where dH is the Hausdorff metric and ST−1 is the singularity set for

T−1 defined in (H1);

b) for x /∈ NCκ1/2(ST1
−1,S

T2
−1), d(T−1

1 (x), T−1
2 (y)) ≤ Cκ1/2, where Nε(·) denotes the ε-neighborhood

of a set in M in the Euclidean metric.

We use an (uncountable) index set I(τ∗,K∗, E∗), identifying ι ∈ I(τ∗,K∗, E∗) with a map
Tι ∈ F(τ∗,K∗, E∗). Choosing a sequence (ιj)j∈N ⊂ I(τ∗,K∗, E∗), we will be interested in the
dynamics of

Tn := Tιn ◦ · · · ◦ Tι2 ◦ Tι1 , n ∈ N . (2.2)

If we choose ιj = ι for each j, then Tn = Tnι , the iterates of a single map. For convenience, denote
T0 = Id.

2.2 Main analytical results: Cone contraction and loss of memory

As announced in the introduction, the main analytical tool developed in this paper is the con-
struction of a convex cone of functions Cc,A,L(δ), depending on parameters δ > 0, c, A, L > 1,
as defined in Section 4.3, that is contracted under the sequential action of the transfer operators
Lf = f ◦ T−1, defined in Section 3.3 for T ∈ F(τ∗,K∗, E∗). For a sequence of maps Tn as in (2.2),
define Lnf = f ◦ T−1

n .
In order to state our main result on cone contraction, we define open neighborhoods in F(τ∗,K∗, E∗)

using the distance d between tables defined in (2.1). Let T ∈ F(τ∗,K∗, E∗), and for 0 < κ <
1
2 min{τ∗,K∗}, define

F(T, κ) = {T̃ ∈ F(τ∗,K∗, E∗) : d(Q(T̃ ), Q(T )) < κ} . (2.3)

Remark that since F(T, κ) ⊂ F(Q(T ), E∗;κ), the conclusions of Proposition 2.2 apply as well to
maps in F(T, κ). We will denote the index set corresponding to F(T, κ) by I(T, κ) ⊂ I(τ∗,K∗, E∗).
Thus ι ∈ I(T, κ) if and only if Tι ∈ F(T, κ).

Theorem 2.3. Suppose c, A and L satisfy the conditions of Section 5.3, and that δ > 0 satis-
fies (6.7) and (6.18). Let NF := N(δ)− + k∗n∗ be from Theorem 6.12 and let κ > 0 be from
Lemma 6.6(b).

a) There exists χ ∈ (0, 1) such that if n ≥ NF , T ∈ F(τ∗,K∗, E∗) and {ιj}nj=1 ⊂ I(T, κ), then
LnCc,A,L(δ) ⊂ Cχc,χA,χL(δ).

b) For any χ ∈
(

max{1
2 ,

1
L ,

1√
A−1
}, 1
)

, the cone Cχc,χA,χL(δ) has diameter at most

log

(
(1 + χ)2

(1− χ)2
χL

)
<∞

in the Hilbert metric associated to Cc,A,L(δ) (see (4.1) for a precise definition), provided δ > 0
is chosen sufficiently small to satisfy (6.21).
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The first statement of this theorem is proved in two steps: first, Proposition 5.1 shows that the
parameters c and A contract due to the uniform hyperbolicity properties (H1)-(H5) of the maps
in F(τ∗,K∗, E∗), subject to the constraints listed in Section 5.3 (all that is needed is {ιj}nj=1 ⊂
I(τ∗,K∗, E∗), and not the stronger assumption {ιj}nj=1 ⊂ I(T, κ)); second, Theorem 6.12 proves

the contraction of L using the uniform mixing property of maps T̃ ∈ F(T, κ) as expressed by
Lemma 6.6. The second statement of Theorem 2.3 is proved by Proposition 6.13.

From this theorem follow our results on exponential loss of memory for sequential systems of
billiard maps. In the case that Tιj = T for each j, these results read as exponential decay of
correlations and convergence to equilibrium. Since our maps T ∈ F(τ∗,K∗, E∗) all preserve the
measure µSRB, we also obtain a type of convergence to equilibrium in the sequential case (see
Theorem 2.8).

In order to state our result for the sequential system, we define the notion of an admissible
sequence of maps from F(τ∗,K∗, E∗). As before, let κ > 0 be from Lemma 6.6(b).

Definition 2.4. For N ∈ N, we call a sequence (ιj)j≥1, ιj ∈ I(τ∗,K∗, E∗), N -admissible if there
exist sequences (Tk)k≥1 ⊂ F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥ N , such that Tιj ∈ F(Tk, κ) for all

k ≥ 1 and j ∈ [1 +
∑k−1

i=1 Ni,
∑k

i=1Ni].

Thus an N -admissible sequence is a sequence which remains in a κ neighborhood of a fixed map
Tk for Nk ≥ N iterates at a time, but which may undergo a large change between such blocks.

Remark 2.5. One can generalize the definition of N -admissible sequence to include short blocks
where maps are not required to be close to a fixed map. As long as these short blocks can be grouped
to contain at least n0 iterates, where n0 is from Proposition 5.1, and they are interspersed regularly
with long blocks of length at least N = NF then one can still set up a regular contraction using
Theorem 6.12 on the long blocks.

We first state our results regarding loss of memory, both with respect to µSRB and leafwise:
the difference of integrals along individual stable curves converge to 0 exponentially fast along any
NF -admissible sequence. Let Ws(δ) denote the set of homogeneous cone stable curves Ws defined
in Section 3.1, having length between δ and 2δ. We denote by µSRB(f) =

´
M f dµSRB and by |W |

the (Euclidean) length of a stable curve W in M .
Also, we denote the average value of ψ on W by

ffl
W ψ dmW = 1

|W |
´
W ψ dmW , where mW

denotes the arclength measure on W induced by the Euclidean metric in M .
In Lemma 7.6, we prove that our cone Cc,A,L(δ) contains translations of piecewise Hölder con-

tinuous functions, as long as the discontinuities are transverse to the stable cone defined in (H1).
We make this precise as follows.

Definition 2.6. We call a countable (mod 0) partition P = {Pi}i of M regular if each Pi is an
open, simply connected set, and there exist constants K,CP > 0 such that for all W ∈ Ws, W \ ∂P
comprises at most K connected components and for any ε > 0, mW (Nε(∂P)) ≤ KCPε, where
Nε(A) denotes the ε-neighborhood of a set A in M .

For t > 0, denote by Ct(P) the set of functions on M that are Hölder continuous on each
element of P and such that

|f |Ct(P) = sup
P∈P
|f |Ct(P ) <∞ .

We recall again NF = N(δ)− + k∗n∗ from Theorem 6.12.
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Theorem 2.7. Let P be a regular partition of M and let4 t ≥ γ. There exist C > 0 and ϑ < 1 such
that for all NF -admissible sequences (ιj)j, all n ≥ 0, and all f, g ∈ Ct(P) with µSRB(f) = µSRB(g):

a) For all W ∈ Ws(δ) and all ψ ∈ C1(W ), we have∣∣∣∣ 
W
Lnf ψ dmW −

 
W
Lng ψ dmW

∣∣∣∣ ≤ Cϑn |ψ|C1(W ) max{‖f‖Ct(P), ‖g‖Ct(P)} ;

b) For all ψ ∈ C1(M),∣∣∣∣ˆ
M
Lnf ψ dµSRB −

ˆ
M
Lng ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M) max{‖f‖Ct(P), ‖g‖Ct(P)} .

We remark that the regularity of ψ ∈ C1(M) can be relaxed to ψ ∈ Cς(M) for any ς > 0 by a
standard approximation argument, but at the expense of obtaining a weaker rate ϑ.

Since all our maps preserve the same invariant measure µSRB, we obtain additionally an equidis-
tribution result for stable curves as well as convergence to equilibrium along admissible sequences.

Theorem 2.8. Under the hypotheses of Theorem 2.7, there exists C > 0 such that for all NF -
admissible sequences (ιj)j ⊂ I(τ∗,K∗, E∗), all f, g ∈ Ct(P) with µSRB(f) = µSRB(g), and all n ≥ 0,

a) For all W1,W2 ∈ Ws(δ) and all ψi ∈ C1(Wi) with
ffl
W1

ψ1 =
ffl
W2

ψ2, we have∣∣∣∣ 
W1

Lnf ψ1 dmW1 −
 
W2

Lng ψ2 dmW2

∣∣∣∣ ≤ Cϑn (|ψ1|C1(W1)+|ψ2|C1(W2)) max{‖f‖Ct(P), ‖g‖Ct(P)} ;

in particular, for all W ∈ Ws(δ) and ψ ∈ C1(W ),∣∣∣∣ 
W
Lnf ψ dmW − µSRB(f)

 
W
ψ dmW

∣∣∣∣ ≤ Cϑn |ψ|C1(W ) max{‖f‖Ct(P), ‖g‖Ct(P)} ;

b) for all ψ ∈ C1(M),∣∣∣∣ˆ
M
f ψ ◦ Tn dµSRB −

ˆ
M
f dµSRB

ˆ
M
ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M) max{‖f‖Ct(P), ‖g‖Ct(P)} .

Theorems 2.7 and 2.8 are proved in Section 7, specifically in Theorems 7.3 and 7.4 and Corol-
lary 7.5.

Remark 2.9. Theorem 2.7 has some overlap with [SYZ], which also considers sequential billiards
in which scatterers shift slightly between collisions. Note, however, that our definition of admis-
sible sequence allows abrupt and large changes in the configuration of scatterers within the family
F(τ∗,K∗, E∗) every NF iterates, compared to the slowly changing requirement throughout [SYZ].
This may seem like merely a technical difference due to the cone technique, yet it is precisely this
ability to introduce occasional large changes in the dynamics that allows us to apply our results to
the chaotic scattering problem and random Lorentz gas described in Section 8.

With these convergence results in hand, we are able to provide three applications to concrete
problems of physical interest: sequential open systems in Section 8.3, a chaotic scattering problem
without assuming a no-eclipse condition in Section 8.4, and a variant of the random Lorentz gas in
Section 8.5.

4The parameter γ ∈ (0, 1) is from the cone condition (4.8).

7



3 Uniform Hyperbolicity, Singularities and Transfer Operators

3.1 Uniform properties for T ∈ F(τ∗,K∗, E∗)

Fixing K and {`i}Ki=1, we recall some fundamental properties of billiard maps T ∈ F(τ∗,K∗, E∗)
that depend only on the quantities τ∗, K∗ and E∗. Although many of these properties are well
known, a proof of their dependence on τ∗, K∗, E∗ can be found, for example, in [DZ2, Section 6.1].

In order to better align with the abstract framework in [DZ2], we also label our properties
(H1)-(H5), although our set-up here is simpler than in [DZ2]. We recall the corresponding index
set I(τ∗,K∗, E∗) from Section 2.1 and the notation Tn from (2.2).

(H1) Hyperbolicity and Singularities. The (constant) family of cones

Cs(x) = {(dr, dϕ) ∈ R2 : −K−1
∗ − τ−1

∗ ≤ dϕ/dr ≤ −K∗}, for x ∈M ,

is strictly invariant, DT−1Cs(x) ⊂ Cs(T−1x), for all T ∈ F(τ∗,K∗, E∗). Moreover, T−1 enjoys
uniform expansion of vectors in the stable cone: set Λ = 1+2K∗τ∗ > 1; then there exists C1 ∈ (0, 1]
such that,

‖DT−1
n (x)v‖ ≥ C1Λn‖v‖, for all v ∈ Cs(x), (3.1)

where ‖ · ‖ denotes the Euclidean norm given by dr2 + dϕ2. There is a family of unstable cones Cu

defined similarly, but with K∗ ≤ dϕ/dr ≤ K−1
∗ + τ−1

∗ , which is strictly invariant under DT for all
T ∈ F(τ∗,K∗, E∗).

Due to the unbounded expansion of DT near tangential collisions, we define the standard
homogeneity strips, following [BSC]. For some k0 ∈ N, to be chosen later in (3.4), define

H±k = {(r, ϕ) ∈M : (k + 1)−2 ≤ | ± π
2 − ϕ| ≤ k

−2}, for all k ≥ k0. (3.2)

Set S0 = {(r, ϕ) ∈ M : ϕ = ±π
2 }. For n ≥ 1, the singularity set for Tn is denoted by STnn =

∪ni=0T
−1
i (S0), while the singularity set for T−1

n is denoted by STn−n = ∪ni=0Ti(S0). On M \ STnn , Tn is
a C2 diffeomorphism onto its image.

There exists a constant, which we still call C1 > 0, such that

C1

cosϕ(Tx)
≤ ‖DT (x)v‖

‖v‖
≤ 1

C1 cosϕ(Tx)
, for x /∈ ST1 .

In order to achieve bounded distortion, we will consider the boundaries of the homogeneity
strips as an extended singularity set for T . To this end, define SH0 = S0 ∪ (∪k≥k0(∂Hk ∪ ∂H−k)),
and for n ≥ 1,

SHn = ∪ni=0T
−1
i (SH0 ), SH−n = ∪ni=0Ti(SH0 ) . (3.3)

(H2) Families of Stable and Unstable Curves. We call a curve W ⊂M a stable curve if for
each x ∈ W , the tangent vector to W at x belongs to Cs. A stable curve is called homogeneous
if it lies in one homogeneity strip or outside their union. Denote by Ws the set of homogeneous
stable curves with length at most δ0 ∈ (0, 1/2) (defined by (3.4)) and with curvature at most B̄.

By [CM, Proposition 4.29], we may choose B̄ sufficiently large that T−1Ws ⊂ Ws, up to
subdividing the curves of length larger than δ0, for all T ∈ F(τ∗,K∗, E∗).

Similarly, we define an analogous set of homogeneous unstable curves by Wu.

(H3) One-Step Expansion. Defining the adapted norm ‖v‖∗, v = (dr, dϕ) as in [CM, Sect. 5.10],
we have ‖DT−1(x)v‖∗ ≥ Λ‖v‖∗ for all v ∈ Cs(x), wherever DT−1 is defined. For W ∈ Ws, let Vi
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denote the maximal homogeneous components of T−1W . Then by [CM, Lemma 5.56], there exists
θ0 ∈ (Λ, 1), a choice of k0 for the homogeneity strips and δ0 ∈ (0, 1/2) such that,

sup
T∈F(τ∗,K∗,E∗)

sup
W∈Ws

∑
i

|JViT |∗ ≤ θ0 , (3.4)

where |JViT |∗ denotes the supremum of the Jacobian of T along Vi in the adapted metric.
Since the stable/unstable cones are global and bounded away from one another, the adapted

metric can be extended so that it is uniformly equivalent to the Euclidean metric: There exists
C0 ≥ 1 such that C−1

0 ‖v‖ ≤ ‖v‖∗ ≤ C0‖v‖ for all v ∈ R2.

(H4) Distortion Bounds. Suppose W ∈ Ws and for n ≥ 1, {ιj}nj=1 ⊂ I(τ∗,K∗, E∗) are such
that TjW ∈ Ws for j = 0, . . . n. There exists Cd > 0, independent of W , n and {ιj}nj=1, such that
for all x, y ∈W ,

| log JWTn(x)− log JWTn(y)| ≤ Cdd(x, y)1/3, (3.5)

where JWTn is the (stable) Jacobian of Tn along W and d(·, ·) denotes arclength on W with respect
to the metric dr2 + dϕ2.

Similar bounds hold for stable Jacobians lying on the same unstable curve. Suppose, for n ≥ 1,
that V1, V2 ∈ Ws are such that TjV1, TjV2 ∈ Ws for 0 ≤ j ≤ n, in particular they are not cut
by any singularity, and there exists a foliation of unstable curves {`x}x∈V1 ⊂ Wu creating a one-
to-one correspondence between V1 and V2 and such that {Tn(`x)}x∈V1 ⊂ Wu creates a one-to-one
correspondence between TnV1 and TnV2. For x ∈ V1, define x̄ = `x ∩ V2. Then there exists Cd > 0,
independent of n, {ιj}nj=1, V1, V2, and x, such that,

| log JV1Tn(x)− log JV2Tn(x̄)| ≤ Cd(d(x, x̄)1/3 + φ(x, x̄)), (3.6)

where φ(x, x̄) denotes the angle between the tangent vectors to V1 and V2 at x and x̄, respectively.
For simplicity, we use the same symbol Cd to represent the distortion constants in (3.5) and (3.6).
The proofs for these distortion bounds in this form for a single map can be found in [DZ1, Appendix
A] (see also [CM, Section 5.8]). The analogous bounds for sequences of maps in F(τ∗,K∗, E∗) are
proved in [DZ2, Lemma 3.3]. The constant Cd depends only on the choice of k0 from (H3) and
the hyperbolicity constants C1 and Λ from (H1).

(H5) Invariant measure. All T ∈ F(τ∗,K∗, E∗) preserve the same invariant measure, dµSRB =
c cosϕdr dϕ, where c = 1

2|∂Q| = 1
2
∑K
i=1 `i

is the normalizing constant [CM].

Remark 3.1. Property (H5) is enjoyed by the class of maps we have chosen, but it is not necessary
for this technique to work. Indeed, [DZ2] replaces this condition by: There exists η > 0 so that 1+η
is sufficiently small compared to the hyperbolicity constant Λ from (H1), such that (JµSRBT )−1 ≤
1 + η, where JµSRBT is the Jacobian of µSRB with respect to T .

Thus T does not have to preserve µSRB, but in this sense must be close to a map that does.
This permits the application of the current technique to billiards under small external forces and
nonelastic reflections, as described in [DZ2, Section 2.4]. See also [C2, Z]. Note however, that
while Theorem 2.7 will continue to hold in this generalized context, Theorem 2.8 will not hold once
there is no common invariant measure.

3.2 Growth Lemma

Although all maps in F(τ∗,K∗, E∗) enjoy the uniform properties (H1)-(H5), in Section 6.1, we
will find it convenient to increase the contraction provided in (3.4) by replacing T with a higher
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iterate Tn and choosing δ0 sufficiently small so that (3.4) holds for T∗ := Tn with constant θn0 . This
is possible since if W is a stable curve, then there exists C > 0, depending only on the family
F(τ∗,K∗, E∗), such that, for each T ∈ F(τ∗,K∗, E∗), |T−1W | ≤ C|W |1/2 [CM, Exercise 4.50]. Thus
we may redefine δ0 so small that no connected component of T−1

k (W ) is longer than δ0, from
hypothesis (H1), for k = 0, . . . , n. Since no artificial subdivisions are necessary, we apply (3.4)
inductively in k to obtain the desired contraction.

Choose n̄ such that θ1 := θn̄0 satisfies

3C0
θ1

1− θ1
≤ 1

4
, (3.7)

where C0 ≥ 1 is from (H3), and then fix δ0, as explained above, such that

sup
W∈Ws

|W |≤δ0

∑
Vi

|JViTn̄|∗ ≤ θ1, (3.8)

where Vi are the homogeneous components of T−1
n̄ W . Note that if we shrink δ0 further, then (3.8)

will continue to hold for the same value of n̄.
We shall work with the map T∗ := Tn̄ throughout the following. To simplify notation we will

call T∗ again T as no confusion can arise. Note, however, that the definition of N -admissible
sequence must be modified since the length NF of the blocks comprising the sequence, for example
in Theorem 2.7, is computed for the map T∗. Thus a single block in an N -admissible sequence
should comprise at least n̄N billiard maps that are close in the sense of Definition 2.4.

Definition 3.2. For W ∈ Ws, for Tn as in (2.2) we denote by Gn(W ) the homogeneous components
of T−1

n W , where we have subdivided the elements of T−1
n W longer than δ0 into elements with length

between δ0/2 and δ0 so that Gn(W ) ⊂ Ws. We call Gn(W ) the nth generation of W .
Let In(W ) denote the set of curves Wi ∈ Gn(W ) such that Tj(Wi) is not contained in an element

of Gn−j(W ) having length at least δ0/2 for all j = 0, . . . , n.

The following growth lemma is contained in [DZ2, Lemma 5.5], but we include the proof of item
(b) here for convenience and to draw out the explicit dependence on the constants.

Lemma 3.3. There exists C̄0 > 0 such that for all W ∈ Ws and n ≥ 0 and {ιj}nj=1,

a)
∑

Wi∈In(W )

|JWiTn|C0(Wi) ≤ C0θ
n
1 ;

b)
∑

Wi∈Gn(W )

|JWiTn|C0(Wi) ≤ C̄0δ
−1
0 |W |+ C0θ

n
1 .

Proof. Item (a) follows by induction on n from (3.8) and the constant C0 from (H3) comes from
translating from the adapted metric to the Euclidean metric at the last step. We focus on proving
item (b).

For W ∈ Ws, let Lk(W ) ⊂ Gk(W ) denote those elements of Gk(W ) having length at least δ0/2.
For k ≤ n and Wi ∈ Gn(W ), we say that Vj ∈ Lk(W ) is the most recent long ancestor of Wi if
k ≤ n is the largest time that Tn−kWi is contained in an element of Lk(W ). Then by definition,
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Wi ∈ In−k(Vj). Note that if Wi ∈ Ln(W ), then k = n and Wi = Vj . Now we estimate,

∑
Wi∈Gn(W )

|JWiTn|C0(Wi) ≤
n∑
k=1

∑
Vj∈Lk(W )

∑
Wi∈In−k(Vj)

|JWiTn−k|C0(Wi)|JVjTk|C0(Vj)

+
∑

Wi∈In(W )

|JWiTn|C0(Wi)

≤
n∑
k=1

∑
Vj∈Lk(W )

C0θ
n−k
1 eCdδ

1/3
0
|TkVj |
|Vj |

+ C0θ
n
1 ,

where we have used item (a) of the lemma to sum over Wi ∈ In−k(W ) and (3.5) to replace

|JVjTk|C0(Vj) with
|TkVj |
|Vj | . Now since ∪Vj∈Lk(W )TkVj ⊂W , and |Vj | ≥ δ0/2, we have

∑
Wi∈Gn(W )

|JWiTn|C0(Wi) ≤
n∑
k=1

C0θ
n−k
1 2δ−1

0 |W |e
Cdδ

1/3
0 + C0θ

n
1 ,

which proves the lemma with C̄0 := 2C0
1−θ1 e

Cdδ
1/3
0 .

Remark 3.4. It is not necessary to work with T = Tn̄ in Lemma 3.3. It follows equally well
from (3.4) with θ1 replaced by θ0. However, the stronger contraction provided by (3.8) is useful for
Lemma 6.1 and the arguments following it.

Observe that if |W | ≥ δ0/2, then all pieces Wi ∈ Gn(W ) have a long ancestor and can be included
in the sum over k; in this case, the second term on the right side of item (b) is not needed, and the
value of C̄0 remains unchanged.

3.3 Transfer operator

We define the transfer operator L associated with T acting on scales of spaces of distributions as
in [DZ1]. For {ιj}nj=1 ⊂ I(τ∗,K∗, E∗), we denote by T−1

n Ws the set of curves W ∈ Ws such that

TjW ∈ Ws for all j = 0, . . . n. For α ≤ 1/3, let Cα(T−1
n Ws) denote the set of complex valued

functions on M that are Hölder continuous on elements of T−1
n Ws. Then for ψ ∈ Cα(Ws), we have

ψ ◦ Tn ∈ Cα(T−1
n Ws) (see Lemma 5.2(a)). Define

Lnµ(ψ) = µ(ψ ◦ Tn), for µ ∈ (Cα(T−1
n Ws))∗ .

This defines LTιn : (Cα(T−1
n Ws))∗ → (Cα(T−1

n−1Ws))∗ for any n ≥ 1. See [DZ1] for details.
Recall that by (H5), all our maps T preserve the smooth invariant measure dµSRB = c cosϕdrdϕ,

where c is the normalizing constant. When dµ = fdµSRB is a measure absolutely continuous with
respect to µSRB, we identify µ with its density f . With this identification, the transfer operator
acting on densities has the following familiar expression,

LT f = f ◦ T−1,

and so Lnf = LTιn · · · LTι1f , pointwise. We choose this identification of functions in order to
simplify our later work: using the reference measure µSRB, the Jacobian of the transformation is 1,
making L simpler to work with.
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4 Cones and Projective Metrics

Given a closed,5 convex cone C satisfying C ∩ −C = ∅, we define an order relation by f � g if and
only if g − f ∈ C ∪ {0}. We can then define a projective metric by

ᾱ(f, g) = sup{λ ∈ R+ : λf � g}
β̄(f, g) = inf{µ ∈ R+ : g � µf}

ρ(f, g) = log

(
β̄(f, g)

ᾱ(f, g)

)
.

(4.1)

4.1 A cone of test functions

For W ∈ Ws, α ∈ (0, 1] and a ≥ 1, define a cone of test functions by

Da,α(W ) =

{
ψ ∈ C0(W ) : ψ > 0,

ψ(x)

ψ(y)
≤ ead(x,y)α ∀x, y ∈W

}
,

where d(·, ·) is the arclength distance along W .
The Hilbert metric associated with this cone and defined by (4.1) depends on the constant a

and the exponent α determining the regularity of the functions. For each such choice, the Hilbert
metric has the following convenient representation.

Lemma 4.1 ([L95a, Lemma 2.2]). Choose α ∈ (0, 1]. For ψ1, ψ2 ∈ Da,α(W ), the corresponding
metric ρW,a,α(·, ·) is given by

ρW,a,α(ψ1, ψ2) = log

[
sup

x,y,u,v∈W

ead(x,y)αψ1(x)− ψ1(y)

ead(x,y)αψ2(x)− ψ2(y)
· e

ad(u,v)αψ2(u)− ψ2(v)

ead(u,v)αψ1(u)− ψ1(v)

]
.

A corollary of this lemma is that Da,α(W ) has finite diameter in Da,β(W ) if β < α and |W | < 1
(the proof is similar to [L95a, Lemma 2.3] noting that d(x, y)α ≤ |W |α−βd(x, y)β).

The next two lemmas are simple consequences of the regularity of functions in Da,α(W ) for
W ∈ Ws. We denote by mW the measure induced by arclength along W .

Lemma 4.2. For any α ∈ (0, 1] and W ∈ Ws with |W | ∈ [δ, 2δ], any ψ ∈ Da,α(W ) and x ∈W , we
have

δψ(x)´
W ψ dmW

≤ |W |ψ(x)´
W ψdmW

≤ ea|W |α .

Proof. The estimate is immediate since infy∈W ψ(y) ≥ ψ(x)e−a|W |
α
.

Lemma 4.3. Given α ∈ (0, 1], W ∈ Ws, ψ1, ψ2 ∈ Da,α(W ) and x, y ∈W ,

e−ρW,a,α(ψ1,ψ2) ≤ ψ1(x)ψ2(y)

ψ2(x)ψ1(y)
≤ eρW,a,α(ψ1,ψ2)

Proof. According to (4.1), we must have,

ψ2(x)− ᾱψ1(x) ≥ 0 ∀x ∈W and ψ2(y)− β̄ψ1(y) ≤ 0 ∀y ∈W.

This in turn implies that

ρW,a,α(ψ1, ψ2) = log
β̄(ψ1, ψ2)

ᾱ(ψ1, ψ2)
≥ log

[
ψ1(x)ψ2(y)

ψ2(x)ψ1(y)

]
∀x, y ∈W.

5 Closed here means that for all f, g ∈ C and sequence {αn} ⊂ R such that limn→∞ αn = α and g + αnf ∈ C for
all n ∈ N we have g + αf ∈ C ∪ {0}.
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4.2 Distances between curves and functions

Due to the global stable cones Cs defined in (H1), we may consider stable curves W ∈ Ws as
graphs of C2 functions over an interval IW in the r-coordinate:

W = {GW (r) = (r, ϕW (r)) : r ∈ IW }.

Using this representation, we define a notion of distance between W 1,W 2 ∈ Ws by

dWs(W 1,W 2) = |ϕW 1 − ϕW 2 |C1(IW1∩IW2 ) + |IW 1 4 IW 2 |, (4.2)

ifW 1 andW 2 lie in the same homogeneity strip and |IW 1∩IW 2 | > 0; otherwise, we set dWs(W 1,W 2) =
∞. Note that dWs is not a metric, but this is irrelevant for our purposes.

We will also find it necessary to compare between test functions on two different stable curves.
Given W 1,W 2 ∈ Ws with dWs(W 1,W 2) <∞, and ψi ∈ Da,β(W i), define

d∗(ψ1, ψ2) = |ψ1 ◦GW 1‖G′W 1‖ − ψ2 ◦GW 2‖G′W 2‖ |Cβ(IW1∩IW2 ), (4.3)

to be the (Hölder) distance between ψ1 and ψ2, where ‖G′W ‖ =
√

1 + (dϕW /dr)2. Note that d∗
depends on β.

Also, by the bound B̄ on the curvature of elements of Ws, there exists B∗ > 0 such that

B∗ = sup
W∈Ws

|ϕ′′W |C0(W ) <∞ . (4.4)

Remark 4.4. Note that if d∗(ψ1, ψ2) = 0, thenˆ
W

1
ψ1 dmW 1 =

ˆ
W

2
ψ2 dmW 2 ,

where W
k

= GWk(IW 1 ∩ IW 2), k = 1, 2.

4.3 Definition of the cone

In order to define a cone of functions adapted to our dynamics, we will fix the following exponents,
α, β, γ, q > 0 and constant a > 1 large enough. Choose q ∈ (0, 1/2), β < α ≤ 1/3 and finally
γ ≤ min{α− β, q}.

For a length scale δ ≤ δ0/3, define

Ws
−(δ) = {W ∈ Ws : |W | ≤ 2δ} and Ws(δ) = {W ∈ Ws : |W | ∈ [δ, 2δ]} .

Let A∗ denote the set of functions on M whose restriction to each W ∈ Ws is integrable with
respect to the arclength measure dmW . For f ∈ A∗ define,

|||f |||∼+ = sup
W∈Ws

−(δ)

ψ∈Da,β(W )

∣∣´
W fψ dmW

∣∣´
W ψ dmW

.

Setting A0 = {f ∈ A∗ : |||f |||∼+ <∞}, we have that ||| · |||∼+ is a seminorm on the vector space A0.

Definition 4.5. As usual, we consider the vector space of the classes of equivalence determined by
the semi-norm (f ∼ g iff |||f − g|||∼+ = 0) and call A the resulting normed vector space. Remark
that if f ∼ g, then f and g are equal almost everywhere both with respect to Lebesgue and to SRB
measure µSRB. In the following, we can then safely ignore the issue of equivalence classes and we
will not mention it explicitly.
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We will find it convenient to measure the average of functions in our cone on long stable curves,
i.e. elements of Ws(δ). To this end, define for f ∈ A,

|||f |||+ = sup
W∈Ws(δ)
ψ∈Da,β(W )

∣∣´
W fψ dmW

∣∣´
W ψ dmW

, |||f |||− = inf
W∈Ws(δ)
ψ∈Da,β(W )

´
W fψ dmW´
W ψ dmW

. (4.5)

Recall that we denote the average value of ψ on W by
ffl
W ψ dmW = 1

|W |
´
W ψ dmW . Since all

of our integrals in this section and the next will be taken with respect to the arclength dmW , to
keep our notation concise, we will drop the measure from our integral notation in what follows.

Now for a, c, A, L > 1, and δ ∈ (0, δ0/3], define the cone

Cc,A,L(δ) =
{
f ∈ A \ {0} : |||f |||+ ≤ L|||f |||−; (4.6)

sup
W∈Ws

−(δ)
sup

ψ∈Da,β(W )
|W |−q

|
´
W fψ|ffl
W ψ

≤ Aδ1−q|||f |||−; (4.7)

∀W 1,W 2 ∈ Ws
−(δ) : dWs(W 1,W 2) ≤ δ, ∀ψi ∈ Da,α(W i) : d∗(ψ1, ψ2) = 0,∣∣∣∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣ ≤ dWs(W 1,W 2)γ δ1−γcA|||f |||−
}
. (4.8)

We write the constants c, A, L explicitly as subscripts in our notation for the cone since these will
be the parameters which are contracted by the dynamics. By contrast, the exponents α, β, γ, q are
fixed and will not be altered by the dynamics, while the constant a, which will be chosen in Lemma
5.2, will not appear directly in the contraction constant of the cone.

Intuitively, (4.6) requires that the ‘mass’ of functions in the cone be evenly distributed through-
out the phase space, while (4.7) implies that, even though the functions in the cone are not neces-
sarily bounded, their average on a short stable curve W cannot be larger than some constant times
|W |q−1. Condition (4.8) says that, once you integrate along stable curves, you get an object which
is morally γ-Hölder on the space of curves with the ‘metric’ dWs . That is, (4.8) implies some form
of weak Hölder regularity for f transverse to the stable cone.

Remark 4.6. The above cone is a considerable simplification of the one introduced in [L95a, Section
4.1]. The parameter ζ in [L95a, Section 4.1] plays the role of the parameter q here: it allows one to
control the integral of an element of the cone on short stable curves. By contrast, the introduction
of the new Hölder exponents α, β, γ is necessary, as already evident in [DZ1] and [DZ2], to allow
for the wilder singularities present in billiard maps with respect to the ones treated in [L95a, Section
4]. In particular, the requirement α ≤ 1/3 is forced by the distortion bound (H4), which in turn
depends on the choice of homogeneity strips. The relation between the above cone and the norms in
[DZ1] and [DZ2] is very close: the cone has a natural norm associated to it (see [DKL1, Appendix
D.2 and, in particular, equation (D.2.1)]) which is very similar to the norms in [DZ1] and [DZ2].

For convenience, we require δ0 to be sufficiently small so that

e2aδβ0 ≤ 2 . (4.9)

This will imply similar bounds in terms of δ since δ ≤ δ0/3.

Remark 4.7. Note that, by definition, ||| · |||+ decreases when δ decreases, while ||| · |||− increases.
Thus if (4.6) holds for some δ > 0, it will hold automatically for all smaller δ. We will see that cone
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invariance has the same property. In fact, as will become clear from our estimates in Sections 5
and 6, in order to prove that the parameters contract, we will need to choose A large compared to
L, and c large compared to A. This yields the compatible set of restrictions, 1 < L < A < c.

By contrast, the exponents are fixed by the regularity properties of the maps in question: α ≤ 1/3
due to (3.5), and β < α so that Da,β(W ) has finite diameter in Da,α(W ), while γ ≤ α − β is
convenient to obtain the required contraction in Lemma 5.5. See Section 5.3 for all the conditions the
constants must satisfy for Proposition 5.1. Several further conditions are specified in Theorem 6.12
to prove the strict contraction of the cone.

Remark 4.8. Note that, since 0 /∈ Cc,A,L(δ), condition (4.6) implies |||f |||− > 0, hence for all
W ∈ Ws(δ), ψ ∈ Da,β(W ), ˆ

W
fψ dmW ≥ |||f |||−

ˆ
W
ψ dmW > 0. (4.10)

In particular, this implies

|||f |||+ = sup
W∈Ws(δ)
ψ∈Da,β(W )

´
W fψ dmW´
W ψ dmW

for f ∈ Cc,A,L(δ).

In addition, condition (4.7) implies

A|||f |||− ≥ sup
W∈Ws

−(δ)
sup

ψ∈Da,β(W )
δq−1|W |1−q

|
´
W fψ|´
W ψ

≥ |||f |||+.

However condition (4.6) is not vacuous since we assume A > L.

Remark 4.9. To have an idea of which functions can belong to the cone note that a function that
is strictly negative on a ball of size 2δ cannot satisfy (4.6) and hence does not belong to the cone.
On the other hand each f ∈ C1 such that inf f ≥ L‖f‖∞ and ‖f‖C1 ≤ c inf f belongs to the cone.
See also Lemma 7.6 for a more detailed description of functions that belong to the cone.

We will need the following lemma in Section 6.2.

Lemma 4.10. For all f ∈ Cc,A,L(δ), W ∈ Ws(δ) and all ψ1, ψ2 ∈ Da,β(W ),∣∣∣∣
´
W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

∣∣∣∣ ≤ 2δLρW,a,β(ψ1, ψ2)|||f |||− .

Proof. Let f ∈ Cc,A,L(δ), W ∈ Ws(δ) and ψ1, ψ2 ∈ Da,β(W ). For each λ, µ > 0 such that λψ1 �
ψ2 � µψ1, hence also λψ1 ≤ ψ2 ≤ µψ1, we have´

W fψ2ffl
W ψ2

=
λ
´
W fψ1 +

´
W f(ψ2 − λψ1)ffl
W ψ2

≥
λ
´
W fψ1

µ
ffl
W ψ1

,

where we have dropped the second term above due to (4.10) since ψ2 − λψ1 ∈ Da,β(W ). Taking
the sup on λ and the inf on µ, and recalling (4.1), yields´

W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

≤
´
W fψ1ffl
W ψ1

(1− e−ρW,a,β(ψ1,ψ2)) ≤ ρW,a,β(ψ1, ψ2)

´
W fψ1ffl
W ψ1

.

Then, since |W | ≥ δ, we use (4.6) to estimate,´
W fψ1ffl
W ψ1

≤ |W ||||f |||+ ≤ 2δL|||f |||− .

Reversing the roles of ψ1 and ψ2 completes the proof of the lemma.
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5 Cone Estimates: Contraction of c and A

In this section, fixing F(τ∗,K∗, E∗), we will prove the following proposition. Let n0 ≥ 1 be such
that AC0θ

n0
1 ≤ 1/16.

Proposition 5.1. If the conditions on δ, n0, a, c, A, L specified in Section 5.3 are satisfied, then
there exists χ < 1, independent of the cone parameters,6 such that for all n ≥ n0 and {ιj}nj=1 ⊂
I(τ∗,K∗, E∗),

LnCc,A,L(δ) ⊆ Cχc,χA,3L(δ) .

Note that the parameter L is not contracted, although it cannot grow too much. To have a
contraction of L we need to use the global properties of the map (some kind of topological mixing,
see Section 6 for details), while the proof of Proposition 5.1 is based only on local arguments.

Before proving Proposition 5.1 we need some facts concerning the behaviour of the test functions
under the dynamics.

5.1 Contraction of test functions

For {ιj}nj=1 ⊂ I(τ∗,K∗, E∗), W ∈ Ws, ψ ∈ Da,β(W ), and Wi ∈ Gn(W ), define

T̂n,Wiψ = T̂n,iψ := ψ ◦ Tn · JWiTn,

where JWiTn denotes the Jacobian of Tn along Wi with respect to arclength.
The following lemma is a consequence of (H1).

Lemma 5.2. Let n ≥ 0 be such that C−β1 Λ−βn < 1, where C1 ≤ 1 is from (3.1), and fix a >

(1 − C−β1 Λ−βn)−1Cdδ
1/3−β
0 . For each β ∈ (0, 1/3], there exist σ, ξ̄ < 1 such that for all W ∈ Ws

and Wi ∈ Gn(W ),

a) T̂n,i(Da,β(W )) ⊂ Dσa,β(Wi);

b) ρWi,a,β(T̂n,iψ1, T̂n,iψ2) ≤ ξ̄ρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. (a) We need to measure the log-Hölder norm of T̂n,iψ for ψ ∈ Da,β(W ). For x, y ∈ Wi,
recalling (3.1), we estimate,

T̂n,iψ(x)

T̂n,iψ(y)
=
ψ(Tnx)JWiTn(x)

ψ(Tny)JWiTn(y)
≤ ead(Tnx,Tny)β+Cdd(x,y)1/3 ≤ e(aC−β1 Λ−βn+Cdδ

1/3−β
0 )d(x,y)β ,

where we have used (3.1) and (3.5) as well as the fact that β ≤ 1/3. This proves the first statement

of the lemma with σ = C−β1 Λ−βn + a−1Cdδ
1/3−β
0 .

(b) Using Lemma 4.1, if ψ1, ψ2 ∈ Dσa,β(Wi), then,

ρWi,a,β(ψ1, ψ2) = log

[
sup

x,y,u,v∈Wi

ead(x,y)β · ψ1(x)− ψ1(y)

ead(x,y)β · ψ2(x)− ψ2(y)
· e

ad(u,v)β · ψ2(u)− ψ2(v)

ead(u,v)β · ψ1(u)− ψ1(v)

]

≤ log

[
sup

x,y,u,v∈W

e(a+σa)d(x,y)β − 1

e(a−σa)d(x,y)β − 1
· e

(a+σa)d(u,v)β − 1

e(a−σa)d(u,v)β − 1
· ψ1(y) · ψ2(v)

ψ2(y) · ψ1(u)

]

≤ log

[
(a+ σa)2

(a− σa)2
· e2a(1+σ)δβ0 · e2aδβ0

]
=: K.

(5.1)

6By independent of the cone parameters, we mean that we may first fix χ < 1, and then choose c, A, L, δ satisfying
the conditions of Section 5.3 so that the contraction by χ is obtained for all choices of c′ > c, A′ > A, L′ > L and
δ′ < δ that satisfy those conditions. Note, however, that larger A′ > A requires n0 to increase in size.
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Thus the diameter of Dσa,β(Wi) is finite in Da,β(Wi). Part (b) of the lemma then follows from
[L95a, Theorem 1.1], with ξ̄ = tanh(K/4) < 1.

Corollary 5.3. Let n1 denote the least positive integer satisfying C−β1 Λ−βn1 < 1 and aC−β1 Λ−βn1 +

Cdδ
1/3−β
0 < a. Define ξ = ξ̄

1
2n1 < 1. Then for W ∈ Ws, n ≥ n1 and Wi ∈ Gn(W ),

ρWi,a,β(T̂n,iψ1, T̂n,iψ2) ≤ ξnρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. The proof follows immediately from Lemma 5.2 once we decompose n = kn1 + r, where
r ∈ [0, n1) and write

T̂n,Wiψ = T̂n1+r,Wi ◦ T̂n1,Tn1+r(Wi) ◦ T̂n1,T2n1+r(Wi) ◦ · · · ◦ T̂n1,T(k−1)n1+r(Wi)ψ.

Each of the operators T̂n1,Tjn1+r(Wi) satisfies Lemma 5.2 with the same σ and ξ̄. The corollary then

follows using the observation that ξ̄bn/n1c ≤ ξn, ∀n ≥ n1.

It is important for what follows that the contractive factor ξ̄ < 1 is explicitly given in terms of
the diameter K, which depends only on a, σ, δ0 and β, but not on δ. While n1 depends on the
parameter choice β, it also is independent of δ.

In what follows, we require n0 ≥ n1 by definition, so that Lemma 5.2 and Corollary 5.3 will
hold for all n ≥ n0.

5.2 Proof of Proposition 5.1

This section is devoted to the proof of Proposition 5.1.

5.2.1 Preliminary estimate on L

For W ∈ Ws, recalling Defintion 3.2, we denote by Shn(W ; δ) the elements of Gn(W ) of length less
than δ and by Lon(W ; δ) the elements of Gn(W ) of length at least δ.

Lemma 5.4. Fix δ ∈ (0, δ0/3) so that 4Aδδ−1
0 C̄0 ≤ 1/4, then, for all f ∈ Cc,A,L(δ) and n ≥ n0,

|||Lnf |||+ ≤
3
2 |||f |||+ and |||Lnf |||− ≥

1
2 |||f |||−.

Proof. Let W ∈ Ws(δ), ψ ∈ Da,β(W ). Then,ˆ
W
Lnf ψ =

∑
Wi∈Lon(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiTn +
∑

Wi∈Shn(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiTn. (5.2)

Now since ψ ◦ TnJWiTn ∈ Da,β(Wi) by Lemma 5.2, we subdivide elements Wi ∈ Lon(W ; δ) into
curves U i` having length between δ and 2δ and use the definition of |||f |||+ on each such curve to
estimate, ˆ

Wi

f ψ ◦ Tn JWiTn ≤
∑
`

|||f |||+
ˆ
U i`

ψ ◦ Tn JWiTn = |||f |||+
ˆ
TnWi

ψ .

To estimate the short pieces, we apply (4.7), change variables again and use ψ ∈ Da,β(W ), and
finally apply Lemma 3.3(b) since Shn(W ; δ) ⊂ Gn(W ), to estimate∑

Wi∈Shn(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiTn ≤
∑

Wi∈Shn(W ;δ)

|||f |||−A|Wi|qδ1−q
 
Wi

ψ ◦ Tn JWiTn

≤ δA|||f |||−e
a(2δ)β

 
W
ψ (C̄0δ

−1
0 |W |+ C0θ

n
1 ).
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Putting these estimates together in (5.2) and since |W | ≥ δ implies δ
ffl
W ψ ≤

´
W ψ, we obtain,

ˆ
W
Lnf ψ ≤

∑
Wi∈Lon(W ;δ)

|||f |||+
ˆ
TnWi

ψ +A|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ |||f |||+
ˆ
W
ψ
(

1 +Aea(2δ)β (δδ−1
0 C̄0 + C0θ

n
1 )
)
.

Now (4.9) implies ea(2δ)β ≤ 2, and our choices of n0 and δ imply 2Amax{C̄0δδ
−1
0 , C0θ

n0
1 } ≤ 1/4,

which yields the required estimate on |||Lnf |||+ for all n ≥ n0.
For the bound on |||Lnf |||−, we perform a similar estimate, except noting that for Wi ∈

Lon(W ; δ), ˆ
Wi

f ψ ◦ Tn JWiTn ≥ |||f |||−
ˆ
TnWi

ψ,

we follow (5.2) to estimate,

ˆ
W
Lnf ψ ≥

∑
Wi∈Lon(W ;δ)

|||f |||−
ˆ
TnWi

ψ −A|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ |||f |||−
ˆ
W
ψ
(

1− 2Aea(2δ)β (δδ−1
0 C̄0 + C0θ

n
1 )
)
.

Again using our choice of n0 and δ, we have 4AC0θ
n
1 ≤ 1/4 and 4Aδδ−1

0 C̄0 ≤ 1/4, which yields
|||Lnf |||− ≥

1
2 |||f |||−.

In particular the above implies the estimate: for all n ≥ n0,

|||Lnf |||+
|||Lnf |||−

≤ 3
|||f |||+
|||f |||−

≤ 3L. (5.3)

5.2.2 Contraction of the parameter A

We prove that the parameter A contracts in (4.7). Choose f ∈ Cc,A,L(δ). Let W ∈ Ws with
|W | ≤ 2δ, ψ ∈ Da,β(W ) and x ∈ W . From now on, we will refer to Lon(W ; δ) and Shn(W ; δ) as
simply Lon(W ) and Shn(W ). We follow (5.2) to write∣∣∣∣ˆ

W
Lnf ψ

∣∣∣∣ ≤ ∑
Wi∈Lon(W )

ˆ
Wi

f ψ ◦ Tn JWiTn +
∑

Wi∈Shn(W )

∣∣∣∣ˆ
Wi

f ψ ◦ Tn JWiTn

∣∣∣∣
≤

∑
Wi∈Lon(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiTn +
∑

Wi∈Shn(W )

Aδ1−q|Wi|q|||f |||−
 
Wi

ψ ◦ Tn JWiTn

≤
∑

Wi∈Lon(W )

|||f |||−L
ˆ
TnWi

ψ +Aδ1−q|W |q|||f |||−|ψ|C0

∑
Wi∈Shn(W )

|Wi|q

|W |q
|TnWi|
|Wi|

,

where in the second line we have used (4.7) for the sum on short pieces. Since |W | ≤ 2δ, the first
sum above is bounded by

|||f |||−L|W |
 
W
ψ ≤ |||f |||−2Lδ1−q|W |q

 
W
ψ .
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For the sum on short pieces, we use Lemma 3.3(b) and the Hölder inequality to estimate7

∑
Wi∈Shn(W )

|Wi|q

|W |q
|TnWi|
|Wi|

≤

 ∑
Wi∈Shn(W )

|TnWi|
|W |

q ∑
Wi∈Shn(W )

|JWiTn|C0(Wi)

1−q

≤ (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q.

Combining these two estimates with Lemma 4.2 yields,

|
´
W Lnf ψ|ffl
W ψ

≤ Aδ1−q|W |q|||f |||−
(

2LA−1 + ea(2δ)β (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q

)
. (5.4)

This contracts the parameter A if 2LA−1 + ea(2δ)β (2C̄0δδ
−1
0 +C0θ

n
1 )1−q < 1, which we can achieve

if ea(2δ)β ≤ 2,
A > 4L, and (2C̄0δδ

−1
0 + C0θ

n0
1 )1−q < 1/4 . (5.5)

Remark that since L ≥ 1, we have A > 4, and so according to the assumption of Lemma 5.4,
2C̄0δδ

−1
0 ≤ 1/32. Moreover, C0θ

n0
1 ≤ 1/64 by choice of n0, and since 1 − q ≥ 1/2, the second

condition in (5.5) is always satisfied under the assumption of Lemma 5.4.

5.2.3 Contraction of the parameter c

Finally, we verify the contraction of c via (4.8). Let f ∈ Cc,A,L(δ) and W 1,W 2 ∈ Ws with |W k| ≤ 2δ
and dWs(W 1,W 2) ≤ δ. Take ψk ∈ Da,α(W k) with d∗(ψ1, ψ2) = 0.

Without loss of generality we can assume |W 2| ≥ |W 1| and
ffl
W1

ψ1 = 1. Next, note that cone
condition (4.7) implies (see Lemma 5.4)∣∣∣∣

´
W 1 Lnf ψ1ffl
W 1 ψ1

−
´
W 2 Lnf ψ2ffl
W 2 ψ2

∣∣∣∣ ≤ 4Aδ1−q|W 2|q|||Lnf |||−

It follows that the contraction of the parameter c is trivial for |W 2|q ≤ δq−γ dWs (W 1,W 2)γc
8 . Thus it

suffices to consider the case

|W 2|q ≥ δq−γ dW
s(W 1,W 2)γc

8
. (5.6)

Remark that by definition, dWs(W 1,W 2) ≤ δ implies IW1 ∩ IW2 6= ∅. To proceed, define

Cs :=
√

1 + (K−1
∗ + τ−1

∗ )2, which depends on the maximum absolute value of the slopes of curves

in the stable cone defined in (3.1). We assume,

q ≥ γ , and c ≥ 16Cqs . (5.7)

Next, for any two manifolds U i ∈ Ws
−(δ) defined on the intervals Ii with J = I1 ∩ I2, by the

distance definition (4.2) we have,

| |U1| − |U2| | ≤
ˆ
J
| ‖G′1‖ − ‖G′2‖ | dr +

2∑
i=1

ˆ
Ii\J
‖G′i‖dr

≤
ˆ
J
‖G′2 −G′1‖dr + Cs|I1 4 I2| ≤ (|U1|+ Cs)dWs(U1, U2).

(5.8)

7Note that
∑
i |TnWi| ≤ |W | and |TnWi|

|Wi|
≤ |JWiTn|C0(Wi)

.
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Since
ffl
W1

ψ1 = 1, we have |ψ1|∞ ≤ ea(2δ)α . On the other hand, since IW 1 ∩ IW 2 6= ∅
and d∗(ψ1, ψ2) = 0, there must exist r ∈ IW 1 ∩ IW 2 such that ψ1 ◦ GW 1(r)‖G′W 1(r)‖ = ψ2 ◦
GW 2(r)‖G′W 2(r)‖. Thus since,

‖G′W 1(r)‖
‖G′

W 2(r)‖
=

√
1 + (ϕ′

W 1(r))2

1 + (ϕ′
W 2(r))2

=

√
1 +

(ϕ′
W 1(r)− ϕ′

W 2(r))(2ϕ′
W 2(r) + (ϕ′

W 1(r)− ϕ′
W 2(r)))

1 + (ϕ′
W 2(r))2

≤
√

1 + dWs(W 1,W 2)(2 + dWs(W 1,W 2)) ≤
√

1 + 3δ ≤ 2 ,

where we use δ < 1, we estimate,

|ψ2|∞ ≤ 2ea(2δ)α |ψ1|∞ ≤ 2e2a(2δ)α . (5.9)

Then recalling Remark 4.4 and (4.9), it follows that∣∣∣∣ˆ
W 1

ψ1 −
ˆ
W 2

ψ2

∣∣∣∣ ≤ ea(2δ)αCs|IW 1 \ IW 2 |+ e2a(2δ)α2Cs|IW 2 \ IW 1 |

≤ 2Cse
2a(2δ)αdWs(W 1,W 2) ≤ 4.8 CsdWs(W 1,W 2).

Putting this together with (5.8) and using
´
W1

ψ1 = |W1|, we estimate,∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ ≤ ∣∣|W 2| − |W 1|
∣∣+

∣∣∣∣ˆ
W 1

ψ1 −
ˆ
W 2

ψ2

∣∣∣∣
≤ (|W 1|+ 5.8 Cs)dWs(W 1,W 2) ≤ 6CsdWs(W 1,W 2) ,

(5.10)

where we have used (4.9), 3δ ≤ δ0 ≤ 1/2 ≤ Cs/2 and α > β.
Hence, recalling Lemma 5.4 and (5.4), dWs(W 1,W 2) ≤ δ and using (5.6), (5.7) and (5.10), we have∣∣∣∣

´
W 1 Lnfψ1ffl
W 1 ψ1

−
´
W 2 Lnfψ2ffl
W 2 ψ2

∣∣∣∣ ≤ ∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+

∣∣∣∣ˆ
W 2

Lnfψ2

∣∣∣∣ ∣∣∣∣ |W 2|´
W 2 ψ2

− 1

∣∣∣∣
≤
∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+A

[
δ

|W 2|

]1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ 2|||Lnf |||−
≤
∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+ 23−1/q3CqsAδ
1−γdWs(W 1,W 2)γ |||Lnf |||− .

(5.11)

To conclude it suffices then to compare
´
W 1 Lnf ψ1 and

´
W 2 Lnf ψ2. To this end, define Gδn(W k)

as the nth generation of pieces in T−1
n W k as in Definition 3.2, but with pieces subdivided between

length δ and 2δ rather than δ0/2 and δ0. We create partitions of Gδn(W k) into ‘matched’ and
‘unmatched’ pieces as follows. For each curve W 1

i ∈ Gδn(W 1), we construct a foliation of vertical
line segments {`x}x∈W 1

i
centered at x and having length at most 3C1Λ−n+1dWs(W 1,W 2) such that

their images under Tn either end on a singularity curve in SH−n or, if not cut by a singularity, have
length 3dWs(W 1,W 2), with length at least dWs(W 1,W 2) on each side of Tn(x).

In the latter case, this implies that `x intersects a unique homogeneous element of T−1
n W 2.

Let the subcurve U1
i,+ ⊂ W 1

i be the union of the points x for which this happens and let U2
i,+ =

{`x ∩ T−1
n W 2}x∈Ui,+ be the corresponding subcurve in T−1

n W 2.8 Since Uki,+ has length at most 2δ,

8Note that, by [CM, Proposition 4.47], given two maximal homogeneous subcurves of T−1
n W k that are connected by

a vertical segment disjoint from SH
n , there must exist two piecewise smooth curves in SH

n that connect the boundaries
of such two subcurves forming a rectangle that does not contain any element of SH

n in its interior. Thus U2
i,+ must be

a connected subcurve.
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Figure 1: The Decomposition Ukj , V
k
j .

then U2
i,+ can intersect at most 3 elements of Gδn(W 2), due to the possible different ways in which long

pieces have been split in Gδn(W 1) and Gδn(W 2). We call U2
j the elements of {U2

i,+ ∩W 2
l }W 2

l ∈Gδn(W 2)

and set U1
j = {x ∈ U1

i,+ : `x ∩ U2
j 6= ∅}. We call the subcurves Ukj , k = 1, 2 ‘matched’, while we

call the remaining subcurves V k
j ‘unmatched’. Note that, by construction, each W k

i ∈ Gδn(W k) can

contain at most two unmatched elements and at most 3 matched elements. In addition, for x ∈ V 1
j ,

either Tn(`x) intersects SH−n or Tn(x) is near an end point of W 1. In either case, due to the uniform
transversality of stable and unstable cones, |Tn(V 1

j )| is short in a sense we will make precise below.

Thus we have defined a decomposition of Gδn(W k) = ∪jUkj ∪ ∪jV k
j , such that U1

j and U2
j are

defined as the graphs of functions GUkj
over the same r-interval Ij for each j.

Using this decomposition, writing T̂n,Ukj
ψk = ψk ◦ TnJUkj Tn and similarly for T̂n,V kj

ψk, we have

ˆ
Wk

Lnf ψk =
∑
j

ˆ
Ukj

f T̂n,Ukj
ψk +

∑
j

ˆ
V kj

f T̂n,V kj
ψk. (5.12)

We estimate the contribution from unmatched pieces first. To do so, we group the V k
j as follows.

We say V k
j is ‘created’ at time 0 ≤ i ≤ n − 1 if i is the smallest t such that either an endpoint

of Tn−t(V
k
j ) intersects Tιt+1(SH0 ), or Tn−t(V

k
j ) is contained in a larger unmatched piece with this

property (this second case can happen when both endpoints of V k
j do not belong to SHTn). Due

to the uniform transversality of the stable cone with curves in Tιi+1(SH0 ) as well as the uniform
transversality of the stable and unstable cones, we have |Tn−iV k

j | ≤ C̄3Λ−idWs(W 1,W 2), for some

constant C̄3 > 0. Define P (i) = {j : V 1
j created at time i}.

For ease of notation, when we change variables, we will adopt the following notation for n ≥ 1,
k ≥ 0,

Tn,n−k = Tιn ◦ · · · ◦ Tιn−k+1
. (5.13)

In this notation, Tn,0 = Tn and Tn = Tn,n−k ◦ Tn−k.
Although we would like to change variables to estimate the contribution on the curves Tn−i(V

1
j )

for j ∈ P (i), this is one time step before such cuts would be introduced according to our defini-
tion of Gδn(W ), so Lemma 3.3 would not apply since there may be many such Tn−i(V

1
j ) for each

W 1
` ∈ Gδi (W 1). However, there can be at most two curves Tn−i−1(V 1

j ), j ∈ P (i), per element of

W 1
` ∈ Gδi+1(W 1), so we will change variables to estimate the contribution from curves of the form

Tn−i−1(V 1
j ) instead. We have two cases.
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Case 1. The curve in Tιi+1(SH0 ) that creates V 1
j at time i is the preimage of the boundary of a

homogeneity strip. Then Tn−i−1V
1
j still enjoys uniform transversality with the boundary of the

homogeneity strip and the unstable cone, and so |Tn−i−1V
1
j | ≤ C̄3Λ−i−1dWs(W 1,W 2) as before.

Case 2. The curve in Tιi+1(SH0 ) that creates V 1
j at time i is not the preimage of the boundary of

a homogeneity strip. Then V 1
j undergoes bounded expansion from time n − i to time n − i − 1.

Thus |Tn−i−1(V 1
j )| ≤ CC̄3Λ−idWs(W 1,W 2), where C > 0 depends only on our choice of k0, the

minimum index of homogeneity strips.

In either case, we conclude that |Tn−i−1(V 1
j )| ≤ C3Λ−idWs(W 1,W 2), for a uniform constant

C3 > 0. Also, since Tn−i−1(V k
j ) is contained in an element of Gδn−i−1(W ), it follows that all such

curves have length at most 2δ, thus we may apply (4.7),∣∣∣∣∣∣
∑
j

ˆ
V 1
j

f T̂n,V 1
j
ψ1

∣∣∣∣∣∣ ≤
n−1∑
i=0

∣∣∣∣∣∣
∑
j∈P (i)

ˆ
Tn−i−1(V 1

j )
Ln−i−1f · ψ1 ◦ Tn,n−i−1 JTn−i−1(V 1

j )Tn,n−i−1

∣∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i)

Aδ1−q|Tn−i−1(V 1
j )|q|||Ln−i−1f |||−|ψ1|C0(W 1)|JTn−i−1(V 1

j )Tn,n−i−1|C0(Tn−i−1(V 1
j ))

≤
n−1∑
i=0

Aδ1−qCq3Λ−iqdWs(W 1,W 2)q|||Ln−i−1f |||− (2C̄0 + C0θ
i+1
1 )|ψ1|C0(W 1),

where we have used Lemma 3.3-(b) for the sum over j ∈ P (i) since there are at most two curves
Tn−i−1(V 1

j ) for each element W 1
` ∈ Gδi+1(W ).9

Since n ≥ 2n0, we have either that i + 1 ≥ n0 or n − (i + 1) ≥ n0. In the former case,
|||Ln−i−1f |||− ≤ 2|||Lnf |||− by Lemma 5.4. In the latter case,

|||Ln−i−1f |||− ≤ |||Ln−i−1f |||+ ≤
3
2 |||f |||+ ≤

3
2 L|||f |||− ≤ 3L|||Lnf |||−, (5.14)

where we have used Lemma 5.4 twice, once on |||Ln−i−1f |||+ and once on |||f |||−. Since the latter
estimate (5.14) is the larger of the two, we may use it for all i.

Also, using the assumption that dWs(W 1,W 2) ≤ δ and (5.7) yields,

δ1−qdWs(W 1,W 2)q ≤ δ1−γdWs(W 1,W 2)γ .

Collecting these estimates and summing over the exponential factors yields (since the estimate for
V 2
j is the same),

∑
j,k

∣∣∣∣∣
ˆ
V kj

f T̂n,V kj
ψk

∣∣∣∣∣ ≤ C4ALδ
1−γdWs(W 1,W 2)γ |||Lnf |||−, (5.15)

for some uniform constant C4 depending only on F(τ∗,K∗, E∗) and not on the parameters of the
cone.

Next, we estimate the contribution on matched pieces Ukj . To do this, we will need to change

test functions on the relevant curves. Define the following functions on U1
j ,

ψ̃2 = ψ2 ◦ Tn ◦GU2
j
◦G−1

U1
j

; J̃U2
j
Tn = JU2

j
Tn ◦GU2

j
◦G−1

U1
j
,

T̃n,U2
j
(ψ2) = ψ̃2 · J̃U2

j
Tn

‖G′
U2
j
‖ ◦G−1

U1
j

‖G′
U1
j
‖ ◦G−1

U1
j

.
(5.16)

9Notice that since we subdivide curves in Gδn(W ) according to length δ and not δ0, the estimate of Lemma 3.3(b)
becomes C̄0δ

−1|W |+ C0θ
n
1 ≤ 2C̄0 + C0θ

n
1 , since |W | ≤ 2δ.
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Note that d∗(T̂n,U2
j
(ψ2), T̃n,U2

j
(ψ2)) = 0 by construction. Also we define

ψ−j = min
{
T̂n,U1

j
(ψ1), T̃n,U2

j
(ψ2)

}
ψ∆

1,j = T̂n,U1
j
(ψ1)− ψ−j ; ψ∆

2,j = T̃n,U2
j
(ψ2)− ψ−j .

(5.17)

We will need the following lemma to proceed.

Lemma 5.5. If c > 4(1 +M0)q, M0 is defined in (5.28), then there exists C5 ≥ 1, independent of
n, W 1 and W 2 satisfying (5.6), such that for each j,

a) dWs(U1
j , U

2
j ) ≤ C5Λ−ndWs(W 1,W 2) ;

b) e−C5dWs (W 1,W 2)α ≤
T̂n,U1

j
ψ1(x)

T̃n,U2
j
ψ2(x)

≤ eC5dWs (W 1,W 2)α ∀x ∈ U1
j ;

c) setting B = 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β we have ψ∆
i,j +Bψ−j ∈ Da,β(U1

j ), i = 1, 2.

Moreover, T̃n,U2
j
ψ2 and ψ−j belong to Da,α(U1

j ).

We postpone the proof of the lemma and use it to conclude the estimates of this section.
For future use note that Lemma 5.5(b) implies

0 ≤ ψ∆
k,j(x) ≤ 2C5dWs(W 1,W 2)αψ−j (x). (5.18)

Observe that since ψ∆
k,j +Bψ−j , ψ

−
j ∈ Da,β(U1

j ), k = 1, 2, recalling (4.10) we may estimate,∣∣∣∣∣
ˆ
U1
j

f ψ∆
k,j

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
U1
j

f (ψ∆
k,j +Bψ−j )−

ˆ
U1
j

f Bψ−j

∣∣∣∣∣
≤ Aδ1−q|U1

j |q|||f |||−max

{ 
Uj

(ψ∆
k,j +Bψ−j ),

 
U1
j

Bψ−j

}

≤ Aδ1−q|U1
j |q|||f |||−

 
Uj

(ψ∆
k,j +Bψ−j ) .

(5.19)

Since d∗(T̂n,U2
j
ψ2, T̃n,U2

j
ψ2) = 0 by construction, and recalling Remark 4.4, Lemma 5.5(c), con-
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dition (4.7), and (5.17), (5.18),∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U2
j

f T̂n,U2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U1
j

f T̃n,U2
j
ψ2

∣∣∣∣∣
+

∣∣∣∣∣∣
´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

−

´
U2
j
f T̂n,U2

j
ψ2ffl

U2
j
T̂n,U2

j
ψ2

∣∣∣∣∣∣
 
U2
j

T̂n,U2
j
ψ2

+

∣∣∣∣∣∣
´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

∣∣∣∣∣∣
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂n,U2
j
ψ2

≤ Aδ1−q|U1
j |q

[ffl
U1
j
(ψ∆

1,j +Bψ−j ) +
ffl
U1
j
(ψ∆

2,j +Bψ−j )
]

ffl
U2
j
T̂n,U2

j
ψ2

 
U2
j

T̂n,U2
j
ψ2|||f |||−

+ dWs(U1
j , U

2
j )γδ1−γcA

 
U2
j

T̂n,U2
j
ψ2|||f |||−

+Aδ1−q|U1
j |q
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂n,U2
j
ψ2|||f |||− ,

(5.20)

where for the first term, we have used that |T̂n,U1
j
ψ1−T̃n,U2

j
ψ2| = ψ∆

1,j+ψ∆
2,j in order to apply (5.19),

and for the second and third terms we used that T̃n,U2
j
ψ2 ∈ Da,α(U1

j ) by Lemma 5.5 to apply cone

conditions (4.8) and (4.7), respectively. Then, recalling Lemma 3.3(b), (5.9) and (4.9), and using
that by construction, there are at most 3 curves U2

j in each element of Gδn(W 2), we can estimate

∑
j

 
U2
j

T̂n,U2
j
ψ2 ≤

∑
j

 
U2
j

|J
Uj2
Tn|∞ψ2 ◦ Tn ≤ 3(C̄0δ

−1|W 2|+ C0θ
n
1 )2e2a(2δ)α ≤ 36C̄0 . (5.21)

Next, recalling (5.8), we have10

|U2
j | ≤ |U1

j |(1 + dWs(U1
j , U

2
j )) ≤ 2|U1

j |

provided we impose
C5Λ−n0δ ≤ 1 (5.22)

where C5 is from Lemma 5.5-(a) and Λ is defined in (3.1). Moreover, remembering the definition
of B in Lemma 5.5-(c) and equation (5.18),

 
U1
j

(ψ∆
k,j +Bψ−j ) ≤

 
U1
j

10C5T̃n,U2
j
(ψ2)dWs(W 1,W 2)γ

≤ 10C5

|U2
j |
|U1
j |

 
U2
j

T̂n,U2
j
(ψ2)dWs(W 1,W 2)γ

≤ 20C5

 
U2
j

T̂n,U2
j
(ψ2)dWs(W 1,W 2)γ ,

(5.23)

where we have used the assumptions α− β ≥ γ and a > 1.

10Since the Ukj are vertically matched, the term on the right hand side of (5.8) proportional to Cs is absent here.
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Again using (5.8) and Lemma 5.5-(a) we have∣∣∣∣∣ |U2
j | − |U1

j |
|U1
j |1−q

∣∣∣∣∣ ≤ dWs(U2
j , U

1
j )|U1

j |q ≤ (2δ)qC5Λ−ndWs(W 2,W 1). (5.24)

Inserting (5.21), (5.23) and (5.24) in (5.20) and recalling Lemmas 5.4 and 5.5-(a) yields,

∑
j

∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U2
j

f T̂n,U2
j
ψ2

∣∣∣∣∣
≤ 72C̄0Aδ

1−γdWs(W 1,W 2)γ |||Lnf |||−
(
2q40C5δ

γ + cC5Λ−nγ + 2qC5Λ−nδ
) (5.25)

Then using this estimate in (5.11), and recalling (5.12) and (5.15) yields∣∣∣∣
´
W 1 Lnf ψ1ffl
W 1 ψ1

−
´
W 2 Lnf ψ2ffl
W 2 ψ2

∣∣∣∣ ≤ {23−1/q3Cqs + C4L

+ 72C̄0

(
2q40C5δ

γ + cC5Λ−nγ + 2qC5Λ−nδ
)}
Aδ1−γdWs(W 1,W 2)γ |||Lnf |||−

(5.26)

which yields the wanted estimate, provided

23−1/qCqs + C4L+ 72C̄0

(
2q40C5δ

γ + cC5Λ−nγ + 2qC5Λ−nδ
)
< c. (5.27)

5.2.4 Proof of Lemma 5.5

Proof. (a) This is [DZ2, Lemma 3.3].

(b) Recall that Ukj is defined as the graph of a function GUkj
(r) = (r, ϕUkj

(r)), for r ∈ Ikj , k = 1, 2.

Due to the vertical matching, we have I1
j = I2

j .

Now for x ∈ U1
j , let r ∈ I1

j be such that GU1
j
(r) = x. Set x̄ = GU2

j
(r) and note that x and x̄ lie

on the same vertical line in M since U1
j and U2

j are matched. Thus by (3.6),

JU1
j
Tn(x)

J̃U2
j
Tn(x)

=
JU1

j
Tn(x)

JU2
j
Tn(x̄)

≤ eCd(d(Tnx,Tnx̄)1/3+φ(x,x̄)) ≤ eCdM0dWs (W 1,W 2)1/3
, (5.28)

where M0 is a constant depending only on the maximum and minimum slopes in Cs and Cu.
Next, for x ∈ U1

j consider

ψ1 ◦ Tn(x)

ψ̃2(x)

‖G′
U1
j
‖ ◦G−1

U1
j
(x)

‖G′
U2
j
‖ ◦G−1

U1
j
(x)

.

Let Tn(x) = (r,GW 1(r)) and Tn(x̄) = (r̄, GW 2(r̄)), then

|r − r̄| ≤M0dWs(W 1,W 2) .

If r ∈ IW 2 , then since d∗(ψ1, ψ2) = 0,

ψ1 ◦GW 1(r)

ψ2 ◦GW 2(r̄)
=
ψ1 ◦GW 1(r)

ψ2 ◦GW 2(r)

ψ2 ◦GW 2(r)

ψ2 ◦GW 2(r̄)
≤
‖G′W 2(r)‖
‖G′

W 1(r)‖
ead(GW1

(r),GW2 (r̄))α .

Next, since ‖G′W 1 −G′W 2‖ = |ϕ′W 1 − ϕ′W 2 | and ‖G′
Wk‖ ≥ 1, we have

‖G′W 2(r)‖
‖G′

W 1(r)‖
≤ e‖G

′
W1−G′W2‖ ≤ edWs (W 1,W 2) .
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Similarly,
‖G′

U1
j

‖◦G−1

U1
j

(x)

‖G′
U2
j

‖◦G−1

U1
j

(x)
≤ edWs (U1

j ,U
2
j ). Hence, using part (a) of the lemma and assuming

C5n0Λ−n0δ1−α ≤ 1, (5.29)

yields

ψ1 ◦ Tn(x)

ψ̃2(x)

‖G′
U1
j
‖ ◦G−1

U1
j
(x)

‖G′
U2
j
‖ ◦G−1

U1
j
(x)
≤ e(aMα

0 +2)dWs (W 1,W 2)α .

The same estimate holds if r̄ ∈ IW 1 . Otherwise it must be that

|IW 1 ∩ IW 2 | ≤M0dWs(W 1,W 2)

but then, since |IW 1∆IW 2 | ≤ dWs(W 1,W 2) we would have |W 2| ≤ (1 + M0)dWs(W 1,W 2), which
violates (5.6) together with the assumption, provided

c > 4(1 +M0)q. (5.30)

The estimates with the opposite sign follow similarly. Putting together these estimates yields part
(b) of the lemma with C5 = M0Cdδ

1/3−α + aMα
0 + 2.

(c) As noted in (5.18), by (b) it immediately follows that∣∣ψ∆
i,j(x)

∣∣ ≤ ∣∣∣T̂n,U1
j
ψ1(x)− T̃n,U2

j
ψ2(x)

∣∣∣ ≤ 2C5dWs(W 1,W 2)αψ−j (x).

Next, for x, y ∈ U1
j , let x̄ = GU2

j
◦G−1

U1
j
(x), ȳ = GU2

j
◦G−1

U1
j
(y), and note these are well-defined due

to the vertical matching between U1
j and U2

j . Let r = G−1
U1
j
(x) and s = G−1

U1
j
(y). Recalling (4.4), we

have
‖G′

U1
j
(r)‖

‖G′
U1
j
(s)‖

≤ e
‖G′

U1
j

(r)−G′
U1
j

(s)‖
≤ eB∗|r−s| ≤ eB∗d(x,y) ,

and similarly for ‖G′
U2
j
‖. Using this estimate together with the proof of Lemma 5.2(a),

T̃n,U2
j
ψ2(x)

T̃n,U2
j
ψ2(y)

=
T̂n,U2

j
ψ2(x̄)

T̂n,U2
j
ψ2(ȳ)

‖G′
U2
j
(r)‖

‖G′
U1
j
(r)‖

‖G′
U1
j
(s)‖

‖G′
U2
j
(s)‖

≤ e(aC−1
1 Λ−αn+Cd(2δ)1/3−α)d(x̄,ȳ)α+2B∗d(x,y) ≤ ead(x,y)α ,

(5.31)

since d(x̄, ȳ) ≤M0d(x, y) and provided

(aC−1
1 Λ−αn0 + Cd(2δ)

1/3−α)Mα
0 +B∗(2δ)

1−α < a. (5.32)

To abbreviate what follows, let us denote g1 = T̂n,U1
j
ψ1 and g2 = T̃n,U2

j
ψ2. Then, given x, y ∈ U1

j ,

we have ψ−j (x) = gk(x), ψ
−
j (y) = gk(y). If k(x) = k(y), then, by Lemma 5.2(a) and (5.31),

ψ−j (x)

ψ−j (y)
=
gk(y)(x)

gk(y)(y)
≤ ead(x,y)α .
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If k(x) 6= k(y), then without loss of generality, we can take k(x) = 1 and k(y) = 2. By definition,
g1(x) ≤ g2(x) and g2(y) ≤ g1(y). Hence,

e−ad(x,y)α ≤ g1(x)

g1(y)
≤
ψ−j (x)

ψ−j (y)
=
g1(x)

g2(y)
≤ g2(x)

g2(y)
≤ ead(x,y)α .

It follows that ψ−j ∈ Da,α(U1
j ), and by (5.31), T̃n,U2

j
ψ2 ∈ Da,α(U1

j ).

Then, for each 1 > B ≥ 2C5dWs(W 1,W 2)α and x, y ∈ U1
j ,

ψ∆
i,j(x) +Bψ−j (x)

ψ∆
i,j(y) +Bψ−j (y)

≤
(B + 2C5dWs(W 1,W 2)α)ψ−j (x)

(B − 2C5dWs(W 1,W 2)α)ψ−j (y)
≤ ead(x,y)α+4B−1C5dWs (W 1,W 2)α ≤ ead(x,y)β

provided 8B−1C5dWs(W 1,W 2)α ≤ ad(x, y)β and

(2δ)α−β ≤ 1

2
. (5.33)

It remains to consider the case 8B−1C5dWs(W 1,W 2)α ≥ ad(x, y)β. Again we must split into
two cases. If k(x) = k(y) = k, then, setting {`} = {1, 2} \ {k},

ψ∆
`,j(x) +Bψ−j (x)

ψ∆
`,j(y) +Bψ−j (y)

≤ g`(x) + (B − 1)gk(x)

g`(y) + (B − 1)gk(y)
≤ ead(x,y)αg`(y) + e−ad(x,y)α(B − 1)gk(y)

g`(y) + (B − 1)gk(y)

≤ ead(x,y)α
[
1 +

2ad(x, y)α

B

]
≤ ea[d(x,y)α−β(1+2B−1)]d(x,y)β ≤ e

a
2
d(x,y)β

(5.34)

provided that

d(x, y)α−β(1 + 2B−1) ≤ 4B
−α
β
[
8C5dWs(W 1,W 2)αa−1

]α−β
β ≤ 1

2
.

That is,

B ≥ 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β.

The second case is k = k(x) 6= k(y) = `. In this case, there must exist x̄ ∈ [x, y] such that
ψ−j (x̄) = g1(x̄) = g2(x̄). Then,

ψ∆
`,j(x) +Bψ−j (x)

ψ∆
`,j(y) +Bψ−j (y)

=
g`(x) + (B − 1)gk(x)

Bg`(x̄)

g`(x̄) + (B − 1)gk(x̄)

g`(x̄) + (B − 1)gk(x̄)
≤ ead(x,y)β

by the estimate (5.34). A similar estimate holds for ψ∆
k,j . It follows that we can choose

B = 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β (5.35)

and have ψ∆
i,j +Bψ−j ∈ Da,β(U1

j ).
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5.3 Conditions on parameters

In this section, we collect the conditions imposed on the cone parameters during the proof of
Proposition 5.1. Recall the conditions on the exponents stated before the definition of Cc,A,L(δ):
α ∈ (0, 1/3], q ∈ (0, 1/2), β < α and γ ≤ min{α− β, q}.

From (4.9) and Lemma 5.4 we require,

ea(2δ)β < e2aδβ0 ≤ 2 and 4AC̄0δδ
−1
0 ≤ 1/4 .

From the proof of Lemma 5.4 and Lemma 5.2, we require the following conditions on n0,

AC0θ
n0
1 ≤ 1/16 and C−1

1 Λ−βn0 < 1 .

From Lemma 5.2, Corollary 5.3 and the proof of Lemma 5.5, we require

a > aC−1
1 Λ−βn0 + Cdδ

1/3−β
0 and a > (aC−1

1 Λ−αn0 + Cd(2δ)
1/3−α)Mα

0 +B∗(2δ)
1−α

(recall that we have chosen n0 ≥ n1 after Corollary 5.3).
From the bound on (4.7), we require in (5.5),

A > 4L .

For the contraction of c, we require (see (5.7), the proof of Lemma 5.5 and (5.27))

c > max {16Cqs , 4(1 +M0)q} ; C5Λ−n0δ1−α ≤ 1 ; (2δ)α−β ≤ 1
2 ;

23−1/q3Cqs + C4L+ 72C̄0

(
2q40C5δ

γ + cC5Λ−n0γ + 2qC5Λ−n0δ
)
< c.

Finally, in anticipation of (6.21), we require,

cA > 2Cs . (5.36)

These are all the conditions we shall place on the parameters for the cone, except for δ, which we
will take as small as required for the mixing arguments of Section 6. Indeed, note that if the above
conditions are satisfied for some δ = δ∗, then they are satisfied also for all δ ∈ (0, δ∗).

6 Contraction of L and Finite Diameter

Proposition 5.1 proves that the parameters c and A of the cone Cc,A,L(δ) contract simply as a
consequence of the uniform properties (H1)-(H5) for any sequence of maps (Tιj )j ⊂ F(τ∗,K∗, E∗).
In this section, however, we will restrict our sequence of maps to be drawn from a sufficiently small
neighborhood of a single map T0 ∈ F(τ∗,K∗, E∗) in order to use the uniform mixing properties of
maps T close to T0 to prove that the parameter L also contracts under the sequential dynamics.
This is done in two steps. First, in Section 6.1, we use a length scale δ0 ≥

√
δ and compare averages

on the two length scales, δ and δ0, culminating in Proposition 6.3. This step does not yet require
us to restrict our class of maps. Second, in Section 6.2, restricting our sequential system to a
neighborhood of a fixed map T0, we obtain a bound on averages in the length scale δ0 as expressed
in Lemma 6.8. This leads to the strict contraction of L established in Theorem 6.12, which proves
Theorem 2.3(a). We prove Theorem 2.3(b) in Section 6.3, showing that the cone Cχc,χA,χL(δ) has
finite diameter in the cone Cc,A,L(δ) (Proposition 6.13).
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6.1 Comparing averages on different length scales

Recall the length scale δ0 ∈ (0, 1/2) from (3.8) and that δ < δ0/2. Also, recall that Ws(δ0/2)
denotes those curves in Ws with length between δ0/2 and δ0. We choose δ ≤ δ2

0 and define

|||f |||0+ = sup
W∈Ws(δ0/2)
ψ∈Da,β(W )

´
W f ψ dmW´
W ψ dmW

, |||f |||0− = inf
W∈Ws(δ0/2)
ψ∈Da,β(W )

´
W f ψ dmW´
W ψ dmW

.

By subdividing curves of with length in [δ0/2, δ0] into curves with length in [δ, 2δ], we immediately
deduce the relations,

|||f |||− ≤ |||f |||
0
− ≤ |||f |||

0
+ ≤ |||f |||+ . (6.1)

Lemma 6.1. Assume eaδ
β
0 ≤ 2, from (4.9), and Aδ ≤ δ0/4, from Lemma 5.4.

For all n ∈ N, {ιj}nj=1 ⊂ I(τ∗,K∗, E∗) and f ∈ Cχc,χA,χL(δ) we have,11

|||Lnf |||0+ ≤ |||f |||0+ + 3C0

n∑
i=1

θi1|||f |||+ ≤ |||f |||
0
+ +

1

4
|||f |||+ , (6.2)

|||Lnf |||0− ≥ 3

4
|||f |||0− . (6.3)

Proof. We prove (6.2) by induction on n. It holds trivially for n = 0. We assume the inequality
holds for 0 ≤ k ≤ n− 1 and prove the statement for n.

Let W ∈ Ws(δ0/2). Define L̂1(W ) to be those elements of G1(W ) having length at least δ0/2.
For k > 1, let L̂k(W ) denote those curves of length at least δ0/2 in Gk(W ) whose images are not
already contained in an element of L̂i(W ) for any i = 1, . . . , k−1. For Vj ∈ L̂k(W ), let Pk(j) be the
collection of indices i such that Wi ∈ Gn(W ) satisfies Tn−kWi ⊂ Vj . Denote by I0

n(W ) those indices
i for which Tn−kWi is never contained in an element of Gk(W ) of length at least δ0/2, 1 ≤ k ≤ n,
and δ ≤ |Wi| < δ0/2. Let In(W ) denote the remainder of the indices i for curves in Gn(W ), i.e.
those curves Wi of length shorter than δ and for which Tn−kWi is not contained in an element of
Gk(W ) of length at least δ0/2. By construction, each Wi ∈ Gn(W ) belongs to precisely one Pk(j)
or I0

n(W ) or In(W ).
Now, for ψ ∈ Da,β(W ), recalling (5.13), we have,∑

i∈Pk(j)

ˆ
Wi

f ψ ◦ Tn JWiTn =

ˆ
Vj

Ln−kf ψ ◦ Tn,n−k JVjTn,n−k.

11The second inequality in (6.2) follows from (3.7).
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Using this equality, we estimate,

ˆ
W
Lnf ψ =

n∑
k=1

∑
Vj∈L̂k(W )

ˆ
Vj

Ln−kf ψ ◦ Tn,n−k JVjTn,n−k +
∑

i∈I0
n(W )

ˆ
Wi

f ψ ◦ Tn JWiTn

+
∑

i∈In(W )

ˆ
Wi

f ψ ◦ Tn JWiTn

≤
n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0+
ˆ
Vj

ψ ◦ Tn,n−k JVjTn,n−k +
∑

i∈I0
n(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiTn

+
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiTn|C0(Wi)

≤
n∑
k=1

∑
Vj∈L̂k(W )

(
|||f |||0+ + 3

n−k∑
i=1

C0θ
i
1|||f |||+

)ˆ
Tn,n−kVj

ψ

+
∑

i∈I0
n(W )

|||f |||+
δ0

2
|ψ|C0(W )|JWiTn|C0(Wi) +A

δ

δ0
δ0|ψ|C0(W )|||f |||+C0θ

n
1

≤
ˆ
W
ψ
(
|||f |||0+ + 3

n−1∑
i=1

C0θ
i
1|||f |||+

)
+
(

1 + 2A
δ

δ0

)
eaδ

β
0

ˆ
W
ψ |||f |||+C0θ

n
1 ,

where for the second inequality we have used the inductive hypothesis, and for the second and third
we have used Lemmas 3.3(a) and 4.2. This proves the required inequality if δ0 is small enough that

eaδ
β
0 ≤ 2 and δ is small enough that Aδ ≤ δ0/4, both of which we have assumed.
We prove (6.3) similarly, although now the inductive hypothesis is |||Lkf |||0− ≥ (1−3

∑k
i=1C0θ

i
1)

for each k = 0, . . . , n − 1. We begin with the same decompostion of Gn(W ), although we simply
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drop the terms in I0
n(W ) since they are all positive (see Remark 4.8).

ˆ
W
Lnf ψ =

n∑
k=1

∑
Vj∈L̂k(W )

ˆ
V j
Ln−kf ψ ◦ Tn,n−k JVjTn,n−k +

∑
i∈I0

n(W )

ˆ
Wi

f ψ ◦ Tn JWiTn

+
∑

i∈In(W )

ˆ
Wi

f ψ ◦ Tn JWiTn

≥
n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0−
ˆ
V j
ψ ◦ Tn,n−k JVjTn,n−k

−
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiTn|C0(Wi)

≥
n∑
k=1

∑
Vj∈L̂k(W )

ˆ
Tn,n−kVj

ψ |||f |||0−
(

1− 3
n−k∑
i=1

C0θ
i
0

)
−A δ

δ0
δ0|ψ|C0(W )|||f |||−C0θ

n
1

≥
ˆ
W
ψ |||f |||0−

(
1− 3

n−1∑
i=1

C0θ
i
1

)
− 2A

δ

δ0
eaδ

β
0

ˆ
W
ψ |||f |||0−C0θ

n
1

− |||f |||0−
(

1− 3

n−1∑
i=1

C0θ
i
1

) ∑
i∈In(W )∪I0

n(W )

|Wi||ψ|C0(W )|JWiTn|C0(Wi)

≥
ˆ
W
ψ |||f |||0−

(
1− 3

n−1∑
i=1

C0θ
i
1 − 2A

δ

δ0
eaδ

β
0C0θ

n
1 − eaδ

β
0C0θ

n
1

)
,

where again we have used Lemmas 3.3(a) and 4.2 as well as the bound |||f |||− ≤ |||f |||
0
−. This proves

the inductive claim, and from this, (6.3) follows from (3.8).

To continue it is useful to set

N(δ)− =
log(8C0(Lδ0δ

−1 + 2A))

| log θ1|
. (6.4)

Next, we have a partial converse of Lemma 6.1.

Lemma 6.2. For all n ≥ N(δ)− and {ιj}nj=1 ⊂ I(τ∗,K∗, E∗), we have

|||Lnf |||+ ≤ max
k=0,...n−1

|||Lkf |||0+ +
1

8
|||f |||−

|||Lnf |||− ≥
3

4
min

k=0,...n−1
|||Lkf |||0− −

1

8
|||f |||−

Proof. The proof follows along the lines of the proof of Lemma 6.1, using the same decomposition
into L̂k(W ), I0

n(W ) and In(W ), except that now we begin with W ∈ Ws(δ) and ψ ∈ Da,β(W ). We

31



have,

ˆ
W
Lnf ψ ≤

n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0+
ˆ
V j
ψ ◦ Tn,n−k JVjTn,n−k +

∑
i∈I0

n(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiTn

+
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiTn|C0(Wi)

≤
ˆ
W
ψ max
k=0,...n−1

|||Lkf |||0+ + |||f |||+C0θ
n
1

δ0

δ

ˆ
W
ψ + 2A|||f |||−C0θ

n
1

ˆ
W
ψ

≤
ˆ
W
ψ
(

max
k=0,...n−1

|||Lkf |||0+ + |||f |||−C0θ
n
1 (Lδ0δ

−1 + 2A)
)
,

which proves the first inequality, given our assumed bound on n. Note that the ratio δ0/δ appears
in the second term since |Wi| ≤ δ0/2, while |W | ≥ δ.

The second inequality follows similarly, again along the lines of Lemma 6.1.

ˆ
W
Lnf ψ ≥

n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0−
ˆ
V j
ψ ◦ Tn,n−k JVjTn,n−k

−
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiTn|C0(Wi)

≥ min
k=0,...n−1

|||Lkf |||0−

ˆ
W
ψ −

∑
i∈In(W )∪I0

n(W )

|Wi||ψ|C0(W )|JWiTn|C0(Wi)

− 2A

ˆ
W
ψ |||f |||−C0θ

n
1

≥
ˆ
W
ψ

(
min

k=0,...n−1
|||Lkf |||0−(1− δ0δ

−1C0θ
n
1 )− 2AC0θ

n
1 |||f |||−

)
,

and our bound on n suffices to complete the proof of the lemma.

Proposition 6.3. For all n ≥ N(δ)− and {ιj}nj=1 ⊂ I(τ∗,K∗, E∗), either,

|||Lnf |||+
|||Lnf |||−

≤ 8

9

|||f |||+
|||f |||−

,

or

|||Lnf |||+ ≤ 8|||f |||0+ and |||Lnf |||− ≥
9

20
|||f |||0− .

Proof. Since n ≥ N(δ)− ≥ n0, we may apply both Lemmas 5.4 and 6.2. Now, by Lemma 6.2,

|||Lnf |||− ≥
3

4
min

k=0,...n−1
|||Lkf |||0− −

1

8
|||f |||− ≥

9

16
|||f |||0− −

1

4
|||Lnf |||− ,

applying Lemma 6.1 to the first term and Lemma 5.4 to the second. This yields immediately,
|||Lnf |||− ≥

9
20 |||f |||

0
−, which is the final inequality in the statement of the lemma.

Now consider the following alternatives. If |||Lnf |||+ ≤
2
5 |||f |||+, then

|||Lnf |||+
|||Lnf |||−

≤
2
5 |||f |||+
9
20 |||f |||

0
−
≤ 8

9

|||f |||+
|||f |||−
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proving the first alternative. On the other hand, if |||Lnf |||+ ≥
2
5 |||f |||+, then using Lemmas 6.2, 6.1

and 5.4,

|||Lnf |||+ ≤ max
k=0,...n−1

|||Lkf |||0+ +
1

8
|||f |||− ≤ |||f |||

0
+ +

1

4
|||f |||+ +

1

4
|||Lnf |||−

≤ |||f |||0+ +
7

8
|||Lnf |||+ ,

which yields the second alternative.

6.2 Mixing implies contraction of L

The importance of Proposition 6.3 is that either L contracts within N(δ)− iterates or we can
compare ratios of integrals on the length scale δ0 (which is fixed independently of δ). In the latter
case we will use the uniform mixing property of maps T ∈ F(τ∗,K∗, E∗) in order to compare the
value of

´
W Lnfψ for different W of length approximately δ0. To this end, we will define a Cantor

set R∗ comprised of local stable and unstable manifolds of a certain length in order to make our
comparison when curves cross this set.

We begin by recalling the open neighborhoods in F(τ∗,K∗, E∗) defined by (2.3).
Let T ∈ F(τ∗,K∗, E∗), and for 0 < κ < 1

2 min{τ∗,K∗}, define

F(T, κ) = {T̃ ∈ F(τ∗,K∗, E∗) : d(Q(T̃ ), Q(T )) < κ} . (6.5)

Recall the index set corresponding to F(T, κ) is I(T, κ) ⊂ I(τ∗,K∗, E∗). Thus ι ∈ I(T, κ) if and
only if Tι ∈ F(T, κ).

Lemma 6.4. For any κ ∈
(
0, 1

2{τ∗,K∗}
)
, the set F(τ∗,K∗, E∗) can be covered by finitely many sets

F(T, κ), T ∈ F(τ∗,K∗, E∗).

Proof. Each T ∈ F(τ∗,K∗, E∗) is associated with a billiard table Q ∈ Q(τ∗,K∗, E∗). Such billiard
tables have exactly K boundary curves with C3 norm uniformly bounded by E∗. Since the torus
is compact and the distance d(Q, Q̃) defined in Section 2.1 measures distance only in the C2

norm, the set Q(τ∗,K∗, E∗) is compact in the distance d. Thus for each κ > 0, there exists
Nκ ∈ N and a set {Qιj}

Nκ
j=1 ⊂ Q(τ∗,K∗, E∗) such that12 ∪jQ(Qιj , E∗;κ) ⊃ Q(τ∗,K∗, E∗). Since

F(Qιj , E∗;κ) ∩ F(τ∗,K∗, E∗) = F(Tιj , κ), this yields the required covering.

Remark 6.5. The primary reason we restrict to T̃ ∈ F(T, κ) is to conclude Lemma 6.6(b) for a
fixed time n∗ and rectangle R∗. This will enable us to make a type of ‘matching’ argument for our
sequential system, the main comparison being established in Lemma 6.8.

The reader familiar with the subject will notice that the matching described here requires weaker
properties than the usual arguments used in coupling. After stable curves are forced to cross a
fixed rectangle by Lemma 6.6, the ‘matched’ pieces are not Cantor sets, but rather full curves. The
cone technique thus enables us to bypass the use of real stable/unstable manifolds used in classical
coupling arguments for billiards (see [CM, Section 7]), and even the modified coupling developed
for sequential systems which only couples for a finite time along approximate invariant manifolds,
as in [SYZ], both of which require a more delicate use of the structure of invariant manifolds, in
particular control of the gaps in the Cantor sets used for coupling.

12Recall from Section 2.1 that by Proposition 2.2, Q(Qιj , E∗;κ) = {Q ∈ Q( 1
2
τ∗,

1
2
K∗, E∗) : d(Q,Qιj ) < κ}.
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•
x W s

H(x)

W u
H(x)

D2δ0 Dδ0

D′2δ0

stable curves
properly crossing R

2δ0∗

Figure 2: The boxes D′2δ0 and D2δ0 .

For a fixed T ∈ F(τ∗,K∗, E∗), we construct an approximate rectangle D in M , contained in a
single homogeneity strip, whose boundaries are comprised of two local stable and two local unstable
manifolds for T as follows. Choose δ̄0 > 0 and x ∈ M such that dist(T−nx,SH1 ) ≥ δ̄0Λ−|n| for all
n ∈ Z. This implies that the homogenous local stable and unstable manifolds13 of x, W s

H(x) and
W u

H(x), have length at least δ̄0 on either side of x. By the Sinai Theorem applied to homogeneous
unstable manifolds (see, for example, [CM, Theorem 5.70]), we may choose δ0 < δ̄0 such that
more than 0.99 of the measure of points in W u

H(x) ∩ B2.1δ0(x) have homogeneous local stable
manifolds having length at least 2.1δ0 on both sides of W u

H(x), and analogously for the points in

W s
H(x)∩B2.1δ0(x). Since these subsets of W

s/u
H (x) are closed, there exist two extreme points on each

manifold whose unstable/stable manifolds define a solid rectangle, which we will denote by D′2δ0 .
By choice of δ0, the stable and unstable manifolds comprising ∂D′2δ0 have length at least 4δ0. There
must exist a rectangle D2δ0 fully crossing D′2δ0 in the stable direction and with boundary comprising
two stable and two unstable manifolds, such that the unstable diameter of D2δ0 is between δ4

0 and
2δ4

0 ,14 and the set of local homogeneous stable and unstable manifolds fully crossing D2δ0 comprise
at least 9/10 of the measure of D2δ0 with respect to µSRB; otherwise, at most 9/10 of the measure
of W u

H(x) ∩ B2.1δ0(x) would have long stable manifolds on either side of W u
H(x), contradicting our

choice of δ0. Similarly, define Dδ0 ⊂ D2δ0 to have precisely the same stable boundaries, but stable
diameter between 1.8δ0 and 2δ0 rather than 4δ0, still centered at W u

H(x). See figure 2 for a pictorial
illustration of the above construction.

Let Ss/u(Dδ0) denote the maximal set of stable/unstable manifolds that fully cross Dδ0 , includ-
ing its boundary curves. Define Rδ0∗ = Ss(Dδ0) ∩Su(Dδ0) to be the Cantor rectangle defined by
the intersection of those maximal families. Define R2δ0

∗ analogously with respect to Ss/u(D2δ0).
By construction, µSRB(Rδ0∗ ) > (0.9)2µSRB(Dδ0) ≈ δ5

0 . Below, we denote Dδ0 by D(Rδ0∗ ) since it
is the minimal solid rectangle that defines Rδ0∗ .

We say that a stable curve W ∈ Ws properly crosses a Cantor rectangle R (in the stable
direction) if W intersects the interior of the solid rectangle D(R), but does not terminate in D(R),
and does not intersect the two stable manifolds contained in ∂D(R).

13Although the stable/unstable directions in M vary, they always belong to the global stable/unstable cones defined
in (H1) and so are uniformly transverse.

14The choice of δ4
0 will be needed in Lemma 6.7.
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Lemma 6.6. For T ∈ F(τ∗,K∗, E∗), let Rδ0∗ = Rδ0∗ (T ) be the Cantor rectangle constructed above.

a) There exists n∗ ∈ N, depending only on δ0 and F(τ∗,K∗, E∗), such that for all T ∈ F(τ∗,K∗, E∗)
and all W ∈ Ws with15 |W | ≥ δ0/(6C̄0), and all n ≥ n∗, T−nW contains a connected, homo-
geneous component that properly crosses Rδ0∗ (T ).

b) There exists κ > 0 such that for all T ∈ F(τ∗,K∗, E∗) and all {ιj}n∗j=1 ⊂ I(T, κ), T−1
n∗ W

contains a connected, homogeneous component that properly crosses Rδ0∗ (T ).

Proof. First we fix T ∈ F(τ∗,K∗, E∗) and prove items (a) and (b) of the lemma for this T , i.e. we
demonstrate that such an n∗ and κ exist depending on T . Then we show how Lemma 6.4 implies
that n∗ and κ can be chosen uniformly for T ∈ F(τ∗,K∗, E∗).
a) Fix T ∈ F(τ∗,K∗, E∗). By [CM, Lemma 7.87], there exist finitely many Cantor rectangles16

R(δ0) = {R1, . . . , Rk}, with µSRB(Ri) > 0 for each i, such that any stable curve W ∈ Ws with
|W | ≥ δ0/(6C̄0) properly crosses at least one of them. Let εR be the minimum length of an unstable
manifold in Ri, for any Ri ∈ R(δ0).

Consider the solid rectangle D̄(R2δ0
∗ ) ⊂ D(R2δ0

∗ ) which crosses D(R2δ0
∗ ) fully in the stable

direction, but comprises the approximate middle 2/3 of D(R2δ0
∗ ) in the unstable direction, with

approximately 1/3 of the unstable diameter of D(R2δ0
∗ ) on each side of D̄(R2δ0

∗ ). Similarly, let
D̃(R2δ0

∗ ) ⊂ D̄(R2δ0
∗ ) denote the approximate middle 1/3 of D(R2δ0

∗ ) in the unstable direction. Let
R̄2δ0
∗ := R2δ0

∗ ∩ D̄(R2δ0
∗ ) and let R̃2δ0

∗ := R2δ0
∗ ∩ D̃(R2δ0

∗ ). Note that µSRB(R̄2δ0
∗ ) > µSRB(R̃2δ0

∗ ) > 0
since µSRB(R2δ0

∗ ) > (0.9)2µSRB(D(R2δ0
∗ )) by construction.

Now given W ∈ Ws with |W | ≥ δ0/(6C̄0), let Ri ∈ R(δ0) denote the Cantor rectangle which
W crosses properly. By the mixing property of T , there exists n∗i > 0 such that for all n ≥ n∗i ,

Tn(R̃2δ0
∗ ) ∩ Ri 6= ∅. We may increase n∗i if necessary so that C1Λn

∗
i δ4

0/12 ≥ εR. We claim that
Tn(R̄2δ0

∗ ) properly crosses Ri in the unstable direction for all n ≥ n∗i . If not, then the unstable
manifolds comprising R̄2δ0

∗ must be cut by a singularity curve in SH1 before time n∗i (since otherwise
they would be longer than 2εR by choice of n∗i ), and the images of those unstable manifolds must
terminate on the unstable manifolds in Ri. But this implies that some unstable manifolds in Ri
will be cut under T−n, a contradiction.

Since Tn(R̄2δ0
∗ ) properly crosses Ri in the unstable direction, it follows that Tn(D(R̄2δ0

∗ )) con-
tains a solid rectangle D∗ that fully crosses D(Ri) in the unstable direction (here we use the fact
that the stable manifolds of R̄2δ0

∗ cannot be cut under Tn, as well as that the singularity curves
of Tn can only terminate on other elements of SHn [CM, Proposition 4.47]). Define V = W ∩ D∗
and note that V fully crosses D∗ in the stable direction. In particular, V lies between two stable
manifolds in Ri and thus between two stable manifolds in Tn(R̄2δ0

∗ ). Thus T−nV properly crosses
R̄2δ0
∗ , and also R2δ0

∗ , in the stable direction. Since Rδ0∗ has the same stable boundaries as R2δ0
∗ , but

half the stable diameter, then T−nV also properly crosses Rδ0∗ , as required. Since R(δ0) is finite,
setting n∗ = max1≤i≤k{n∗i } <∞ completes the proof of part (a) with n∗ = n∗(T ) depending on T .

(b) In the proof of part (a), for T ∈ F(τ∗,K∗, E∗) we constructed a rectangle R̄2δ0
∗ and a time

n∗ so that for any W ∈ Ws and n ≥ n∗, there exists V ⊂ W such that T−n is smooth on
V and T−nV properly crosses R̄2δ0

∗ . Now for {ιj}n∗j=1 ∈ I(T, κ), Proposition 2.2(b) guarantees

that T−1
n∗ V is close to T−n∗V for κ sufficiently small, except possibly when iterates land in a

neighborhood NCκ1/2(ST−1∪S
Tιj
−1 ). But in this case, Proposition 2.2(a) implies that for Tι ∈ F(T, κ),

the singularity sets ST−1 and STι−1 either differ by at most Cκ1/2 or new components are formed in

15Recall that C̄0 is from Lemma 3.3.
16These Cantor rectangles Ri are maximal in the sense that they are the intersection of the maximal families of

local invariant manifolds Ss/u(D(Ri)) that fully cross the solid rectangle D(Ri).
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Ū1

D(R∗)

U2

an unmatched part of Ū2

Figure 3: crossing D(R∗).

a Cκ1/2 neighborhood of S0. By construction, since R̄2δ0
∗ has 2/3 the unstable diameter and twice

the stable diameter as Rδ0∗ , then there exists κ, depending only on δ0 and n∗, such that T−1
n∗ V

properly crosses Rδ0∗ , as required.

Finally, we show how n∗ and κ can be chosen uniformly in F(τ∗,K∗, E∗). For each T ∈
F(τ∗,K∗, E∗), parts (a) and (b) yield n∗(T ) and κ(T ) with the stated properties. Then the set
of open neighborhoods {Q(Q(T ), E∗;κ(T )/2)}T∈F(τ∗,K∗,E∗) forms an open cover of Q(τ∗,K∗, E∗),
where Q(T ) is the billiard table associated with T . By compactness (see the proof of Lemma 6.4)
there exists a finite subcover {Q(Q(Tιj ), E∗;κ(Tιj )/2)}Nεj=1. For any T ∈ F(Tιj , κ(Tιj )/2), we have

F(T, κ(Tιj )/2) ⊂ F(Tιj , κ(Tιj )). Thus n∗(Tιj ) and 1
2κ(Tιj ) have the desired properties for this T .

Setting n∗ = maxj n∗(Tιj ) proves part (a) and κ = 1
2 minj κ(Tιj ) proves part (b) of the lemma.

From this point forward, we fix T0 ∈ F(τ∗,K∗, E∗) and let R∗ = Rδ0∗ (T0) as constructed above.
We will consider sequences {ιj}j ⊂ I(T0, κ), where κ is from Lemma 6.6(b), i.e. we will draw from
maps T ∈ F(T0, κ).

Lemma 6.7. Let W 1,W 2 ∈ Ws, n ≥ 0 and {ιj}nj=1 ⊂ I(T0, κ). Suppose U1 ∈ Gn(W 1) and

U2 ∈ Gn(W 2) properly cross R∗ and define Ūi = Ui ∩ D(R∗), i = 1, 2. Then there exists C7 > 0,
depending only on the maximum slope and maximum curvature B̄ of curves in Ws, such that
dWs(Ū1, Ū2) ≤ C7δ

2
0.

Proof. Define a foliation of vertical line segments covering D(R∗). Due to the uniform transversality
of the stable cone with the vertical direction, it is clear that the length of the segments connecting
Ū1 and Ū2 have length at most C3δ

4
0 , where C3 > 0 depends only on the maximum slope in Cs(x).

Moreover, the unmatched parts of Ū1 and Ū2 near the boundary of D(R∗) also have length at most
C3δ

4
0 . See Figure 3 for an illustration.
Recalling the definition of dWs(·, ·), it remains to estimate the C1 distance between the graphs

of Ū1 and Ū2. Denote by ϕ1(r) and ϕ2(r) the functions defining Ū1 and Ū2 on a common interval
I = IŪ1

∩ IŪ2
. Let ϕ′i = dϕi

dr . For x ∈ Ū1 over I, let x̄ ∈ Ū2 denote the point on the same vertical
line segment as x.

Suppose there exists x ∈ Ū1 over I such that |ϕ′1(r(x)) − ϕ′2(r(x̄))| > Cδ2
0 for some C > 0,

where r(x) denotes the r-coordinate of x = (r, ϕ). Since the curvature of each Ui is bounded by B̄
by definition, we have |ϕ′′i | ≤ B̄(1 + (Kmax + τ−1

min)2)3/2 =: C̄7.
Now consider an interval J ⊂ I of radius δ2

0 centered at r(x). Then |ϕ′1(r) − ϕ′1(r(x))| ≤
C̄7|r − r(x)| for all r ∈ J , and similarly for ϕ′2. Thus,

|ϕ′1(r)− ϕ′2(r)| ≥ Cδ2
0 − 2C̄7δ

2
0 = (C − 2C̄7)δ2

0 for all r ∈ J.

36



This in turn implies that there exists r ∈ J such that |ϕ1(r) − ϕ2(r)| ≥ (C − 2C̄7)δ4
0 , which is a

contradiction if C − 2C̄7 > C3. This proves the lemma with C7 = 2C̄7 + C3.

Recall that by Lemma 4.1, for W ∈ Ws the cone Da,α(W ) has finite diameter in Da,β(W ) for
α > β, so that

ρW,a,β(g1, g2) ≤ D0 for all g1, g2 ∈ Da,α(W ) (6.6)

for some constant D0 > 0 depending only on a, α and β. Without loss of generality, we take D0 ≥ 1.

Lemma 6.8. Suppose W 1,W 2 ∈ Ws with |W 1|, |W 2| ∈ [δ0/2, δ0] and dWs(W 1,W 2) ≤ C7δ
2
0.

Assume ψ` ∈ Da,α(W `) with
´
W 1 ψ1 =

´
W 2 ψ2 = 1.

Recall that δ ≤ δ2
0 and let κ > 0 be from Lemma 6.6. Let C > 0 be such that if n ≥ C log(δ0/δ)

then C5Λ−n ≤ δ/δ2
0, where C5 is from Lemma 5.5. For all n such that n ≥ C log(δ0/δ) ≥ 2n0 and

all {ιj}nj=1 ⊂ I(T0, κ), we have ´
W 1 Lnf ψ1´
W 2 Lnf ψ2

≤ 2

for all f ∈ Cc,A,L(δ), provided[
2C̄0C3C7(3LAδ1−qδ2q

0 + 3Lδ2
0)

1− Λ−q
+ 2C̄0Aδ

1−q(2δq + cδγ+q +D0δ
q + 2δq0)

]
6e2aδα0 ≤ δ0.

Remark 6.9. Since δ ≤ δ2
0, the condition of Lemma 6.8 will be satisfied if[

2C̄0C3C7(3LAδ0 + 3Lδ0)

1− Λ−q
+ 2C̄0Aδ

1−q
0 (2δq0 + cδ2γ+q

0 +D0δ
q
0 + 2)

]
6e2aδα0 ≤ 1. (6.7)

This will determine our choice of δ0.

Proof. We will change variables to integrate on T−1
n W `, ` = 1, 2. As in Section 5.2.3, we split

Gn(W `) into matched pieces {U `j }j and unmatched pieces {V `
j }j . Corresponding matched pieces

U1
j and U2

j are defined as graphs GU`j
over the same r-interval Ij and are connected by a foliation

of vertical line segments. Following (5.12), we write,ˆ
W `

Lnf ψ` =
∑
j

ˆ
U`j

f T̂n,U`j
ψ` +

∑
j

ˆ
V `j

f T̂n,V `j
ψ`,

where T̂n,U`j
ψ` := ψ` ◦ Tn JU`jTn, and similarly for T̂n,V `j

ψ`, ` = 1, 2.

We perform the estimate over unmatched pieces first, following the same argument as in Sec-
tion 5.2.3 to conclude that |Tn−i−1V

1
j | ≤ C3Λ−idWs(W 1,W 2) ≤ C3C7Λ−iδ2

0 , for any curve V 1
j

created at time i, 0 ≤ i ≤ n− 1.
Recalling the sets P (i) from Section 5.2.3 of unmatched pieces created at time i, we split the

estimate into curves P (i;S) if |Tn−i−1V
1
j | < δ and curves P (i;L) if |Tn−i−1V

1
j | ≥ δ.

The estimate over short unmatched pieces is given by (recalling the notation from (5.13)),

n−1∑
i=0

∑
j∈P (i;S)

∣∣∣∣∣
ˆ
V 1
j

f T̂n,V 1
j
ψ1

∣∣∣∣∣ =

n−1∑
i=0

∑
j∈P (i;S)

∣∣∣∣∣
ˆ
Tn−i−1V 1

j

Ln−i−1f · ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i;S)

Aδ1−qCq3Λ−iqdWs(W 1,W 2)q|||Ln−i−1f |||−|ψ1|C0 |JTn−i−1V 1
j
Tn,n−i−1|C0

≤ C̄0A

1− Λ−q
Cq3C

q
7δ

2q
0 3L|||Lnf |||−δ

1−q|ψ1|C0 ,

(6.8)
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where we have used Lemma 3.3-(b), |W 1| ∈ [δ0/2, δ0], and Remark 3.4 to estimate the sum over
the Jacobians, as well as (5.14) to estimate |||Ln−i−1f |||− ≤ 3L|||Lnf |||−.

For the estimate over long pieces, we subdivide them into curves of length between δ and 2δ
and estimate them by |||Ln−i−1f |||+, then we recombine them to obtain,

n−1∑
i=0

∑
j∈P (i;L)

∣∣∣∣∣
ˆ
V 1
j

f T̂n,V 1
j
ψ1

∣∣∣∣∣ =

n−1∑
i=0

∑
j∈P (i;L)

∣∣∣∣∣
ˆ
Tn−i−1V 1

j

Ln−i−1f · ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i;L)

|||Ln−i−1f |||+
ˆ
Tn−i−1V 1

j

ψ1 ◦ Tn,n−i−1 JTn−i−1V 1
j
Tn,n−i−1

≤ 3L|||Lnf |||−
n−1∑
i=0

∑
j∈P (i;L)

|Tn−i−1V
1
j ||ψ1|C0 |JTn−i−1V 1

j
Tn,n−i−1|C0

≤ C3C7C̄0

1− Λ−1
δ2

03L|||Lnf |||−|ψ1|C0 ,

(6.9)

where, in third line we used (5.14), and in the fourth line, since |W 1| ≥ δ0/2, we used Remark 3.4
to drop the second term in Lemma 3.3(b).

Next, we estimate the integrals over the matched pieces U1
j . We argue as in Section 5.2.3, but

our estimates here are somewhat simpler since we do not need to show that parameters contract.
We first treat the matched short pieces with |U1

j | < δ much as we did the unmatched ones.

By Lemma 5.5, dWs(U1
j , U

2
j ) ≤ C5Λ−ndWs(W 1,W 2) ≤ δ, since we have chosen n ≥ C log(δ0/δ).

Thus if |U1
j | < δ then |U2

j | < 2δ, and the analogous fact holds for short curves |U2
j | < δ. With this

perspective, we call U `j short if either |U1
j | < δ or |U2

j | < δ. On short pieces, we apply (4.7)

∑
j short

∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1

∣∣∣∣∣ ≤ ∑
j short

2Aδ|||f |||−|ψ1|C0 |JU1
j
Tn|C0 ≤ 4Aδ|||Lnf |||−C̄0|ψ1|C0 , (6.10)

where we have again used Lemmas 3.3(b) and 5.4 for the second inequality. Remark that the same
argument holds for U2

j with test function ψ2.

Finally, to estimate the integrals over matched curves with |U1
j |, |U2

j | ≥ δ we follow equation
(5.20), recalling (5.16), although we no longer have Lemma 5.5(c) at our disposal,∣∣∣∣∣

ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U2
j

f T̂n,U2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U1
j

f T̃n,U2
j
ψ2

∣∣∣∣∣
+

∣∣∣∣∣∣
´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

−

´
U2
j
f T̂n,U2

j
ψ2ffl

U2
j
T̂n,U2

j
ψ2

∣∣∣∣∣∣
 
U2
j

T̂n,U2
j
ψ2 +

∣∣∣∣∣∣
´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

∣∣∣∣∣∣
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂n,U2
j
ψ2

≤

∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U1
j

f T̃n,U2
j
ψ2

∣∣∣∣∣+ dWs(U1
j , U

2
j )γδ1−γcA|||f |||−|JU2

j
Tn|C0 |ψ2|C0

+AδdWs(U1
j , U

2
j )|||f |||−|JU2

j
Tn|C0 |ψ2|C0 ,

(6.11)

where we have used (5.24) to estimate

∣∣∣∣ |U2
j |−|U1

j |
|U1
j |

∣∣∣∣.
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To estimate the first term on the right side above, we use (4.7) and Lemma 4.10,∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U1
j

f T̃n,U2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
´
U1
j
f T̂n,U1

j
ψ1ffl

U1
j
T̂n,U1

j
ψ1

−

´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

∣∣∣∣∣∣
 
U1
j

T̂n,U1
j
ψ1

+

´
U1
j
f T̃n,U2

j
ψ2ffl

U1
j
T̃n,U2

j
ψ2

∣∣∣∣∣
 
U1
j

T̂n,U1
j
ψ1 −

 
U1
j

T̃n,U2
j
ψ2

∣∣∣∣∣
≤ 2δLρ(T̂n,U1

j
ψ1, T̃n,U2

j
ψ2)|||f |||−|JU1

j
Tn|C0 |ψ1|C0

+Aδ1−qδq0|||f |||−
(
|JU1

j
Tn|C0 |ψ1|C0 + 2|JU2

j
Tn|C0 |ψ2|C0

)
,

where we have used |U1
j | ≤ δ0 in the last line. We may apply (6.6) since T̂n,U1

j
ψ1, T̃n,U2

j
ψ2 ∈ Da,α(U1

j )

by Lemma 5.5. Now putting the above estimate together with (6.11), recalling dWs(U1
j , U

2
j ) ≤ δ,

and using Lemma 3.3-(b) and Remark 3.4 as well as Lemma 5.4, we sum over j to obtain,

∑
j long

∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U2
j

f T̂n,U2
j
ψ2

∣∣∣∣∣
≤ 2Aδ1−q|||Lnf |||−C̄0

(
cδγ+q + δ1+q +

2LD0δ
q

A
+ 2δq0

)
(|ψ1|C0 + |ψ2|C0).

(6.12)

Collecting (6.8), (6.9), (6.10) and (6.12), and recalling D0 ≥ 1 and A > 4L, yields

ˆ
W 1

Lnf ψ1 ≤
C̄0C3C7(3LAδ1−qδ2q

0 + 3Lδ2
0)

1− Λ−q
|||Lnf |||−|ψ1|C0 + 4C̄0Aδ|||Lnf |||−|ψ1|C0

+
∑
j

ˆ
U2
j

f T̂U2
j
ψ2 + 2Aδ1−q|||Lnf |||−C̄0(cδγ+q +D0δ

q + 2δq0)(|ψ1|C0 + |ψ2|C0)

≤
{

1 +
[2C̄0C3C7(3LAδ1−qδ2q

0 + 3Lδ2
0)

1− Λ−q

+ 2C̄0Aδ
1−q(2δq + cδγ+q +D0δ

q + 2δq0)
] |ψ1|C0 + |ψ2|C0´

W 2 ψ2

}ˆ
W 2

Lnf ψ2 .

Now since
´
W i ψi = 1, we have e−aδ

α
0 ≤ |W i|ψi ≤ eaδ

α
0 . Thus since |W i| ≥ δ0/3,

|ψ1|C0 + |ψ2|C0´
W 2 ψ2

≤ 6

δ0
e2aδα0 ,

which proves the lemma.

Our strategy will be the following. For W 1, W 2 ∈ Ws(δ0/2), n sufficiently large and {ιj}nj=1 ⊂
I(T0, κ), we wish to compare

´
W 1 Lnf ψ1 with

´
W 2 Lnf ψ2, where we normalize

´
W 1 ψ1 =

´
W 2 ψ2 =

1. By Lemmas 6.6 and 6.7, we find U `i ∈ Gn∗(W `), ` = 1, 2, such that U `i properly crosses R∗, and
dWs(Ū1

i , Ū
2
i ) ≤ C7δ

2
0 , where Ū `i = U `i ∩D(R∗).

Next, for each i, we wish to compare
´
Ū1
i
Ln−n∗f T̂n∗,U1

i
ψ1 with

´
Ū2
i
Ln−n∗f T̂n∗,U2

i
ψ2, where, to

abbreviate notation, T̂n∗,U`i
ψ` = ψ` ◦ Tn,n−n∗JU`i Tn,n−n∗ . However, the weights

´
Ū`i
T̂n∗,U`i

ψ` may

be very different for ` = 1, 2 since the stable Jacobians along the respective orbits before time n∗
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may not be comparable. To remedy this, we adopt the following strategy for matching integrals on
curves.

For each curve U `i ∈ Gn∗(W ) which properly crosses R∗, we redefine Ū `i to denote the middle
third of U `i ∩D(R∗) (and so having length at least 2δ0/3). Let M ` denote the index set of such i.

Let p
(`)
i =

´
Ū`i
T̂n∗,U`i

ψ`, and let m` =
∑

i∈M` p
(`)
i . Without loss of generality, assume m2 ≥ m1.

We will match the integrals
∑

i∈M1

´
Ū1
i
Ln−n∗f T̂n∗,U1

i
ψ1 with

∑
j∈M2

m1
m2

´
Ū2
j
Ln−n∗f T̂n∗,U2

j
ψ2.

The remainder of the integrals
∑

j∈M2
m2−m1
m2

´
Ū2
j
Ln−n∗f T̂n∗,U2

j
ψ2 as well as any unmatched pieces

(including the outer two-thirds of each U `i ) we continue to iterate until such time as they can be
matched as the middle third of a curve that properly crosses R∗.

Set T̂n∗,U2
j
ψ̃2 = m1

m2
T̂n∗,U2

j
ψ2, and consider the following decomposition of the integrals we want

to match, ∑
i∈M1

j∈M2

ˆ
Ū1
i

Ln−n∗f T̂n∗,U1
i
ψ1

p
(2)
j

m2
and

∑
i∈M1

j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗,U2
j
ψ̃2

p
(1)
i

m1

For each pair i, j in the first sum, the test function has integral weight
p

(1)
i p

(2)
j

m2
, and the same is true

for the corresponding pair in the second sum. Thus these integrals are paired precisely according
to the assumptions of Lemma 6.8. It follows that if n− n∗ ≥ C log(δ0/δ), then

∑
i∈M1

ˆ
Ū1
i

Ln−n∗f T̂n∗,U1
i
ψ1 =

∑
i∈M1

j∈M2

ˆ
Ū1
i

Ln−n∗f T̂n∗,U1
i
ψ1

p
(2)
j

m2

≤ 2
∑
i∈M1

j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗,U2
j
ψ̃2

p
(1)
i

m1
= 2

∑
j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗,U2
j
ψ̃2 .

(6.13)

We want to repeat the above construction until most of the mass has been compared. To this
end we set up an inductive scheme. Consider the family of curves W `

i ∈ Gn∗(W `) that have not

been matched. Each carries a test function ψ`,i := T̂n∗,W `
i
ψ̃`, where to keep our notation uniform,

we set ψ̃1 = ψ1. Renormalizing by a factor r`,1 < 1, we have
∑

i

´
W `
i
ψ`,i = 1.

Definition 6.10. Given a countable collection of curves and test functions, F = {Wi, ψi}i, with
Wi ∈ Ws, |Wi| ≤ δ0, ψi ∈ Da,α(Wi) and

∑
i

´
Wi
ψi = 1, we call F an admissible family if∑

i

 
Wi

ψi ≤ C∗ , where C∗ := 3C̄0δ
−1
0 . (6.14)

Notice that any stable curve W ∈ Ws(δ0/2) together with test function ψ ∈ Da,α(W ) normalized
so that

´
W ψ = 1 forms an admissible family since |W | ≥ δ0/2. The content of the following lemma

is that an admissible family can be iterated and remain admissible; moreover, a family with larger
average integral in (6.14) can be made admissible under iteration.

Lemma 6.11. Let {Wi, ψi}i be a countable collection of curves Wi ∈ Ws, |Wi| ≤ δ0, with functions
ψi ∈ Da,α(Wi), normalized so that

∑
i pi = 1, where pi =

´
Wi
ψi. Suppose that

∑
i |Wi|−1pi = C].

Choose n] ∈ N so that C0θ
n]
1
C]
C∗
≤ 1/6. Then for all n ≥ n], and all {ιk}nk=1 ⊂ I(T0, κ), the

dynamically iterated family {V i
j ∈ Gn(Wi), T̂n,V ij

ψi}i,j is admissible.
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Proof. Setting p
(i)
j =

´
V ij
T̂n,V ij

ψi =
´
V ij
ψi ◦ TnJV ij Tn, it is immediate that

∑
i,j p

(i)
j = 1.

Now fix Wi and consider V i
j ∈ Gn(Wi). Then using Lemmas 3.3 and 4.2 we estimate,

∑
j

|V i
j |−1p

(i)
j =

∑
j

 
V ij

ψi ◦ Tn JV ij Tn ≤
∑
j

|ψi|C0(Wi)|JV ij Tn|C0(V ij )

≤ |ψi|C0(C̄0δ
−1
0 |Wi|+ C0θ

n
1 ) ≤ C̄0δ

−1
0 eaδ

α
0 pi + C0θ

n
1 e
aδα0 |Wi|−1pi .

Using that eaδ
α
0 ≤ 2, we sum over i and use the assumption on the family {Wi, ψi}i to obtain,∑

i,j

∑
j

|V i
j |−1p

(i)
j ≤

∑
i

(
2C̄0δ

−1
0 pi + 2C0θ

n
1 |Wi|−1pi

)
≤ 2C̄0δ

−1
0 + 2C0θ

n
1C] . (6.15)

Thus if n ≥ n], the above expression is bounded by C∗, as required.

Theorem 6.12. Let L ≥ 60. Suppose a, c, A and L satisfy the conditions of Section 5.3, and
that in addition, δ ≤ δ2

0 satisfy (6.7) and (6.18). Then there exists χ < 1, independent of the
cone parameters, 17 and k∗ ∈ N such that if n ∈ N satisfies n ≥ NF := N(δ)− + k∗n∗,

18 with k∗
depending only on δ0, L and n∗ (see equation (6.17)), and if {ιj}nj=1 ⊂ I(T0, κ), where κ > 0 is
from Lemma 6.6(b), then LnCc,A,L(δ) ⊂ Cχc,χA,χL(δ).

Proof. As before, we take f ∈ Cc,A,L(δ), W 1, W 2 ∈ Ws(δ0/2) and test functions ψ` ∈ Da,β(W `)
such that

´
W 1 ψ1 =

´
W 2 ψ2 = 1. In order to iterate the matching argument described above, we

need upper and lower bounds on the amount of mass matched via the process described by (6.13).

Upper Bound on Matching. By definition of Ū `i , for each curve U `i that properly crosses R∗ at

time n∗, at least 2/3 of the length of that curve remains not matched. Thus if pi =
´
U`i
T̂n,U`i

ψ̃`,

then at least (1− eaδα0 /3)pi remains unmatched. Using eaδ
α
0 ≤ 2, we conclude that at least (1/3)pi

of the mass remains unmatched. Thus if r denotes the total mass remaining after matching at time
n∗, we have r ≥ 1/3. Renormalizing the family by r, we have

∑
i |Wi|−1 pi

r ≤ 3C∗.
By the proof of Lemma 6.11 with C] = 3C∗, we see that choosing n] such that 6C0θ

n]
1 ≤ 1/3,

then the bound in (6.15) is less than C∗, and the family recovers its regularity in the sense of
Lemma 6.11 after this number of iterates.

Lower Bound on Matching. By definition of admissible family, for each ε > 0,
∑
|Wi|<ε pi ≤ C∗ε.

So choosing ε = δ0/(6C̄0), we have that ∑
|Wi|≥δ0/(6C̄0)

pi ≥
1

2
.

On each Wi with |Wi| ≥ δ0/(6C̄0), we have at least one U ij ∈ Gn∗(Wi) that properly crosses R∗ by

Lemma 6.6. Then denoting by Ū ij the matched part (middle third) of U ij and setting

εn∗ =
Cn∗δ

(5/3)n∗

0

12 δ0

17Indeed, using Proposition 5.1 and choosing L ≥ 60, we can always choose χ = 8
9
, although this will affect the

choice of NF .
18Recall that n∗ is defined in Lemma 6.6 while N(δ)− is defined in equation (6.4).
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we have ˆ
Ū ij

T̂n∗,U ij
ψ̃i =

ˆ
Ū ij

ψ̃i ◦ Tn,n−n∗ JU ijTn,n−n∗ ≥
δ0
3 inf ψ̃i inf JU ij

Tn,n−n∗

≥ 1
3e
−aδα0 pie

−Cdδ
1/3
0
|Tn,n−n∗U ij |
|U ij |

≥ εn∗pi ,

where we have used the fact that if W ∈ Ws and T−1
ιj W is a homogeneous stable curve, then

|T−1
ιj W | ≤ C

−1|W |3/5 for some constant C > 0 by (H1) (see, for example [DZ3, eq. (6.9)]).

Thus a lower bound on the amount of mass coupled at time n∗ is εn∗
2 > 0.

We are finally ready to put these elements together. For k∗ ∈ N and k = 1, . . . k∗, let M `(k)
denote the index set of curves in Gkn∗(W `) which are matched at time kn∗. By choosing δ0 small,
we can ensure that n] ≤ n∗, where n] from Lemma 6.11 corresponds to C] = 3C∗. Thus the family
of remaining curves is always admissible at time kn∗. Let M `(∼) denote the index set of curves
that are not matched by time k∗n∗. We estimate using (6.13) at each time n = kn∗,

ˆ
W 1

Lnf ψ1 =

k∗∑
k=1

∑
i∈M1(k)

ˆ
Ū1
i

Ln−kn∗f T̂kn∗,U1
i
ψ̃1 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂k∗n∗,V 1
i
ψ̃1

≤
k∗∑
k=1

∑
i∈M2(k)

2

ˆ
Ū2
i

Ln−kn∗f T̂kn∗,U2
i
ψ̃2 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂k∗n∗,V 1
i
ψ̃1

(6.16)

We estimate the sum over unmatched pieices M `(∼) by splitting the estimate in curves longer than
δ, M `(∼;Lo), and curves shorter than δ, M `(∼;Sh).∑
i∈M`(∼)

ˆ
V `i

Ln−k∗n∗f T̂k∗n∗,V `i ψ̃`

=
∑

i∈M`(∼;Lo)

ˆ
V `i

Ln−k∗n∗f T̂k∗n∗,V `i ψ̃` +
∑

i∈M`(∼;Sh)

ˆ
V `i

Ln−k∗n∗f T̂k∗n∗,V `i ψ̃`

≤
∑

i∈M`(∼;Lo)

|||Ln−k∗n∗f |||+
ˆ
V `i

T̂k∗n∗,V `i
ψ̃` +

∑
i∈M`(∼;Sh)

A|||Ln−k∗n∗f |||−δ|ψ`|C0 |JV `i Tn,n−k∗n∗ |C0

≤ (1− εn∗
2 )k∗3L|||Lnf |||− + 2A|||Lnf |||−δ|ψ`|C0C̄0 .

where we have used (5.14) and the fact that k∗n∗ ≥ n0. For the sum over long pieces, we used that
the total mass of unmatched pieces decays exponentially in k, while for the sum over short pieces,
we used Lemma 3.3 and Remark 3.4 to sum over the Jacobians since |W 1| ≥ δ0/2. Finally, since
|ψ1|C0 ≤ eaδα0

ffl
W 1 ψ1 ≤ 4

δ0
, we conclude,

∑
i∈M1(∼)

∣∣∣∣∣
ˆ
V 1
i

Ln−k∗n∗f T̂k∗n∗,V 1
i
ψ̃1

∣∣∣∣∣ ≤ (3L(1− εn∗
2 )k∗ + 8AC̄0

δ
δ0

)
|||Lnf |||−

≤
(

3L(1− εn∗
2 )k∗ + 8AC̄0

δ
δ0

)ˆ
W 2

Lnf ψ2 ,
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using the fact that
´
W 2 ψ2 = 1. A similar estimate holds for the sum over curves in M2(∼). Finally,

we put together this estimate with (6.16) to obtain,

ˆ
W 1

Lnf ψ1 ≤
k∗∑
k=1

∑
i∈M2(k)

2

ˆ
Ū2
i

Ln−kn∗f T̂kn∗,U2
i
ψ̃2 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂k∗n∗,V 1
i
ψ̃1

≤ 2

ˆ
W 2

Lnf ψ2 + 2
∑

j∈M2(∼)

∣∣∣∣∣
ˆ
V 2
j

Ln−k∗n∗f T̂k∗n∗,V 2
j
ψ̃2

∣∣∣∣∣
+

∑
i∈M1(∼)

∣∣∣∣∣
ˆ
V 1
i

Ln−k∗n∗f T̂k∗n∗,V 1
i
ψ̃1

∣∣∣∣∣
≤
ˆ
W 2

Lnf ψ2

(
2 + 3

(
3L(1− εn∗

2 )k∗ + 8AC̄0
δ
δ0

))
.

We choose k∗ such that

3L(1− εn∗
2

)k∗ <
1

6
. (6.17)

Note that this choice of k∗ depends only on δ0 via εn∗ , and not on δ. Next, choose δ > 0 sufficiently
small that

8AC̄0δ/δ0 <
1

6
. (6.18)

These choices imply that ˆ
W 1

Lnf ψ1 ≤ 3

ˆ
W 2

Lnf ψ2 . (6.19)

Finally, we prove that L must contract by at least 8
9 . This is implied directly by the first

alternative of Proposition 6.3. So suppose instead that the second alternative holds. Since (6.19)
holds for all W 1,W 2 ∈ Ws(δ0/2) and test functions ψ1, ψ2 with

´
W 1 ψ1 =

´
W 2 ψ2 = 1, we conclude

that, for k ≥ k∗ and m ≥ N(δ)−,

|||Lkn∗+mf |||+
|||Lkn∗+mf |||−

≤ 160

9

|||Lkn∗f |||
0
+

|||Lkn∗f |||
0
−
≤ 160

3
≤ 8

9
L ,

if we choose L ≥ 60.

6.3 Finite diameter

In this section we prove the following proposition, which completes the proof of Theorem 2.3.

Proposition 6.13. For any χ ∈
(

max{1
2 ,

1
L ,

1√
A−1
}, 1
)

, the cone Cχc,χA,χL(δ) has diameter less

than ∆ := log
(

(1+χ)2

(1−χ)2χL
)
<∞ in Cc,A,L(δ), assuming δ > 0 is sufficiently small to satisfy (6.21).

Proof. For brevity, we will denote C = Cc,A,L(δ) and Cχ = Cχc,χA,χL(δ). For f ∈ Cχ, we will show
that ρ(f, 1) <∞, where ρ denotes distance in the cone C. Fix f ∈ Cχ throughout.

According to (4.1) if we find λ > 0 such that f − λ � 0, then ᾱ(1, f) ≥ λ.
Notice that |||f − λ|||± = |||f |||± − λ. Hence f − λ satisfies (4.6) if

|||f |||+ − λ ≤ L(|||f |||− − λ) ⇐= λ ≤ L(1− χ)

L− 1
|||f |||− =: ᾱ1 ,
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where we have used that f ∈ Cχ.
Similarly, f − λ satisfies (4.7) if, for all W ∈ Ws

−(δ) and ψ ∈ Da,β(W ),

|W |−q
∣∣´
W fψ − λ

´
W ψ

∣∣ffl
W ψ

≤ Aδ1−q(|||f |||− − λ) ⇐= λ ≤
(1− χ)A|||f |||−

A+ 1
=: ᾱ2 .

Next, notice that for any λ ≥ 0, W 1,W 2 ∈ Ws
−(δ) and ψ` ∈ Da,α(W `),∣∣∣∣

´
W 1(f − λ)ψ1ffl

W 1 ψ1
−
´
W 2(f − λ)ψ2ffl

W 2 ψ2

∣∣∣∣ =

∣∣∣∣
´
W 1 f ψ1ffl
W 1 ψ1

−
´
W 2 f ψ2ffl
W 2 ψ2

− λ(|W 1| − |W 2|)
∣∣∣∣

≤ χ2dWs(W 1,W 2)γδ1−γcA|||f |||− + λ(δ + Cs)dWs(W 1,W 2) ,

(6.20)

where we have used (5.8), so that f − λ satisfies (4.8) if

χ2dWs(W 1,W 2)γδ1−γcA|||f |||−+λ(δ+Cs)δ
1−γdWs(W 1,W 2)γ ≤ dWs(W 1,W 2)γδ1−γcA(|||f |||−−λ) .

This occurs whenever

λ ≤
cA|||f |||−(1− χ2)

δ + Cs + cA
⇐= λ ≤ (1− χ)|||f |||− =: ᾱ3 ,

provided that δ is chosen sufficiently small that

δ + Cs ≤ χcA , (6.21)

which is possible since cA > 2Cs by (5.36) and χ > 1/2.
Note that ᾱ2 ≤ ᾱ3 ≤ ᾱ1, so that ᾱ2 = mini{ᾱi}. Thus if λ ≤ ᾱ2, then f − λ ∈ C, i.e.

ᾱ(1, f) ≥ ᾱ2.
Next, we proceed to estimate β̄(1, f) for f ∈ Cχ. If we find µ > 0 such that µ− f ∈ C, this will

imply that β̄(1, f) ≤ µ. Remarking that |||µ− f |||± = µ−|||f |||∓, we have that µ− f satisfies (4.6) if

µ ≥
L|||f |||+ − |||f |||−

L− 1
⇐= µ ≥ L

L− 1
|||f |||+ =: β̄1 ,

while µ− f satisfies (4.7) if for all W ∈ Ws
−(δ), ψ ∈ Da,β(W ),

|W |−q
|µ
´
W ψ −

´
W f ψ|ffl

W ψ
≤ Aδ1−q(µ− |||f |||+) ⇐= µ ≥ (1 + χ)A

A− 21−q |||f |||+ =: β̄2 .

Finally, recalling (6.20) and again (5.8), we have that µ− f satisfies (4.8) whenever

χ2dWs(W 1,W 2)γδ1−γcA|||f |||−+µ(δ+Cs)δ
1−γdWs(W 1,W 2)γ ≤ dWs(W 1,W 2)γδ1−γcA(µ−|||f |||+) .

This is implied by,

µ ≥ cA(1 + χ2)

cA− (δ + Cs)
|||f |||+ ⇐= µ ≥ 1 + χ2

1− χ
|||f |||+ =: β̄3 ,

where again we have assumed (6.21).
Defining β̄ = maxi{β̄i}, it follows that if µ ≥ β̄, then µ − f ∈ C. Thus β̄ ≥ β̄(1, f). Since

χ > 1/L and χ2 > 1/(A − 1), it holds that β̄3 ≥ β̄2 ≥ β̄1. Thus β̄ = β̄3. Our assumption also
implies χ > 1/A, so that ᾱ2 ≥ 1−χ

1+χ |||f |||−.
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Finally, recalling (4.1), we have

ρ(1, f) = log

(
β̄(1, f)

ᾱ(1, f)

)
≤ log

(
β̄3

ᾱ2

)
≤ log

 1+χ2

1−χ
1−χ
1+χ

|||f |||+
|||f |||−

 ≤ log

(
(1 + χ)2

(1− χ)2
χL

)
,

for all f ∈ Cχ, completing the proof of the proposition.

Remark 6.14. Note that, setting χ∗ = max{1
2 ,

1
L ,

1√
A−1
}, for χ ≤ χ∗ Proposition 6.13 implies only

that the diameter of Cχc,χA,χL(δ) ⊂ Cχ∗c,χ∗A,χ∗L(δ), in Cc,A,L(δ), is bounded by log
(

(1+χ∗)2

(1−χ∗)2χ∗L
)

. If

needed, a more accurate formula can be easily obtained, but it would be more cumbersome.

7 Loss of Memory and Convergence to Equilibrium

In this section we show how Theorem 2.3 (i.e. Theorem 6.12 and Proposition 6.13 ) imply the
loss of memory and convergence to equilibrium stated in Theorems 2.7 and 2.8. For a single map,
the loss of memory is simply decay of correlations and the results are comparable to the ones
obtained in [DZ1] since they apply to a similar (very) large class of observables (and possibly even
distributions). Our loss of memory result is new for our class of billiards, although see Remark 2.9
and [SYZ] for loss of memory in a related billiards model. Before proving the main results of this
section (Theorem 7.3 and Corollary 7.5 prove Theorem 2.7 while Theorem 7.4 and Corollary 7.5
prove Theorem 2.8), we establish a key lemma that integration with respect to µSRB against suitable
test functions respects the ordering in our cone. Recall the vector space of functions A defined in
Section 4.3.

The parameters a, q, α, β, γ, c, A, L, δ0 are fixed as to satisfy the relations described in Section
5.3, hence Theorem 2.3 holds true. With Proposition 5.1 in mind, we prove our next lemma with
respect to the slightly larger cone Cc,A,3L(δ) ⊃ Cc,A,L(δ).

Lemma 7.1. Let δ > 0 be small enough that 2C`Ch(1 + A)(δ4/3 + δ1/3+βa`max) < 1, where
C`, Ch > 0 are from (7.4) and `max is the maximum diameter of the connected components of
M .

Suppose ψ ∈ C1(M) satisfies 2(2δ)1−β|ψ′|C0(M) ≤ aminM ψ. If f, g ∈ A with g−f ∈ Cc,A,3L(δ),
then

´
f ψ dµSRB ≤

´
g ψ dµSRB.

Proof. Let ψmin = minM ψ. The assumption on ψ implies that ψ ∈ Da
2
,β(W ) for each W ∈ Ws

−(δ)
since, ∣∣∣∣log

ψ(x)

ψ(y)

∣∣∣∣ ≤ 1

ψmin
|ψ(x)− ψ(y)| ≤

|ψ′|C0(M)

ψmin
d(x, y) ≤

|ψ′|C0(M)

ψmin
(2δ)1−βd(x, y)β .

Suppose f, g ∈ A satisfy g − f ∈ Cc,A,3L(δ). Then according to (4.5) and (4.7), for all ψ ∈
Da,β(W ),

|||g − f |||−
´
W ψ ≤

´
W (g − f)ψ dmW ≤ |||g − f |||+

´
W ψ ∀W ∈ Ws(δ) (7.1)∣∣´

W (g − f)ψ dmW

∣∣ ≤ |||g − f |||−Aδ1−q|W |q
ffl
W ψ ∀W ∈ Ws

−(δ). (7.2)

Next, we disintegrate µSRB according to a smooth foliation of stable curves as follows. Since
the stable cones defined in (H1) are globally constant and uniform in the family F(τ∗,K∗, E∗), we
fix a direction in the stable cone and consider stable curves in the form of line segments with this
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slope. Let kδ ≥ k0 denote the minimal index k of a homogeneity strip Hk such that the stable line
segments in Hk have length less than δ. Due to the fact that the minimum slope in the stable cone
is Kmin > 0, we have

kδ = Chδ
−1/3, (7.3)

for some constant Ch > 0 independent of δ.
Now for k < kδ, we decompose Hk into horizontal bands Bk,i such that every maximal line

segment of the chosen slope in Bk,i has equal length between δ and 2δ. We do the same on H0 :=
M \ (∪k≥k0Hk). On each Bk,i, define a foliation of such parallel line segments {Wξ}ξ∈Ξk,i ⊂ Ws(δ).
Using the smoothness of this foliation, we disintegrate µSRB into conditional measures cosϕ(x)dmWξ

on Wξ and a factor measure µ̂ on the index set Ξk,i. Note that our conditional measures are not
normalized - we include this factor in µ̂. Finally, on each homogeneity strip Hk, k ≥ kδ, we carry
out a similar decomposition, but using homogeneous parallel line segments of maximal length in
Hk (which are necessarily shorter than length δ). We use the notation {Wξ}ξ∈Ξk,1 ⊂ Ws

−(δ) for the
foliations in these homogeneity strips since there is only one band in each of these Hk. Note that
for all k and i, we have µ̂(Ξk,i) ≤ C`, for some constant C` depending only on the chosen slope and
spacing of homogeneity strips.

Also, it follows as in (3.5), that for x, y ∈W ∈ Ws
−(δ),

log
cosϕ(x)

cosϕ(y)
≤ Cd(2δ)1/3−βd(x, y)β ,

so that cosϕ ∈ Da
2
,β(W ) by the assumption of Lemma 5.2. Thus ψ cosϕ ∈ Da,β(W ) for all

W ∈ Ws
−(δ).

Using this fact and our disintegration of µSRB, we estimate the integral applying (7.1) on Ξk,i
for k < kδ and (7.2) on Ξk,1 for k ≥ kδ,
ˆ
M

(g − f)ψ dµSRB =
∑
i,k<kδ

ˆ
Ξk,i

ˆ
Wξ

(g − f)ψ cosϕdmWξ
dµ̂(ξ) +

∑
k≥kδ

ˆ
Ξk,1

ˆ
Wξ

(g − f)ψ cosϕdmWξ
dµ̂(ξ)

≥ |||g − f |||−

 ∑
i,k<kδ

ˆ
Ξk,i

ˆ
Wξ

ψ cosϕdmWξ
dµ̂(ξ)−Aδ

∑
k≥kδ

ˆ
Ξk,1

 
Wξ

ψ cosϕdmWξ
dµ̂(ξ)


≥ |||g − f |||−

ψminµSRB(M \ (∪k≥kδHk))−AδC`|ψ|C0

∑
k≥kδ

k−2


≥ |||g − f |||−

(
ψmin(1− 2C`Chδ

4/3)− |ψ|C0AC`Ch2δ4/3
)
,

(7.4)

where we have estimated
∑

k≥kδ k
−2 ≤ 2k−1

δ ≤ 2Chδ
1/3 and µSRB(∪k≥kδHk) ≤ 2C`Chδ

4/3.
Now |ψ|C0 ≤ ψmin + `max|ψ′|C0 , where `max is the maximum diameter of the connected compo-

nents of M . Then by the assumption on ψ, we have

2C`Ch(1 +A)δ4/3|ψ|C0 ≤ 2C`Ch(1 +A)δ4/3ψmin(1 + `max
a
2 (2δ)β−1)

≤ ψmin2C`Ch(1 +A)(δ4/3 + a`maxδ
1/3+β) ≤ ψmin ,

where for the last inequality we have used the assumption on δ in the statement of the lemma. We
conclude that the lower bound in (7.4) cannot be less than 0.
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Remark 7.2. Since Remark 4.8 applies equally well to Cc,A,3L(δ), Lemma 7.1 implies there exists
C̄ ≥ 1 such that

´
M f dµSRB ≥ C̄−1|||f |||− > 0 for all f ∈ Cc,A,L(δ).

Using instead the upper bound in (7.1) and following the estimate of (7.4) yields,

0 <

ˆ
M
fψ dµSRB ≤ |||f |||+C|ψ|C0 ,

for all f ∈ Cc,A,L(δ) and ψ as in the statement of Lemma 7.1. Since any ψ ∈ C1(M) can be made
to satisfy the condition of Lemma 7.1 by adding a constant (see the definition of Cψ in (7.8) below),
the estimate can be extended to all ψ ∈ C1(M) to obtain,

ˆ
M
fψ dµSRB ≤ |||f |||+C|ψ|C1 .

Loss of memory and convergence to equilibrium, including equidistribution, readily follow from
the contraction in the projective metric ρC(·, ·) of the cone Cc,A,L(δ). Set µSRB(f) =

´
M f dµSRB.

Recall NF := N(δ)−+k∗n∗ from Theorem 6.12 and the definition of an NF -admissible sequence
from Section 2.2: A sequence (ιj)j , ιj ∈ I(τ∗,K∗, E∗), is NF -admissible if there exist sequences
(Tk)k≥1 ⊂ F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥ NF , such that Tιj ∈ F(Tk, κ) for all k ≥ 1 and

j ∈ [1 +
∑k−1

i=1 Ni,
∑k

i=1Ni].
That is, an admissible sequence remains in a κ neighborhood of Tk for Nk ≥ NF iterates at a

time, but may undergo large changes between such blocks.
Our first theorem concerns loss of memory for functions in our cone, both with respect to

µSRB and with respect to the iteration of individual stable curves. It does not use property (H5),
although it does use that µSRB is a conformal measure for Ln, i.e. µSRB(Lnf) = µSRB(f).

Theorem 7.3. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 and ϑ < 1
such that for all admissible sequences (ιj)j, all n ≥ 0, and all f, g ∈ Cc,A,L(δ) with

´
M f dµSRB =´

M g dµSRB:

a) For all all W ∈ Ws(δ) and all ψ ∈ C1(W ), we have∣∣∣∣ 
W
Lnf ψ dmW −

 
W
Lng ψ dmW

∣∣∣∣ ≤ Cϑn |ψ|C1 min{|||f |||+, |||g|||+} ;

b) For all ψ ∈ C1(M),∣∣∣∣ˆ
M
Lnf ψ dµSRB −

ˆ
M
Lng ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M) min{|||f |||+, |||g|||+} . (7.5)

Proof. (a) Recall the definition of ||| · |||+ for elements of A from Definition 4.5 and (4.5),

|||f |||+ = sup
W∈Ws(δ)
ψ∈Da,β(W )

∣∣´
W fψ dmW

∣∣´
W ψ dmW

,

and note that by (4.10), ||| · |||+ is an order-preserving semi-norm in A.19 One can check directly
that A is an integrally closed vector lattice. Also µSRB(f) :=

´
M f dµSRB is homogeneous and order

preserving in Cc,A,3L(δ) by Lemma 7.1 applied to ψ ≡ 1.

19A semi-norm ‖ · ‖ is order preserving if −g � f � g implies ‖f‖ ≤ ‖g‖.
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We would like to apply Theorem 6.12 to each block of NF iterates in the admissible sequence;
however, at time n, the sequence may have completed fewer than NF iterates in its current block
so it may be that Lnf,Lng /∈ Cc,A,L(δ). But since n ≥ NF > n0, it follows from Proposition 5.1
that Lnf,Lng ∈ Cc,A,3L(δ). Then denoting by ρC′ the metric in the larger cone Cc,A,3L(δ), [LSV,
Lemma 2.2] implies that, for all f, g ∈ Cc,A,L(δ) with µSRB(f) = µSRB(g), 20

|||Lnf − Lng|||+ ≤
(
eρC′ (Lnf,Lng) − 1

)
min{|||Lnf |||+, |||Lng|||+}. (7.6)

Using the definition of admissible sequence, we may peel off the most recent j iterates, where
j < n0 +NF , such that Ln−jf,Ln−jg ∈ Cc,A,L(δ) and n− j is chosen so that we have undergone at
least NF iterates in the current block at time n− j. Then applying Theorem 6.12 to each block of
Nk iterates, and using Proposition 6.13 and [L95a, Theorem 1.1 and Remark 1.2], for all n ≥ NF ,

ρC′(Lnf,Lng) ≤ ρC(Ln−jf,Ln−jg) ≤ ϑn−j−kρC(Lkf,Lkg) ,

where ϑ = [tanh(∆/4)]1/(2NF ), and k ∈ [NF , 2NF − 1] is the least integer ≥ NF so that Ln−j−k
ends in a contracting block.

Finally, we use the fact that Lkf,Lkg ∈ Cχc,χA,χL(δ) together with Proposition 6.13 to conclude
ρC(Lkf,Lkg) ≤ ∆. Combining these estimates with Lemma 5.4 yields,

|||Lnf − Lng|||+ ≤ Cϑ
n min{|||f |||+, |||g|||+}, (7.7)

where C = 3
2∆e∆ϑ−3NF−n0 . This proves (a) for any W ∈ Ws(δ) and ψ ∈ Da,β(W ).

To extend this estimate to more general ψ ∈ C1(W ), define ψ̃ = ψ + Cψ, where

Cψ = |ψmin|+ 2
a |ψ
′|C0(2δ)1−β . (7.8)

Then ψ̃′ = ψ′ and minW ψ̃ ≥ 2
a |ψ̃
′|C0(2δ)1−β, so that ψ̃ ∈ Da

2
,β(W ) by the proof of Lemma 7.1.

Then since also Cψ ∈ Da,β(W ), the required estimate follows by writing ψ = ψ̃−Cψ and using the
triangle inequality.

(b) Following the same strategy as above, given ψ ∈ C1(M) satisfying the assumption of Lemma 7.1,
we define a pseudo-norm for f ∈ A by

‖f‖ψ =

∣∣∣∣ˆ
M
f ψ dµSRB

∣∣∣∣ . (7.9)

By Lemma 7.1, ‖ · ‖ψ is an order-preserving semi-norm, and as in (7.6), invoking again [LSV,
Lemma 2.2], Theorem 6.12, Proposition 6.13 and [L95a, Theorem 1.1], we have for f, g ∈ Cc,A,L(δ)
with µSRB(f) = µSRB(g) and n ≥ NF ,

‖Lnf − Lng‖ψ ≤ Cϑn min{‖Lnf‖ψ, ‖Lng‖ψ} ≤ Cϑn|ψ|C0 min{|||f |||+, |||g|||+} ,

where we applied Remark 7.2. This proves (b) for ψ satisfying the assumption of Lemma 7.1. We
extend to more general ψ ∈ C1(M) by defining ψ̃ = ψ+Cψ, where Cψ is given by (7.8), and arguing
as in the proof of part (a).

Since our maps all preserve µSRB, the loss of memory also implies equidistribution of measures
supported on stable curves and convergence to equilibrium, both of which are summarized in the
following theorem.

20[LSV, Lemma 2.2] is stated for order preserving norms but its proof holds verbatim for order preserving semi-
norms, see [DKL1, Lemma D.4].
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Theorem 7.4. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 such that for all
n ≥ 0 and admissible sequences (ιj)j ⊂ I(τ∗,K∗, E∗), ϑ as in Theorem 7.3, and all f, g ∈ Cc,A,L(δ),
with µSRB(f) = µSRB(g):

a) For all W1,W2 ∈ Ws(δ) and all ψi ∈ C1(Wi) with
ffl
W1

ψ1 =
ffl
W2

ψ2, we have∣∣∣∣ 
W1

Lnf ψ1 dmW1 −
 
W2

Lng ψ2 dmW2

∣∣∣∣ ≤ Cϑn (|ψ1|C1 + |ψ2|C1)µSRB(f) ;

in particular, for all W ∈ Ws(δ) and ψ ∈ C1(W ),∣∣∣∣ 
W
Lnf ψ dmW − µSRB(f)

 
W
ψ dmW

∣∣∣∣ ≤ Cϑn |ψ|C1µSRB(f) ; (7.10)

b) for all ψ ∈ C1(M),∣∣∣∣ˆ
M
f ψ ◦ Tn dµSRB −

ˆ
M
f dµSRB

ˆ
M
ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M)µSRB(f) .

Proof. a) Since Ln1 = 1 and |||µSRB(f)|||+ = µSRB(f), applying (7.7) with g = µSRB(f) implies,∣∣∣∣ 
W
Lnf ψ dmW − µSRB(f)

 
W
ψ

∣∣∣∣ =

 
W
ψ

∣∣∣∣
´
W Lnf ψ dmW´

W ψ
−
´
W Ln(µSRB(f))ψ´

W ψ

∣∣∣∣
≤ Cϑn |ψ|C0µSRB(f) ,

(7.11)

which proves (7.10) for ψ ∈ Da,β(W ). We extend this estimate to more general ψ ∈ C1(W ) by
defining ψ̃ = ψ + Cψ as in (7.8) and arguing as in the proof of Theorem 7.3(a). Finally, the first
inequality of part (a) follows from an application of the triangle inequality.

b) Since µSRB is conformal with respect to LT for each T ∈ F(τ∗,K∗, E∗), and using that Ln1 = 1,
we have ˆ

M
f ψ ◦ Tn dµSRB −

ˆ
M
f dµSRB

ˆ
M
ψ dµSRB =

ˆ
M
Ln(f − µSRB(f))ψ dµSRB .

Thus applying (7.5) to g = µSRB(f) proves part (b) since |||µSRB(f)|||+ = µSRB(f).

We may extend Theorems 7.3 and 7.4 to piecewise Hölder continuous functions, as long as the
discontinuities are transverse to the stable cone. Recall the definition of a regular partition P from
Definition 2.6 and the set Ct(P) of functions which are t-Hölder continuous on each element of P,
i.e. which satisfy

|f |Ct(P) = sup
P∈P
|f |Ct(P ) <∞ .

Corollary 7.5. Let P be a regular partition of M and let t ≥ γ. Then the convergence in Theo-
rems 7.3 and 7.4 extend to all f, g ∈ Ct(P), with max{|f |Ct(P), |g|Ct(P)} in place of min{|||f |||+, |||g|||+}
on the right hand side in Theorem 7.3 and in place of µSRB(f) on the right hand side in Theorem 7.4.

The proof of this corollary relies on the following lemma.
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Lemma 7.6. If P is a regular partition of M and f ∈ Ct(P) with t ≥ γ, then λ + f ∈ Cc,A,L(δ)
for any

λ ≥ max

{
L+ 1

L− 1
|f |∞,

A+ 21−q

A− 21−q |f |∞,
cA+ (2δt + 8KCPCs + 6Cs)

cA− 2Cs
|f |Ct(P)

}
.

Proof of Corollary 7.5. Let f, g ∈ Ct(P) with µSRB(f) = µSRB(g) and let ψ ∈ C1(M). Let λf , λg
be the constants from Lemma 7.6 corresponding to f and g, respectively, and set λ = max{λf , λg}.
Then f + λ, g + λ ∈ Cc,A,L(δ) and µSRB(f + λ) = µSRB(g + λ), so that by Theorem 7.3(b), for all
n ≥ 0, ∣∣∣∣ˆ

M
Ln(f − g)ψ dµSRB

∣∣∣∣ =

∣∣∣∣ˆ
M
Ln(f + λ− (g + λ))ψ dµSRB

∣∣∣∣
≤ C ′ϑn|ψ|C1(M) max{|f |Ct(P), |g|Ct(P)} ,

since |||f + λ|||+ ≤ λ + |f |∞, and by Lemma 7.6, λf ≥ C ′′|f |Ct(P), with analogous estimates for g.
This proves the analog of part (b) Theorem 7.3 and the proof of part (a) follows similarly, replacing
the integral over M by the integral over W ∈ Ws.

The extension of Theorem 7.4 to f, g ∈ Ct(P) follows analogously, replacing f and g in (7.11)
with f + λ and g + λ, respectively to prove the analogue of (7.10), and then using the triangle
inequality to deduce the first inequality of part (a). Finally, part (b) follows immediately once f is
replaced by f + λ since

´
M ψ ◦ Tn dµSRB =

´
M ψ dµSRB due to (H5).

Proof of Lemma 7.6. We must show that λ+ f satisfies conditions (4.6) - (4.8) in the definition of
Cc,A,L(δ). Since

|||λ+ f |||+ ≤ λ+ |f |∞, and |||λ+ f |||− ≥ λ− |f |∞ , (7.12)

to guarantee (4.6), we need

λ+ |f |∞
λ− |f |∞

≤ L ⇐= λ ≥ |f |∞
L+ 1

L− 1
.

Next, to guarantee (4.7), for W ∈ Ws
−(δ), ψ ∈ Da,β(W ), we need,

|W |−q
´
W (λ+ f)ψffl

W ψ
≤ Aδ1−q(λ− |f |∞) ⇐= |W |1−q(λ+ |f |∞) ≤ Aδ1−q(λ− |f |∞)

⇐= λ ≥ |f |∞
A+ 21−q

A− 21−q .

Lastly, we need to show that (4.8) is satisfied. For this, we prove the claim:∣∣∣∣
´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣ ≤ (2δt + 8KCPCs + 6Cs)δ
1−γdWs(W 1,W 2)γ |f |Ct(P) , (7.13)

for W 1,W 2, ψ1, ψ2 as in (4.8). As in Section 5.2.3, we partition W k into matched pieces Ukj and

unmatched pieces V k
i such that U1

j , U2
j belong to the same element P ∈ P and are defined over

the same r-interval Ij for each j. By assumption on P, #{Ukj }j ≤ K, #{V k
j }k,j ≤ 2K, and

|V k
j | ≤ CsCPdWs(W 1,W 2).

Recalling the notation from Section 4.2, we express the matched pieces as graphs over their
common r-interval, Ukj = {GUkj (r) = (r, ϕUkj

(r)) : r ∈ Ij}, for k = 1, 2.
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As in Section 5.2.3, we assume without loss of generality that |W2| ≥ |W1| and
ffl
W1

ψ1 = 1.

Also, we may assume |W2| ≥ 2Csδ
1−γdWs(W1,W2)γ ; otherwise, (7.13) is trivially bounded by

2|W2||f |∞ ≤ 4Csδ
1−γdWs(W1,W2)γ |f |∞.

Next,∣∣∣∣
´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣ ≤ ∣∣∣∣ˆ
W 1

fψ1 −
ˆ
W 2

fψ2

∣∣∣∣+

ˆ
W 2

|f |ψ2

∣∣∣∣1− 1ffl
W 2 fψ2

∣∣∣∣
≤
∑
j

∣∣∣∣∣
ˆ
U1
j

fψ1 −
ˆ
U2
j

fψ2

∣∣∣∣∣+
∑
k,i

∣∣∣∣∣
ˆ
V ki

fψk

∣∣∣∣∣+ |f |∞
∣∣∣∣ˆ
W 2

ψ2 − |W 2|
∣∣∣∣ (7.14)

To estimate the first term on the right hand side, recalling (4.3) and d∗(ψ1, ψ2) = 0, we have for
r ∈ Ij ,

|(fψ1) ◦GU1
j
(r)‖G′U1

j
(r)‖ − (fψ2) ◦GU2

j
(r)‖G′U2

j
(r)‖|

= ψ1 ◦GU1
j
(r)‖G′U1

j
(r)‖|f ◦GU1

j
(r)− f ◦GU2

j
(r)| ≤ ψ1 ◦GU1

j
(r)‖G′U1

j
(r)‖Ht

P (f)dWs(W 1,W 2)t ,

where Ht
P (f) denotes the Hölder constant of f on P ∈ P. Integrating over Ij yields,∣∣∣∣∣∣

∑
j

ˆ
U1
j

fψ1 −
ˆ
U2
j

fψ2

∣∣∣∣∣∣ ≤
∑
j

Ht
P(f)dWs(W 1,W 2)t

ˆ
U1
j

ψ1 ≤ |W 1|Ht
P(f)dWs(W 1,W 2)t . (7.15)

For the second term on the right side of (7.14), |V k
i | ≤ CsCPdWs(W 1,W 2) plus (5.9) implies

∑
k,i

∣∣∣∣∣
ˆ
V ki

fψk

∣∣∣∣∣ ≤ 2K|f |∞2e2a(2δ)αCsCPdWs(W1,W2) , (7.16)

while for the third term, (5.10) implies

|f |∞
∣∣∣∣ˆ
W 2

ψ2 − |W 2|
∣∣∣∣ ≤ |f |∞6CsdWs(W 1,W 2) .

Collecting this estimate together with (7.15) and (7.16) in (7.14), and recalling (4.9), we obtain∣∣∣∣
´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣ ≤ 2δHt
P(f)dWs(W 1,W 2)t + |f |∞(8KCP + 6)CsdWs(W 1,W 2) ,

proving the bound in (7.13) since dWs(W1,W2) ≤ δ and t ≥ γ.
With the claim proved, we proceed to verify (4.8). Using (5.8) we estimate,∣∣∣∣
´
W 1(f + λ)ψ1ffl

W 1 ψ1
−

´
W 2(f + λ)ψ2ffl

W 2 ψ2

∣∣∣∣ ≤ ∣∣∣∣
´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣+ λ||W 1| − |W 2||

≤ (2δt + 8KCPCs + 6Cs)δ
1−γdWs(W1,W2)γ |f |Ct(P) + λ2CsdWs(W 1,W 2) .

Thus (4.8) will be verified if

(2δt + 8KCPCs + 6Cs)δ
1−γdWs(W1,W2)γ |f |Ct(P) + λ2CsdWs(W 1,W 2)

≤ cAδ1−γdWs(W1,W2)γ(λ− |f |∞) ,

which is implied by the final condition on λ in the statement of the lemma since dWs(W1,W2) ≤ δ
and cA > 2Cs by (5.36).
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8 Applications

Suppose that we have a billiard table Q = T2 \∪iBi and that the particle can escape from the table
by entering certain sets G ⊂ Q, which we call gates or holes, but only at times kN for some N ∈ N.
One could easily consider also the case of G ⊂ Q×S1 (i.e. some velocity directions are forbidden, as
studied in [D2]), but we prefer to keep things simple. In the literature, one often takes N = 1, i.e.
the particle can escape at each iterate of the map, but then the holes are required to be very small,
see for example [DWY, D1, D2]. By contrast, in this paper we will be interested in relatively large
holes and so we will replace the assumption of smallness with an assumption of occasional escape
through possibly large sets. This will facilitate the application of this method to two situations we
have in mind: chaotic scattering (Section 8.4) and a random Lorentz gas (Section 8.5).

We begin with the same setup as in Section 2.1, fixing K numbers `1, . . . , `K > 0 and identifying
them as the arclengths of scatterers belonging to Q(τ∗,K∗, E∗) for some fixed choice of τ∗,K∗, E∗ ∈
R+. As in Section 3.1, we fix an index set I(τ∗,K∗, E∗), identifying ι ∈ I(τ∗,K∗, E∗) with a map
Tι ∈ F(τ∗,K∗, E∗) induced by the table Qι ∈ Q(τ∗,K∗, E∗).

A hole Gι ⊂ Qι induces a hole Hι ⊂M in the phase space of the billiard map Tι. We formulate
here two abstract conditions on the set Hι, and then provide examples of concrete, physically
relevant situations which induce holes satisfying our conditions in Section 8.3.

(O1) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ can be cut
into at most P0 pieces by ∂Hι, where δ is the length scale of the cone Cc,A,L(δ).

(O2) (Uniform transversality) There exists Ct > 0 such that, for any stable curve W ∈ Ws and
ε > 0, mW (Nε(∂Hι)) ≤ Ctε, where Nε(A) is the ε-neighborhood of A in M .

Remark 8.1. Assumption (O2) can be weakened to, e.g., mW (Nε(∂Hι)) ≤ Ctε
1/2, but this would

then require dWs(W 1,W 2) ≤ δ2 in our definition of cone condition (4.8). Similar modifications
are made to weaken the transversality assumption in the Banach space setting, see for example
[DZ3, D2].

For H ⊂ M satisfying (O1) and (O2), we let diams(H) denote the maximal length of a stable
curve in H, which we call the stable diameter.

As in Section 6.2, we fix T0 ∈ F(τ∗,K∗, τ∗) and consider sequences {ιj}j ⊂ I(T0, κ), where
κ > 0 is from Lemma 6.6(b). Recalling (6.5), this means we will initially consider sequential open
systems comprised of maps T ∈ F(τ∗,K∗, E∗) with d(Q(T ), Q(T0)) < κ. We will then extend this
to n?-admissible sequences for appropriate n? depending on H.

Denote by 1A the characteristic function of the set A. The relevant transfer operator for the
open sequential system (opening once every n? iterates) is given by LH,n? = Ln?1Hc , where Hc

denotes the complement of H in M , and Ln? = LTιn? · · · LTι1 is the usual transfer operator for
the n?-step sequential dynamics. The main objective is to control the action of the multiplication
operator 1Hc on the cone Cc,A,L(δ).

Remark 8.2. From now on we will consider parameters c, A, L fixed so that all the conditions of
Section 5.3 apply for all δ smaller that some fixed δ∗.

8.1 Relatively small holes

First we consider holes H whose stable diameter is short compared to the length scale δ.
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Lemma 8.3. If H ⊂M satisfies (O1) and (O2), and if diams(H) ≤ δ
[

1
4P0A

]1/q
, then

1Hc [Cc,A,L(δ)] ⊂ Cc′,A′,L′(δ),

where

L′ = 2P 1−q
0 ea(2δ)βA , A′ = 2P 1−q

0 ea(2δ)βA ,

c′ = P q0 e
a(2δ)α + 2

(
2qδ + 3

4c
)

+ 4(P0 + 2)P q−1
0 Cqt .

Proof. Letting f ∈ Cc,A,L(δ), we must control the cone conditions one by one. We begin with (4.6).
Given W ∈ Ws(δ), let G0 denote the collection of connected curves in W \H. Then applying (4.7)
to each W ′ ∈ G0, for ψ ∈ Da,β(W ), we estimate

ˆ
W

(1Hcf)ψ dmW =
∑
W ′∈G0

ˆ
W ′
fψ dmW ′

≤
∑
W ′∈G0

 
W ′
ψdmW ′ |W ′|qAδ1−q|||f |||−

≤
∑
W ′∈G0

|W ′|qea(2δ)β
 
W
ψdmWAδ

1−q|||f |||−

≤ P 1−q
0 ea(2δ)βA|||f |||−

ˆ
W
ψ dmW ,

(8.1)

where, in the last line, we have used the Hölder inequality to estimate the sum on W ′, recalling
that, by (O1), the sum has, at most, P0 elements. On the other hand, if the collection of disjoint
curves {Wi} is such that ∪iWi = W ∩H,

ˆ
W

(1Hcf)ψ dmW =

ˆ
W
fψ dmW −

ˆ
W

(1Hf)ψ dmW

≥ |||f |||−
ˆ
W
ψ dmW −

∑
i

|Wi|qAδ1−q|||f |||−
 
Wi

ψ dmWi

≥
{

1− ea(2δ)βAP0δ
−qdiams(H)q

}
|||f |||−

ˆ
W
ψ dmW .

Hence, for diams(H) small enough,

|||1Hcf |||− ≥
1

2
|||f |||−. (8.2)

Accordingly, taking the supremum over W,ψ in (8.1),

|||1Hcf |||+ ≤ 2P 1−q
0 ea(2δ)βA|||1Hcf |||− =: L′|||1Hcf |||−
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Next, to verify (4.7), if W ∈ Ws
−(δ), then estimating as in (8.1),

ˆ
W

(1Hcf)ψ dmW =
∑
W ′∈G0

ˆ
W ′
fψ dmW ′

≤
∑
W ′∈G0

ea(2δ)β |W ′|qAδ1−q|||f |||−
 
W
ψ dmW

≤ P 1−q
0 |W |qea(2δ)βAδ1−q|||f |||−

 
W
ψ dmW

≤ 2P 1−q
0 |W |qea(2δ)βAδ1−q|||1Hcf |||−

 
W
ψ dmW

=: A′|W |qδ1−q|||1Hcf |||−
 
W
ψ dmW ,

(8.3)

where we have used (8.2) for the third inequality.
We are left with the last cone condition, (4.8). We take W 1,W 2 ∈ Ws

−(δ) with dWs(W 1,W 2) ≤
δ, and ψi ∈ Da,α(Wi) with d∗(ψ1, ψ2) = 0.

As in Section 5.2.3, we may assume without loss of generality that |W 2| ≥ |W 1| and
ffl
W 1 ψ1 = 1.

First of all note that, by condition (4.7) and our estimate above,

´
Wk 1Hcfψkffl

Wk ψk
≤ A′|W k|qδ1−q|||1Hcf |||− ≤

1

2
dWs(W 1,W 2)γδ1−γcA′|||1Hcf |||−,

for k = 1, 2, provided |W 2|q ≤ δq−γ c2dWs(W 1,W 2)γ . Accordingly, it suffices to consider the case
|W 2|q ≥ δq−γ c2dWs(W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ
q−γ c

2dWs(W 1,W 2)γ , recalling that dWs(W 1,W 2) ≤ δ and
(5.7). By (O2), we may decompose W k ∩ Hc into at most P0 ‘matched’ pieces W k

j such that

dWs(W 1
j ,W

2
j ) ≤ dWs(W 1,W 2) and IW 1

j
= IW 2

j
, and at most21 P0 + 2 ‘unmatched’ pieces W

k
i ,

which satisfy,

|W k
i | ≤ CtdWs(W 1,W 2).

Then, using condition (4.7) and noticing that d∗(ψ1|W 1
j
, ψ2|W 2

j
) = 0,

∣∣∣∣
´
W 1 1Hcfψ1ffl

W 1 ψ1
−
´
W 2 1Hcfψ2ffl

W 2 ψ2

∣∣∣∣ ≤∑
j

∣∣∣∣∣
´
W 1
j
fψ1ffl

W 1 ψ1
−

´
W 2
j
fψ2ffl

W 2 ψ2

∣∣∣∣∣+
∑
i,k

|W k
i |qδ1−qA|||f |||−e

a(2δ)α

≤
∑
j

ffl
W 1
j
ψ1ffl

W 1 ψ1
dWs(W 1,W 2)γδ1−γcA|||f |||− +

∑
j

∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣
+ 8(P0 + 2)Cqt dWs(W 1,W 2)γδ1−γA|||1Hcf |||−,

(8.4)

using (8.2). Next, since IW 1
j

= IW 2
j
, recalling Remark 4.4 and (5.8) we have

´
W 1
j
ψ1 =

´
W 2
j
ψ2 and22

21According to (O1), W k is divided into at most P0 pieces, and W k ∩Hc comprises at most P0
2

+ 1 of them. Each
such piece can give rise to at most 2 unmatched pieces.

22Since IW1
j

= IW2
j

, the term on the right side of (5.8) proportional to Cs is absent in this case.
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||W 1
j | − |W 2

j || ≤ |W 1
j |dWs(W 1,W 2). Then applying (4.7) and recalling

ffl
W1

ψ1 = 1,∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣ ≤ A|||f |||−
ffl
W 2
j
ψ2ffl

W 2 ψ2
|W 2

j |qδ1−q

∣∣∣∣∣1− |W 2
j |

|W 1
j |

 
W 2

ψ2

∣∣∣∣∣
≤ A|||f |||−e

a(2δ)α

(
|W 2

j |qδ1−q

∣∣∣∣∣1− |W 2
j |

|W 1
j |

∣∣∣∣∣+
|W 2

j |q

|W 2|q

(
δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ |W 2
j |

|W 1
j |

)

≤ A|||f |||−2

(
|W 2

j |qδ1−qdWs(W 1,W 2) + 2
|W 2

j |q

|W 2|q

(
δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣
)
.

(8.5)

Next, recalling |W 2| ≥ δ1− γ
q [c/2]

1
q dWs(W 1,W 2)

γ
q and using (5.10) yields,(

δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ ≤ 6Cs[2/c]
1
q

(1−q)
δ
γ
q
−γ
dWs(W 1,W 2)

1+γ− γ
q

≤ 4
− 1
q

6cδ1−γ
dWs(W 1,W 2)γ ,

where we have again used (5.7) and dWs(W 1,W 2) ≤ δ. Using this estimate and the fact that
q ≤ 1/2 in (8.5) and summing over j yields,

∑
j

∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣ ≤ 2Aδ1−γ |||f |||−dWs(W 1,W 2)γ
∑
j

δ1−q|W 2
j |q +

3

4
c
|W 2

j |q

|W 2|q

≤ 2Aδ1−γ |||f |||−dWs(W 1,W 2)γP 1−q
0

(
2qδ + 3

4c
)
.

Finally, using this estimate in (8.4) concludes the proof of the lemma,∣∣∣∣
´
W 1 1Hcfψ1ffl

W 1 ψ1
−
´
W 2 1Hcfψ2ffl

W 2 ψ2

∣∣∣∣ ≤ dWs(W 1,W 2)γδ1−γA2P 1−q
0 |||1Hcf |||−

(
P q0 e

a(2δ)α +

+ 2
(
2qδ + 3

4c
)

+ 4(P0 + 2)P q−1
0 Cqt

)
,

where we have again used (8.2).

Remark that, by Theorem 6.12, we know that there exists NF ∈ N, NF ≤ k∗n∗ + C?| ln δ|
where n∗, defined in Lemma 6.6, and k∗ from Theorem 6.12, are uniform in F(τ∗,K∗, E∗), while C?
depends only on c, A, L, such that LNFCc,A,L(δ) ⊂ Cχc,χA,χL(δ), for all {ιj}NFj=1 ⊂ I(T0, κ).

To state the next result we need to make explicit the coice of the cone parameters. Let c′, A′, L′

be given by Lemma 8.3. Choose (minimal) c′′ ≥ c′, A′′ ≥ A′ and L′′ ≥ L′ satisfying the conditions
in Section 5.3, and δ′′ ≤ δ satisfying (6.7) and (6.18) with respect to A′′ and L′′.

Define N ′F = k∗n∗ +C ′?| ln δ′′|, where C ′?, k∗ and n∗ are from Theorem 6.12 applied to the cone
Cc′′,A′′,L′′(δ′′). Since, as remarked in Proposition 5.1 and Theorem 6.12, χ is independent of the
cone parameters, we have LnCc′′,A′′,L′′(δ′′) ⊂ Cχc′′,χA′′,χL′′(δ′′) for all n ≥ N ′F .

Recall that κ > 0 from Lemma 6.6 depends only on the family F(τ∗,K∗, E∗).

Proposition 8.4. Let n? = N ′F . There exists J ∈ N, depending only on c, A, L, P0, Ct, such

that if assumptions (O1) and (O2) are satisfied and diams(H) ≤ δ′′
[

1
4P0A

]1/q
, then there exists

χ′ ∈ (0, 1) such that for all n ≥ Jn?, and all n?-admissible sequences (ιj)j≥1, [Ln1Hc ]Cc,A,L(δ′′) ⊂
Cχ′c,χ′A,χ′L(δ′′).
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Proof. For n = mN ′F , we may apply both Lemma 8.3 and Theorem 6.12 to obtain,

[Ln1Hc ]Cc,A,L(δ′′) ⊂ LmN ′FCc′′,A′′,L′′(δ
′′) ≤ Cχmc′′,χmA′′,χmL′′(δ′′) ,

for as long as χmc′′ > c, χmA′′ > A or χmL′′ > L. Letting m1 denote the greatest m such that
χmc′′ > c or χmA′′ > A or χmL′′ > L, and setting J = m1+1 produces the required contraction.

Remark 8.5. Taking κ = 0 we can also consider the case of a single map, Tιj = T0 for each j.
Then once we know the transfer operator for the open system acts as a strict contraction on the
cone, it is straightforward to recover the usual full set of results for open systems with exponential
escape, including a unique escape rate and limiting conditional invariant measure for all elements
of the cone. See Theorem 8.16 for an example.

8.2 Large holes

The preceding pertains to relatively small holes. For many applications, large holes must be con-
sidered. To do so requires either a much closer look at the combinatorics of the trajectories or
requiring the holes to open at even longer time intervals than what was needed before. We will
pursue the second, much easier, option with the intent to show that large holes are not out of reach.
To work with large holes it is convenient to strengthen hypothesis (O1):

(O1′) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ0 can be cut
into at most P0 pieces by ∂H.

The main difference between small and large holes is that, according to Lemma 8.3, for holes
with sufficiently small stable diameter, multiplication by 1Hc maps Cc,A,L(δ) into a cone with
larger parameters; by contrast, for large holes, multiplying by the indicator function may produce
functions that do not belong to any cone and we must use mixing to recover this property, as
detailed in Lemma 8.8. To avoid trivialities, we only consider holes with µSRB(H) < 1.

When iterating T−1
n W for W ∈ Ws, we will need to distinguish between elements of Gn(W )

which intersect H and those that do not. Recall that Gn(W ) subdivides long homogeneous con-
nected components of T−1

n W into curves of length between δ0 and δ0/3. We let GHn (W ) denote the
connected components of Wi ∩Hc, for Wi ∈ Gn(W ), where Hc = M \H. Following the notation
of Section 5.2, let LoHn (W ; δ) denote those elements of GHn (W ) having length at least δ and let
ShHn (W ; δ) denote those elements having length at most δ.

Without the small hole condition, hypotheses (O1′) and (O2) are insufficient to prove Lemma 8.3;
however, one can recover the results of Proposition 8.4 and its consequences provided one is willing
to wait for a longer time. To prove the following result, we recall again Definition 2.4 of admissi-
ble sequence. We call a sequence (ιj)j≥1, ιj ∈ I(τ∗,K∗, E∗), N -admissible if there exist sequences
(Tk)k≥1 ⊂ F(τ∗,K∗, E∗) and (Nk)k≥1 with Nk ≥ N , such that Tιj ∈ F(Tk, κ) for all k ≥ 1 and

j ∈ [1 +
∑k−1

i=1 Ni,
∑k

i=1Ni].

Lemma 8.6. If (O1′) and (O2) are satisfied, then for each δ > 0 small enough (depending on
µSRB(H)) there exists nδ ∈ N, nδ ≤ C ln δ−1 for some constant C > 0, such that for all nδ-
admissible sequences (ιj)j, all W ∈ Ws(δ) and n ≥ nδ,∑

W ′∈LoHn (W ; δ)

|W |−1

ˆ
W ′
JW ′Tn ≥

1

2
(1− µSRB(H)) .
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Proof. Arguing exactly as in Lemma 8.3 it follows that if (O1′) and (O2) are satisfied, then there
exists c′ ≥ c, A′ ≥ A,L′ ≥ L such that 1Hc + 1 ∈ Cc′,A′,L′(δ) and we may choose c′, A′, L′ and δ > 0
such that the conditions of Theorem 6.12 are satisfied. Setting nδ := N ′F from Theorem 6.12 for
these cone parameters, we apply equation (7.10) of Theorem 7.4 to this larger cone,∣∣∣∣ 

W
Ln(1Hc)− (1− µSRB(H))

∣∣∣∣ =

∣∣∣∣ 
W
Ln(1Hc + 1)− 2 + µSRB(H)

∣∣∣∣ ≤ CHϑn .
On the other hand, recalling Lemma 3.3,∣∣∣∣∣∣

 
W
Ln(1Hc)−

∑
W ′∈LoHn (W ; δ)

|W |−1

ˆ
W ′
JW ′Tn

∣∣∣∣∣∣ ≤
∑

W ′∈ShHn (W ; δ)

|W |−1

ˆ
W ′
JW ′Tn

≤ P0(C̄0δ
−1
0 δ + C0θ

n
1 ),

which implies the lemma.

We are now able to state the analogue of Proposition 8.4 without the small hole condition.
Note, however, that now n? has a worse dependence on δ that we refrain from making explicit. We
recall from Remark 8.2 that we have fixed the parameters c, A, L of the cone, but we may choose
δ smaller as needed.

Proposition 8.7. Under assumptions (O1′) and (O2), for each δ > 0 small enough there exist
χ′ ∈ (0, 1) and J, n? ∈ N depending on (O1′), (O2), µSRB(H) and δ, such that, for all n?-admissible
sequences (ιj)j and for all n ≥ Jn?, [Ln1Hc ]Cc,A,L(δ) ⊂ Cχ′c,χ′A,χ′L(δ).

Before proving Proposition 8.7, we state an auxiliary lemma, similar to Lemma 8.3.

Lemma 8.8. If H satisfies (O1′) and (O2), there exists23 n̄δ ≥ nδ such that for n ≥ n̄δ and all
nδ-admissible sequences (ιj)j, we have [Ln1Hc ]Cc,A,L(δ) ⊂ Cc′,A′,L′(δ), where

c′ = cP0, A′ = A
6

1− µSRB(H)
, and L′ = L

9

1− µSRB(H)
.

Proof of Proposition 8.7. As in Section 8.1, we may choose minimal c′′ ≥ c′, A′′ ≥ A′ and L′′ ≥ L′
and δ > 0 sufficiently small to satisfy the hypotheses of Theorem 6.12. Then letting n? =
max{N ′F , n̄δ}, with24 N ′F = C ′?| ln δ| + k∗n∗ as before, we may apply both Lemma 8.8 and Theo-
rem 6.12 to obtain,

[Ln1Hc ]Cc,A,L(δ) ⊂ Lmn?Cc′′,A′′,L′′(δ) ≤ Cχmc′′,χmA′′,χmL′′(δ) ,

for as long as χmc′′ > c or χmA′′ > A or χmL′′ > L. Letting m1 denote the greatest m such that
χmc′′ > c, χmA′′ > A or χmL′′ > L, and setting J = m1 + 1 produces the required contraction.

Proof of Lemma 8.8. Let n ≥ nδ (from Lemma 8.6) and f ∈ Cc,A,L(δ). For each W ∈ Ws(δ) and
ψ ∈ Da,β(W ), we have

ˆ
W
ψLn(1Hcf) =

∑
Wi∈LoHn (W ;δ)

ˆ
Wi

T̂n,iψ f +
∑

Wi∈ShHn (W ;δ)

ˆ
Wi

T̂n,iψ f, (8.6)

23Since we have fixed the cone constants c, A, L, the number n̄δ depends on the constants appearing in (O1′) and
(O2) as well as µSRB(H) and the choice of δ, from Lemma 8.6.

24N ′F is number from Theorem 6.12 applied to the cone with larger constants c′′, A′′, L′′.
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where we are using the notation of Section 5.1 for the test functions. Since any element of Gn(W )
may produce up to P0 elements of ShHn (W ; δ) according to assumption (O1′), we estimate

ˆ
W
ψLn(1Hcf) ≤

∑
Wi∈LoHn (W ;δ)

|||f |||+
ˆ
TnWi

ψ +AP0|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ |||f |||+
ˆ
W
ψ
(

1 +AP0e
a(2δ)β (C̄0δδ

−1
0 + C0θ

n
1 )
)
,

where we have used |W | ≥ δ and cone condition (4.7), as well as Lemma 3.3(b) to sum over elements
of ShHn (W ; δ).

Analogously, using Lemma 8.6,
ˆ
W
ψLn(1Hcf) ≥

∑
Wi∈LoHn (W ;δ)

|||f |||−
ˆ
TnWi

ψ −AP0|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ |||f |||−
ˆ
W
ψ

(
e−a(2δ)β

2
(1− µSRB(H))−AP0e

a(2δ)β (C̄0δδ
−1
0 + C0θ

n
1 )

)
.

Let n2 be such that 2AP0C0θ
n2
1 ≤ 1

24(1− µSRB(H)), then for n ≥ n2 and δ small enough we have

|||Ln(1Hcf)|||− ≥ |||f |||−
1

6
(1− µSRB(H)). (8.7)

Accordingly, for n ≥ max{n2, nδ} =: n̄δ and δ small enough, we obtain

|||Ln(1Hcf)|||+
|||Ln(1Hcf)|||−

≤
3
2 |||f |||+

|||f |||−(1
6(1− µSRB(H))

≤ 9L

1− µSRB(H)
=: L′ . (8.8)

The contraction of A follows step-by-step from our estimates in Section 5.2.2. Taking W ∈
Ws
−(δ) and grouping terms as in (8.6) we treat both long and short pieces precisely as in Section 5.2.2

with the additional observation that each element of Gn(W ) produces at most P0 elements of
ShHn (W ; δ) by assumption (O1′). Thus (5.4) becomes,

|
´
W ψLn(1Hcf)|ffl

W ψ
≤ Aδ1−q|W |q|||f |||−

(
2LA−1 + P0e

a(2δ)β (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q

)
≤ Aδ1−q|W |q|||Ln(1Hcf)|||−

6

1− µSRB(H)
=: A′δ1−q|W |q|||Ln(1Hcf)|||− ,

(8.9)

where we have applied (8.7) and assumed n ≥ max{n2, nδ}.
Finally, we show how the parameter c contracts from cone condition (4.8). Following Sec-

tion 5.2.3, we take W 1,W 2 ∈ Ws
−(δ) with dWs(W 1,W 2) ≤ δ, and ψk ∈ Da,α(W k) with d∗(ψ1, ψ2) =

0. As before, we assume without loss of generality that |W 2| ≥ |W 1| and
ffl
W 1 ψ1 = 1.

We begin by recording that, by (8.9),
´
Wk ψk Ln(1Hcf)ffl

Wk ψk
≤ A′|W k|qδ1−q|||Ln(1Hcf)|||− ≤

1

2
dWs(W 1,W 2)γδ1−γcA′|||1Hcf |||−,

for k = 1, 2, provided |W 2|q ≤ δq−γ c2dWs(W 1,W 2)γ . Accordingly, it suffices to consider the case
|W 2|q ≥ δγ−q c2dWs(W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ
q−γ c

2dWs(W 1,W 2)γ , recalling that dWs(W 1,W 2) ≤ δ and
(5.7).
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Next, following (5.11), we decompose elements of GHn (W k) into matched and unmatched pieces,
as in (5.12). We estimate the unmatched pieces precisely as in (5.15), noting that by (O1′) and the
transversality condition (O2), each previously unmatched element of Gn(W k) may be subdivided
into at most P0 additional unmatched pieces V k

j , while each matched element may produce up to
P0 additional unmatched pieces each having length at most,

|V k
j | ≤ CtC5Λ−ndWs(W 1,W 2) ,

by Lemma 5.5(a). Thus,

∑
j,k

∣∣∣∣∣
ˆ
V kj

f T̂n,V kj
ψk

∣∣∣∣∣ ≤ 9P0

1− µSRB(H)
C4ALδ

1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||− , (8.10)

where we have used (8.7) in (5.14) to estimate

|||Lnf |||− ≤ |||Lnf |||+ ≤
3
2 |||f |||+ ≤

3
2L|||f |||− ≤

9L
1−µSRB(H) |||Ln(1Hcf)|||− . (8.11)

The estimate on matched pieces proceeds precisely as in (5.20), and with an additional factor
of P0 in (5.21), we arrive at (5.25), again applying (8.7),

∑
j

∣∣∣∣∣
ˆ
U1
j

f T̂n,U1
j
ψ1 −

ˆ
U2
j

f T̂n,U2
j
ψ2

∣∣∣∣∣
≤ 6P0

1−µSRB(H)24C̄0CsAδ
1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||−

(
2q40C5δ

q−γ + cC5Λ−nγ + 2qC5Λ−nδ
)
.

Combining this estimate together with (8.10) in (5.11) (with A′ in place of A in (5.11)), and recalling
(5.12), yields by (5.26),∣∣∣∣

´
W 1 Lnf ψ1ffl
W 1 ψ1

−
´
W 2 Lnf ψ2ffl
W 2 ψ2

∣∣∣∣ ≤ 6P0

1− µ(H)
cAδ1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||− ,

where we have applied (5.27) to simplify the expression. Setting c′ = P0c and recalling the definition
of A′ from (8.9) completes the proof of the lemma.

8.3 Loss of memory for sequential open billiards

We conclude the section by illustrating several physically relevant models to which our results apply.
Admittedly, we cannot treat the most general cases, yet we believe the following shows convincingly
that the techniques developed here can be the basis of a general theory.

Dispersing billiards with small holes have been studied in [DWY, D1, D2], and results obtained
regarding the existence and uniqueness of limiting distributions in the form of SRB-like conditionally
invariant measures, and singular invariant measures supported on the survivor set. In the present
context, we are interested in generalizing these results to the non-stationary setting. Analogous
results for sequences of expanding maps with holes have been proved in [MO, GO].

For concreteness, we give two example of physical holes that satisfy our hypotheses, following
[DWY, D2].

Holes of Type I. Let G ⊂ ∂Q be an arc in the boundary of one of the scatterers. Trajectories of the
billiard flow are absorbed when they collide with G. This induces a hole H in the phase space M
of the billiard map of the form (a, b)× [−π/2, π/2]. Note that ∂H consists of two vertical lines, so
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that H satisfies assumption (O2) since the vertical direction is uniformly transverse to the stable
cone, as well as assumptions (O1) and (O1′) with P0 = 3.

Holes of Type II. Let G ⊂ Q be an open convex set bounded away from ∂Q and having a C3

boundary. Such a hole induces a hole H in M via its ‘forward shadow.’
We define H to be the set of (r, ϕ) ∈ M whose backward trajectory under the billiard flow

enters G before it collides with ∂Q. Thus points in M which are about to enter G before their next
collision under the forward billiard flow are considered still in the open system, while those points
in M which would have passed through G on the way to their current collision are considered to
have been absorbed by the hole.

With this definition, the geometry of H is simple to state: if we view G as an additional
scatterer in Q, then H is simply the image of G under the billiard map. Thus H will have connected
components on each scatterer that has a line of sight to G, and ∂H will comprise curves of the form
S0 ∪ T (S0), which are positively sloped curves, all uniformly transverse to the stable cone. Thus
holes of Type II satisfy (O2) as well as (O1) and (O1′) with P0 = 3. (See the discussion in [D2,
Section 2.2].)

Still other holes are presented in [D2] such as side pockets, or holes that depend on both position
and angle, which satisfy (O1), (O1′) and (O2), but for the sake of brevity, we do not repeat those
definitions here.

As noted, both holes of Type I and Type II satisfy (O1) and (O1′) with P0 = 3. Moreover, holes
of Type I satisfy (O2) with Ct depending only on the maximum slope of curves in the stable cone,
which is uniform in the family F(τ∗,K∗, E∗) according to (H1): this (negative) slope is bounded
below by −Kmax − 1

τmin
, so choosing Ct ≥ K∗ + τ−1

∗ suffices. Since ∂H for holes of Type II have
positive slope, the same choice of Ct will suffice for such holes to satisfy (O2).

Fix F(τ∗,K∗, E∗) and define H(P0, Ct) to be the collection of holes H ⊂M with µSRB(H) ≤ 1/2
and satisfying (O1) or (O1′) and (O2) with the given constants P0 and Ct. We define a non-
stationary open billiard by fixing a sequence of holes Hk ∈ H(P0, Ct), k ∈ Z+, satisfying either (O1)
and (O2) or (O1′) and (O2). In the first case, let n? be from Proposition 8.4, while in the second,
let n? be from Proposition 8.7.25 Next, choose an n?-admissible sequence (ιj)j , ιj ∈ I(τ∗,K∗, E∗).

Recall (5.13): For u, v ∈ N, v > u, let Tv,u = Tιv ◦ · · · ◦ Tιu+1 . For each k ≥ 1, the open system

relative to Hk is defined by T̊k : (Tkn?,(k−1)n?)
−1(M \Hk)→M \Hk, where

T̊k(x) = Tιkn? ◦ · · · ◦ Tι(k−1)n?
(x) for x ∈ (Tkn?,(k−1)n?)

−1(M \Hk) .

To concatenate these open maps into a sequential system, define

T̊j,i(x) = T̊j ◦ · · · ◦ T̊i(x) for x ∈ ∩jl=1T̊
−1
i ◦ · · · ◦ T̊−1

l (M \Hl) ,

thus we allow escaping once every n? iterates along the admissible sequence. The transfer operator
for the sequential open system is defined by

L̊j,if = LTι(j+1)n?
◦···Tιjn?

1Hc
j
· · · LTι(i+1)n?

◦···Tιin?
1Hc

i
f . (8.12)

We will be interested in the evolution of probability densities under the sequential system, given by
L̊n,kf´

M L̊n,kf dµSRB
. Note that if f ∈ Cc,A,L(δ) then

´
M L̊n,kf dµSRB > 0 for each n (thus the normalization

is well defined). When f ≥ 0, this normalization coincides with the L1(µSRB) norm; however, we
use the integral rather than the L1 norm as the normalization since the integral is order preserving
with respect to our cone, while the L1 norm is not. We conclude the section with a result regarding
exponential loss of memory for the sequence of open billiards.

25Requiring µSRB(H) ≤ 1/2 enables a uniform choice of n? for all H ∈ H(P0, Ct).
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Theorem 8.9. Fix τ∗,K∗ > 0 and E∗ < ∞, and let a, c, A, L, δ and δ0 satisfy the conditions of
Theorem 6.12 and Lemma 7.1. Let P0, Ct > 0. There exist C > 0 and ϑ < 1 such that for all
sequences (Hi)i ⊂ H(P0, Ct) satisfying either (O1) and (O2) or (O1′) and (O2), all n?-admissible
sequences (ιj)j ⊂ I(τ∗,K∗, E∗), for all ψ ∈ C1(M), all f, g ∈ Cc,A,L(δ), all n ≥ 1 and all 1 ≤ k ≤ n,∣∣∣∣∣

ˆ
M

L̊n,kf
µSRB(L̊n,kf)

ψ dµSRB −
ˆ
M

L̊n,kg
µSRB(L̊n,kg)

ψ dµSRB

∣∣∣∣∣ ≤ CLϑn−k|ψ|C1(M) .

Proof. Remark that the constants appearing in Propositions 8.4 and 8.7 are uniform, depending
only on F(τ∗,K∗, E∗), P0 and Ct. Hence, if f, g ∈ Cc,A,L(δ), then for each k ≤ n ∈ N, L̊n,kf ,

L̊n,kg ∈ Cc,A,L(δ). Since
´
M

L̊n,kf
µSRB(L̊n,kf)

dµSRB =
´
M

L̊n,kg
µSRB(L̊n,kg)

dµSRB = 1, the theorem follows

arguing exactly as in the proof of Theorem 7.3(b), using again the order preserving semi-norm
‖ · ‖ψ, as well as the fact that by Remark 7.2,

‖L̊n,kf‖ψ
µSRB(L̊n,kf)

≤ C̄|ψ|C1

|||L̊n,kf |||+
|||L̊n,kf |||−

≤ C̄L|ψ|C1 .

When invoking (7.6), it holds that ρC(L̊n,kf/µSRB(L̊n,kf), L̊n,kg/µSRB(L̊n,kg)) = ρC(L̊n,kf, L̊n,kg)
due to the projective nature of the metric.

Note that, by changing variables,
´
M L̊n,kf ψ dµSRB =

´
M̊n,k

f ψ ◦ T̊n,k dµSRB, where M̊n,k =

∩ni=kT̊
−1
k ◦ · · · ◦ T̊−1

i (M \Hi). Thus the conclusion of the theorem is equivalent to the expression,∣∣∣∣∣∣
´
M̊n,k

f ψ ◦ T̊n,k dµSRB´
M̊n,k

f dµSRB

−

´
M̊n,k

g ψ ◦ T̊n,k dµSRB´
M̊n,k

g dµSRB

∣∣∣∣∣∣ ≤ CLϑn−k|ψ|C1(M) .

Next we show that sequential systems with holes allow us to begin investigating some physical
problems that have attracted much attention: chaotic scattering and random Lorentz gasses.

8.4 Chaotic scattering (boxed)

Consider a collection of strictly convex pairwise disjoint obstacles {Bi} in R2 for which the non-
eclipsing condition may fail.26 Assume that there exists a closed rectangular box R = [a, b]× [c, d]
such that if an obstacle does not intersect its boundary, then it is contained in the box. In addition, if
an obstacle intersects the boundary of R, then it is symmetrical with respect to a reflection across
all the linear pieces of the boundary which the obstacle intersects (see Figure 4 for a picture).
Finally, we will assume a finite horizon condition on the cover Q̃ defined after Remark 8.12.

Remark 8.10. The restriction regarding symmetrical reflections on the configuration of obstacles
is necessary only because we did not develop the theory in the case of billiards in a polygonal box
(see Remark 8.12 and the following text to see why this is relevant). Such an extension is not
particularly difficult and should eventually be done. Other extensions that should be within reach
of our technology are more general types of holes and billiards with corner points. Here, however,
we are interested in presenting the basic ideas; addressing all possible situations would make our
message harder to understand.

26Remember that the non-eclipsing condition is the requirement that the convex hull of any two obstacles does not
intersect any other obstacle.
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Incoming particle beam

Figure 4: Obstacle configuration for which the non-eclipse condition fails and the box R (dashed
line).

Lemma 8.11. If a particle exits R at time t0 ∈ R, then, in the time interval (t0,∞), it will
experience only a finite number of collisions and it will never enter R again.

Proof. Recall that R = [a, b] × [c, d]. Of course, the lemma is trivially true if, after exiting R,
the particle has no collisions. Let us imagine that the particle, after exiting from the vertical side
(b, c) − (b, d), collides instead with the obstacle Bi at the point p = (p1, p2). Note that Bi must
then intersect the same boundary, otherwise it would be situated to the left of the line x = b and
the particle could not collide since necessarily p1 > b. Our hypothesis that Bi be symmetric with
respect to reflection across x = b implies that also (2b − p1, p2) ∈ ∂Bi. Thus, by the convexity
of Bi, the horizontal segment joining p and (2b − p1, p2) is contained in Bi. This implies that,
calling η = (η1, η2) the normal to ∂Bi in p, it must be η1 ≥ 0. In addition, if v = (v1, v2) denotes
the particle’s velocity just before collision, it must be that v1 > 0 since the particle has crossed a
vertical line to exit R. Finally, 〈v, η〉 ≤ 0, otherwise the particle would not collide with Bi. But
since the velocity after collision is given by v+ = v − 〈v, η〉η, it follows v+

1 = v1 − 〈v, η〉η1 ≥ v1.
That is, the particle cannot come back to the box R. Since all the obstacles are contained in a
larger box R1 and since there is a minimal distance between obstacles, the above also implies that
the particle can have only finitely many collisions in the future. The other cases can be treated
exactly in the same manner.

Remark 8.12. We want to consider a scattering problem: the particles enter the box coming
from far away and with random position and/or velocity, interact and, eventually, leave the box.
The basic question is how long they stay in the box or, better, what is the probability that they
stay in the box longer than some time t. This is nothing other than an open billiard with holes.
Unfortunately, the holes are large and our current theory allows us to deal with large holes only if
enough hyperbolicity is present. To extend the result to systems with small hyperbolicity is a very
important (and hard) problem as one needs to understand the combinatorics of the trajectories for
long times.

An alternative is to study the scattering problem under the non-eclipsing condition. Such an
assumption avoids the technicalities associated with billiards and results in Axiom A dynamics with
a natural finite Markov partition for the collision map on the survivor set. This problem has been
studied and strong results proving exponential escape as well as exponential mixing on the survivor
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set have been obtained in both discrete [Mo91, LoM, Mo07] as well as continuous [St] time. There
are also recent results on the rigidity problem for such open billiards [BDKL, DKL2]. Yet the
condition is artificial once there are more than 2 scatterers, hence the importance of developing an
alternative approach.

Given the above remark we modify the system in order to have the needed hyperbolicity. This is
not completely satisfactory, yet it shows that our machinery can deal with large holes and illustrates
exactly what further work is necessary to address the general case.

Fixing N sufficiently large, we suppose that when a particle enters the box, the boundaries of
the box become reflecting and are transparent again only between the collisions kN and kN + 1,
k ∈ N, counting only collisions with the convex obstacles.

More precisely, consider the billiard in R with elastic reflection at ∂R. We call such a billiard
table Q. Let M =

(
∪i ∂Bi ∩ R

)
× [−π

2 ,
π
2 ] be the Poincaré section,27 and consider the Poincaré

map T : M → M describing the dynamics from one collision with a convex body to the next.
Unfortunately, this is not a type of billiard that fits our assumptions since the table has corner
points. Yet, when the particle collides with ∂R we can reflect the box and imagine that the
particle continues in a straight line. Note that, by our hypothesis, the image of the obstacles that
intersect the boundary are the obstacles themselves; this is the reason why we restrict the obstacle
configuration. We can then reflect the box three times, say across its right and top sides and then
once more to make a full rectangle with twice the width and height of R, and identify the opposite
sides of this larger rectangle. In this way we obtain a torus T2 containing pairwise disjoint convex
obstacles. Such a torus is covered by four copies of R, let us call them {Ri}4i=1. We call such a

billiard Q̃, and we consider the Poincaré map T̃ which maps from one collision with a convex body
to the next, and denote its phase space by M̃ = ∪4

i=1M̃i.

Our final assumption on the obstacle configuration is that Q̃ is a Sinai billiard with finite horizon.
Hence T̃ : M̃ 	 falls within the scope of our theory. By construction there is a map π : M̃ → M
which sends the motion on the torus to the motion in the box. Indeed, if x̃ ∈ M̃ and x = π(x̃),
then Tn(x) = π(T̃n(x̃)), for all n ∈ N.

We then consider the maps S̃ = T̃N and S = TN , again π(S̃(x̃)) = S(π(x̃)). Define also the

projections π̃1 : M̃ → Q̃ and π1 : M → Q, which map a point in the Poincaré section to its position
on the billiard table. For x̃ ∈ M̃ , let us call Õ(x̃) the straight trajectory in T2 between π̃1(x̃)
and π̃1(T̃ (x̃)), and setting x = π(x̃), O(x) the trajectory between π1(x) and π1(T ((x)). Note that
the latter trajectory can consist of several straight segments joined at the boundary of R, where
a reflection takes place. By construction, if Õ(x̃) intersects m of the sets ∂Ri, then the trajectory

O(x) experiences m reflections with ∂R. Accordingly, we introduce, in our billiard system (M̃, S̃),

the following holes : H̃ = T̃{x̃ ∈ M̃ : Õ(x̃) ∩ (∪i∂Ri) 6= ∅} and set H = π(H̃).
The above makes precise the previous informal statement: the system (M,S) with hole H,

describes the dynamics of the billiard (M,T ) in which the particle can exit R only at the times kN ,
k ∈ Z. The transfer operator associated with the open system (M,S;H) is 1HcLS1Hc , yet since
(1HcLS1Hc)n = 1Hc(LS1Hc)n, it is equivalent to study the asymptotic properties of L̊S := LS1Hc .

For a function f : M → C, we define its lift f̃ : M̃ → C by f̃ = f ◦ π. The pointwise identity
then follows,

L̊S̃ f̃ := LS̃(1
H̃c f̃) = LS̃((1Hcf) ◦ π) = (L̊Sf) ◦ π . (8.13)

While H̃ is not exactly a hole of Type II, its boundary nevertheless comprises increasing curves
since it is a forward image under the flow of a wave front with zero curvature (a segment of ∂Ri).

27Recall that ϕ ∈ [−π
2
, π

2
] is the angle made by the post-collision velocity vector and the outward pointing normal

to the boundary.
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Hence condition (O1′) of Section 8.2 holds with P0 = 3 and condition (O2) holds with Ct depending

only on the uniform angle between the stable cone and the vertical and horizontal directions in M̃ .
Thus Proposition 8.7 applies to L̊S̃ with n? depending on Ct and P0 = 3. In fact, our next result

shows that also L̊S contracts Cc,A,L(δ) on M .

Proposition 8.13. Let n? ∈ N be from Proposition 8.7 corresponding to P0 = 3 and Ct > 0.
Then for each small enough δ > 0, there exist c, A, L > 0, χ ∈ (0, 1) such that choosing N ≥ n?,
L̊S(Cc,A,L(δ)) ⊂ Cχc,χA,χL(δ), where S = TN .

Proof. As already noted above, Proposition 8.7 implies the existence of δ, c, A, L and χ such that
L̊S̃(C̃c,A,L(δ)) ⊂ C̃χc,χA,χL(δ) if we choose N ≥ n?. Note that the constant Ct is the same on M̃ and

M . In fact the same choice of parameters for the cone works for L̊S .
For any stable curve W , π−1W = ∪4

i=1W̃i where each W̃i is a stable curve satisfying π(W̃i) = W .

Since π is invertible on each M̃i, we may define the restriction πi = π|
M̃i

such that π−1
i (W ) = W̃i.

Conversely, the projection of any stable curve W̃ in M̃ is also a stable curve in M .
Since each πi is an isometry, and recalling (8.13), for any stable curve W ⊂ M , each f ∈

Cc,A,L(δ), and all n ≥ 0,

ˆ
W̃i

ψ ◦ π L̊n
S̃
f̃ dm

W̃
=

ˆ
W
ψ L̊nSf dmW , ∀ ψ ∈ C0(W̃ ),

where f̃ = f ◦ π. Moreover, if ψ ∈ Da,β(W ), then ψ ◦ π ∈ Da,β(W̃i), for each i = 1, . . . , 4. This

implies in particular that |||L̊nSf |||± = |||L̊n
S̃
f̃ |||± for all n ≥ 0, and that f ∈ Cc,A,L(δ) if and only if

f̃ = f ◦ π ∈ C̃c,A,L(δ). Consequently, L̊Sf ∈ Cχc,χA,χL(δ) if and only if L̊S̃ f̃ ∈ C̃χc,χA,χL(δ), which
proves the proposition.

In contrast to the sequential systems studied in Section 8.3, the open billiard in this section
corresponds to a fixed billiard map T (and its lift T̃ ). Thus we can expect the (normalized) iterates
of L̊S to converge to a type of equilibrium for the open system. Such an equilibrium is termed
a limiting or physical conditionally invariant measure in the literature, and often corresponds to
a maximal eigenvalue for L̊S on a suitable function space. Unfortunately, conditionally invariant
measures for open ergodic invertible systems are necessarily singular with respect to the invariant
measure and so will not be contained in our cone Cc,A,L(δ), which is a set of functions. However,
we will show that for our open billiard, the limiting conditional invariant measure is contained in
the completion of Cc,A,L(δ) with respect to the following norm.

Definition 8.14. Let V = span
(
Cc,A,L(δ)

)
. For all f ∈ V we define

‖f‖? = inf{λ ≥ 0 : −λ � f � λ} .

Lemma 8.15. The function ‖ · ‖? has the following properties:

a) The function ‖ · ‖? is an order-preserving norm, that is: −g � f � g implies ‖f‖? ≤ ‖g‖?.

b) There exists C > 0 such that for all f ∈ Cc,A,L(δ) and ψ ∈ C1(M),∣∣∣∣ˆ
M
f ψ dµSRB

∣∣∣∣ ≤ C|||f |||+|ψ|C1(M) ≤ C‖f‖?|ψ|C1(M) .
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Proof. In this proof, for brevity we write C in place of Cc,A,L(δ).

a) First, we show that ‖f‖? < ∞ for any f ∈ V, i.e. for any f ∈ V we can find λ > 0 such that
λ+f, λ−f ∈ C. By the proof of Proposition 6.13, we claim28 that for any f ∈ C, we can find µ > 0
such that µ− f belongs to C. This follows since the second part of the proof with χ = 1 yields that
µ − f satisfies (4.6) if µ ≥ L

L−1 |||f |||+, it satisfies (4.7) if µ ≥ 2A
A−21−q |||f |||+, and it satisfies (4.8) if

µ ≥ 2cA
cA−δ−Cs |||f |||+. Taking µ large enough to satisfy these 3 conditions proves the claim.

Next, consider f = αg+βh with g, h ∈ C and α, β ∈ R. If α, β > 0, then since C is closed under
addition, the above claim yields µ > 0 such that µ − f and µ + f are in C and thus ‖f‖? ≤ µ.
It remains to consider the case α < 0, β > 0 since the remaining cases are similar. Let µg > 0
satisfy µg − g belongs to C. Set A = µg|α|. Then A+ f = |α|(µg − g) + βh is the sum of elements
in C and thus is in C. Similarly, let µh > 0 satisfy µh − h belongs to C and set B = µhβ. Then
B − f = |α|g + β(µh − h) is again in C. Thus ‖f‖? ≤ max{A,B}.

Next, if ‖f‖? = 0, then there exists a sequence λn → 0 such that −λn � f � λn, and so
λn + f, λn − f ∈ C for each n. Since C is closed (see footnote 5), this yields f,−f ∈ C ∪ {0} and so
f = 0 since C ∩ −C = ∅ by construction.

Since f � g is equivalent to νf � νg for ν ∈ R+, it follows immediately that ‖νf‖? = ν‖f‖?.
To prove the triangle inequality, let f, g ∈ V. For each ε > 0, there exists a, b, a ≤ ε + ‖f‖?,

b ≤ ε+ ‖g‖? such that −a � f � a and −b � g � b. Then

−(‖f‖? + ‖g‖? + 2ε) � −(a+ b) � f + g � a+ b ≤ ‖f‖? + ‖g‖? + 2ε ,

implies the triangle inequality by the arbitrariness of ε. We have thus proven that ‖ · ‖? is a norm.
Next, suppose that −g � f � g and let b be as above. Then

−‖g‖? − ε � −b � −g � f � g � b � ‖g‖? + ε

which implies ‖f‖? ≤ ‖g‖?, again by the arbitrariness of ε. Hence, the norm is order preserving.

b) The first inequality is contained in Remark 7.2. For the second inequality, we will prove that

|||f |||+ ≤ ‖f‖? for all f ∈ C. (8.14)

To see this, note that if −λ � f � λ, then |||λ − f |||− ≥ 0 by Remark 4.8. Thus for any W̃ ∈ W̃s

and ψ ∈ Da,β(W̃ ),

0 ≤
´
W (λ− f)ψ´

W ψ
=⇒

´
W f ψ´
W ψ

≤ λ ,

and taking suprema over W and ψ yields |||f |||+ ≤ λ, which implies (8.14).

Define V? to be the completion of V in the ‖ · ‖? norm. V? is a Banach space. Let C? be the
closure of Cc,A,L(δ) in V.

We remark that by Lemma 8.15(b), C? embeds naturally into (C1(M))′, where (C1(M))′ is the
closure of C0(M) with respect to the norm ‖f‖−1 = sup|ψ|C1≤1

´
M fψ dµSRB. We shall show that

the conditionally invariant measure for the open system (M,T ;H) belongs to C?.

Theorem 8.16. Let (M,S;H) be as defined above, where S = TN . If N ≥ n?, where n? is from
Proposition 8.7, then:

28This claim implies that the cone is Archimedean.
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a) h := lim
n→∞

L̊nS1

µSRB(L̊nS1)
is an element of C?. Moreover, h is a nonnegative probability measure

satisfying L̊Sh = νh for some ν ∈ (0, 1) such that

log ν = lim
n→∞

1

n
logµSRB(∩ni=0S

−i(M \H)) ,

i.e. − log ν is the escape rate of the open system.

b) There exists C > 0 and ϑ ∈ (0, 1) such that for all f ∈ Cc,A,L(δ) and n ≥ 0,∥∥∥∥∥ L̊nSf
µSRB(L̊nSf)

− h

∥∥∥∥∥
?

≤ Cϑn .

In addition, there exists a linear functional ` : Cc,A,L(δ) → R such that for all f ∈ Cc,A,L(δ),
`(f) > 0 and

‖ν−nL̊nSf − `(f)h‖? ≤ Cϑn`(f)‖h‖?.

The constant C depends on Cc,A,L(δ), but not on f .

Remark 8.17. (a) The conclusions of Theorem 8.16 apply equally well to the open system (M̃, S̃; H̃).

(b) By Lemma 8.15(b), the convergence in the ‖·‖? norm given by Theorem 8.16(b) implies conver-
gence when integrated against smooth functions ψ ∈ C1(M). As usual, by standard approximation
arguments, the same holds for Hölder functions.

(c) Also by Lemma 8.15(b), the above convergence in ‖ · ‖? implies leafwise convergence as well.
First note that for W ∈ Ws(δ), each f ∈ Cc,A,L(δ) induces a leafwise distribution on W defined
by fW (ψ) =

´
W f ψ dmW , for ψ ∈ Da,β(W ). This extends by density to f ∈ C?. Since h ∈ C?

by Theorem 8.16(a), let hW denote the leafwise measure induced by h on W ∈ Ws(δ). Then by
Lemma 8.15(b) and Theorem 8.16(b), there exists C > 0 such that for all n ≥ 0,∣∣∣∣∣

´
W L̊

n
Sf ψ dmW

µSRB(L̊nSf)
− hW (ψ)

∣∣∣∣∣ ≤ Cδ−1ϑn , ∀f ∈ Cc,A,L(δ), ∀ψ ∈ Cβ(W ) ,

and also, ∣∣∣∣ν−n ˆ
W
L̊nSf ψ dmW − `(f)hW (ψ)

∣∣∣∣ ≤ Cδ−1ϑn`(f) .

In particular, the escape rate with respect to fdmW on each W ∈ Ws(δ) equals the escape rate with
respect to µSRB.

Proof of Theorem 8.16. We argue as in the proof of Theorem 7.3. Recalling that ‖ · ‖? is an order-
preserving norm, we can apply [LSV, Lemma 2.2], taking the homogeneous function ρ to also be
‖ · ‖? and obtain that, as in (7.6), for all f, g ∈ Cc,A,L(δ),∥∥∥∥∥ L̊nSf‖L̊nSf‖?

−
L̊nSg
‖L̊nSg‖?

∥∥∥∥∥
?

≤ Cϑn , (8.15)

since

∥∥∥∥ L̊nSf
‖L̊nSf‖?

∥∥∥∥
∗

= 1 and similarly for g. This implies that

(
L̊nSf
‖L̊nSf‖?

)
n≥0

is a Cauchy sequence in

the ‖ ·‖? norm, and in addition, the limit is independent of f . Hence, defining h0 = limn→∞
L̊nS1

‖L̊nS1‖?
,
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we have h0 ∈ C? with ‖h0‖? = 1 such that29 for all ψ ∈ C1(M),

ˆ
M
L̊Sh0ψ = lim

n→∞

1

‖L̊nS1‖?

ˆ
M̃
L̊n+1
S 1ψ = lim

n→∞

‖L̊n+1
S 1‖?
‖L̊nS1‖?

ˆ
M
h0ψ = ‖L̊Sh0‖?

ˆ
M
h0ψ =: ν

ˆ
M
h0ψ ,

where all integrals are taken with respect to µSRB. Thus, L̊Sh0 = νh0. Moreover, the definition of
h0 implies that,

|h0(ψ)| ≤ |ψ|C0 lim
n→∞

µSRB(L̊nS1)

‖L̊nS1‖?
= |ψ|C0h0(1) , ∀ψ ∈ C1(M) , (8.16)

thus h0 is a measure. In addition, by the positivity of L̊S , h0 is a nonnegative measure and since
‖h0‖? = 1, it must be that h0(1) 6= 0. Thus we may renormalize and define

h :=
1

h0(1)
h0 .

Then 1Hch
h(Hc) represents the limiting conditionally invariant probability measure for the open system

(M,S;H). However, we will work with h rather than its restriction to Hc because h contains
information about entry into H, which we will exploit in Proposition 8.18 below.

Due to the equality in (8.16), h has the alternative characterization,

h = lim
n→∞

L̊nS1

µSRB(L̊nS1)
= lim

n→∞

L̊nS1

µSRB(M̊n)
,

as required for item (a) of the theorem, where M̊n = ∩ni=0S
−i(M \ H) and convergence is in the

‖ · ‖? norm.

Remark that (8.15) implies
L̊nSf
‖L̊nSf‖?

converges to h0 at the exponential rate ϑn. Integrating this

relation and using Lemma 8.15(b), we conclude that in addition the normalization ratio
µSRB(L̊nSf)

‖L̊nSf‖?
converges to h0(1) at the same exponential rate. Putting these two estimates together and using
the triangle inequality yields for all n ≥ 0,∥∥∥∥∥ L̊nSf

µSRB(L̊nSf)
− h

∥∥∥∥∥
?

≤ Cϑnh0(1)−1 , ∀ f ∈ Cc,A,L(δ) ,

proving the first inequality of item (b).
Next, for each, f ∈ Cc,A,L(δ) let

`(f) = lim sup
n→∞

ν−nµSRB(L̊nSf) . (8.17)

Note that ` is bounded, homogeneous of degree one and order preserving. By Lemma 8.15(b), `
can be extended to C?. Since `(h) = 1, ν−nL̊nSh = h and `(ν−nL̊nSf) = `(f) we can apply, again,
[LSV, Lemma 2.2] as in (7.6) to f and `(f)h and obtain

‖ν−nL̊nSf − h`(f)‖? = ν−n‖L̊nSf − `(f)L̊nSh‖? ≤ Cϑn`(f)‖h‖? , (8.18)

29Note that L̊S extends naturally to (C1(M))′ and therefore to C?.
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proving the second inequality of item (b) of the theorem. Note that (8.18) also implies (integrating
and applying Lemma 8.15(b) ) that the limsup in (8.17) is, in fact, a limit, and hence ` is linear.
Remark that ` is also nonnegative for f ∈ Cc,A,L(δ) by Remark 7.2.

By definition, if f ∈ Cc,A,L(δ) and λ > ‖f‖? then λ + f, λ − f ∈ Cc,A,L(δ), so that using the
linearity and nonnegativity of ` yields,

− λ`(1) ≤ `(f) ≤ λ`(1) , ∀ f ∈ Cc,A,L(δ), λ > ‖f‖? . (8.19)

Thus either `(f) = 0 for all f ∈ Cc,A,L(δ) or `(f) 6= 0 for all f ∈ Cc,AL(δ). But if the first alternative
holds, then by the continuity of ` with respect to the ‖ · ‖? norm (Lemma 8.15(b)), ` is identically
0 on C?, which is a contradiction since `(h) = 1. Thus `(f) > 0 for all f ∈ Cc,A,L(δ).

Finally, applying (8.18) to f ≡ 1 integrated with respect to µSRB and using again Lemma 8.15(b),
we obtain

|ν−nµSRB(M̊n)− `(1)| ≤ Cϑn`(1)‖h‖? ,

which in turn implies that log ν = limn→∞
1
n logµSRB(M̊n) since `(1) 6= 0, as required for the

remaining item of part (a) of the theorem. Note that ν 6= 0 by Remark 7.2 and (8.7), while ν 6= 1
by monotonicity since the escape rate for this class of billiards is known to be exponential for
arbitrarily small holes [DWY, D2].

We can use Theorem 8.16 to obtain exit statistics from the open billiard in the plane. As an
example, for θ ∈ [0, 2π) let us define Hθ to be the set of x ∈ H such that the first intersection of
O(T−1x) with ∂R has velocity making an angle of θ with the positive horizontal axis. Note that
Hθ is a finite union of increasing curves since it is the image of a wave front with zero curvature
moving with parallel velocities. The fact that Hθ comprises increasing curves is not altered by the
fact that the flow in R may reflect off of ∂R several times before arriving at a scatterer because
such collisions are neutral; also, since the corners of R are right angles, the flow remains continuous
at these corner points.

Suppose the incoming particles at time zero are distributed according to a probability measure
fdµSRB with density f ∈ Cc,A,L(δ). The probability that a particle leaves the box at time nN with
a direction in the interval Θ = [θ1, θ2], call it Pf (xn ∈ [θ1, θ2]), can be expressed as

Pf (xn ∈ [θ1, θ2]) =

ˆ
M
1HΘ
L̊nSf dµSRB , (8.20)

where HΘ := ∪θ∈ΘHθ. Although the boundary of HΘ comprises increasing curves as already
mentioned, the restriction on the angle may prevent ∂HΘ from enjoying the property of continuation
of singularities common to billiards. See Figure 5 (see also [D2, Sect. 8.2.2] for other examples of
holes without the continuation of singularities property).

Similarly, for p ∈ ∂R, define Hp to be the set of x ∈ H such that the last intersection of O(T−1x)
with ∂R is p. Then for an interval P ⊂ ∂R, we define HP = ∪p∈PHp, and

´
M 1HP L̊nSf denotes the

probability that a particle leaves the box at time nN through the boundary interval P .

Proposition 8.18. For any intervals of the form Θ = [θ1, θ2], or P = [p1, p2], any f ∈ C1(M)
with f ≥ 0 and

´
f dµSRB = 1, and all n ≥ 0, we have30

Pf (xn ∈ Θ) = νnh(1HΘ
)`(f) + ‖f‖C1O

(
νnϑ

q
q+1

n)
, and

Pf (xn ∈ P ) = νnh(1HP )`(f) + ‖f‖C1O
(
νnϑ

q
q+1

n)
.

30If instead f ∈ Cc,A,L(δ), f ≥ 0 and
´
f dµSRB = 1, then ‖f‖C1 can be dropped from the right hand side.
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Figure 5: a) Sample rays with θ = θ1 and θ = θ2 striking the scatterer B2. The point p is
the topmost point of ∂B3. b) Component of HΘ on the scatterer B2. In this configuration, Hθ1

intersects the singularity curve TS0 coming from B1 while Hθ2 reaches S0 directly; however, the
left boundary of HΘ is an arc of Hp and the continuation of singularities properties fails for a hole
of this type since θ1 > 0.

Remark 8.19. If f ∈ Cc,A,L(δ), then `(f) > 0 by Theorem 8.16(b), and Proposition 8.18 provides
a precise asymptotic for the escape of particles through HΘ and HP . For more general f ∈ C1(M),
it may be that `(f) = 0, in which case Proposition 8.18 merely gives an upper bound on the exit
statistic compared to the rate of escape given by ν.

Proof. We prove the statement for 1Θ. The statement for 1P is similar.
To start with we assume f ∈ Cc,A,L(δ), and f ≥ 0 with

´
f dµSRB = 1. As already mentioned,

∂HΘ comprises finitely many increasing curves in M and so HΘ satisfies (O1′) and (O2) with P0 = 3
and Ct depending only on the uniform angle between the stable cone and ∂HΘ, which is strictly
positive due to (H1). Since 1HΘ

is not in C1(M), we cannot apply Lemma 8.15(b) directly; we
will use a mollification to bypass this problem.

Let ρ : R2 → R2 be a nonnegative, C∞ function supported in the unit disk with
´
ρ = 1, and

define ρε(·) = ε−2ρ(· ε−1). For ε > 0, define the mollification,

ψε(x) =

ˆ
1HΘ

(y)ρε(x− y) dy x ∈M .

We have |ψε|C0 ≤ 1 and |ψ′ε|C0 ≤ Cε−1. Note that ψε = 1HΘ
outside an ε-neighborhood of ∂Hθ

(including S0). Letting ψ̃ε denote a C1 function with |ψ̃ε|C0 ≤ 1, which is 1 on Nε(∂HΘ) and 0 on
M \N2ε(∂HΘ), we have |1HΘ

−ψε| ≤ ψ̃ε. Due to (O2), for any W ∈ Ws such that W∩Nε(∂HΘ) 6= ∅,
using first the fact that f ≥ 0 and then applying cone condition (4.7),

ˆ
W
|1HΘ

− ψε| L̊nSf dmW ≤
ˆ
W
ψ̃ε L̊nSf dmW ≤

ˆ
W∩N2ε(∂HΘ)

L̊nSf dmW

≤ 21+qAδ1−qCqt ε
q|||L̊nSf |||− ,

(8.21)

where we have used the fact that W ∩ N2ε(∂HΘ) has at most 2 connected components of length
2Ctε. Then integrating over M and disintegrating µSRB as in the proof of Lemma 7.1, we obtain,

ˆ
M
|1HΘ

− ψε|
L̊nSf

µSRB(L̊nSf)
dµSRB ≤

ˆ
M
ψ̃ε

L̊nSf
µSRB(L̊nSf)

dµSRB ≤ Cεq
|||L̊nSf |||−
µSRB(L̊nSf)

. (8.22)
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By Remark 7.2, µSRB(L̊nSf) ≥ C̄−1|||L̊nSf |||−, so the bound is uniform in n. Since ψ̃ε ∈ C1(M) the

bound carries over to h(ψ̃ε), and since h is a nonnegative measure, to h(1HΘ
− ψε). Thus for each

n ≥ 0 and ε > 0,

ˆ
1HΘ

L̊nSf dµSRB =

ˆ
(1HΘ

− ψε) L̊nSf dµSRB +

(ˆ
ψε L̊nSf dµSRB − νn`(f)h(ψε)

)
+ νn`(f)h(ψε − 1HΘ

) + νn`(f)h(1Hθ)

= O
(
εqνn`(f)

)
+O

(
|ψε|C1νnϑn`(f)

)
+ νn`(f)h(1HΘ

) ,

(8.23)

where we have applied (8.22) to the first and third terms and Theorem 8.16(b) and Lemma 8.15(b)
to the second term. Since |ψε|C1 ≤ ε−1, choosing ε = ϑn/(q+1) yields the required estimate for
f ∈ Cc,A,L(δ).

To conclude, note that by Lemma 7.6, there exists C[ > 0 such that, if f ∈ C1(M), then, for
each λ ≥ C[‖f‖C1 , λ + f ∈ Cc,A,L(δ). Hence, by the linearity of the integral, `(f) as defined in
(8.17) can be extended to f ∈ C1 by `(f) = `(λ+ f)− `(λ), and the limsup is in fact a limit since
since the limit exists for λ+ f, λ ∈ Cc,A,L(δ) (see (8.18) and following).

Now take f ∈ C1 with
´
f dµSRB = 1 and λ ≥ C[‖f‖C1 as above. Then, necessarily λ+ f ≥ 0,

and so recalling (8.20), we have

Pλ+f
1+λ

(xn ∈ Θ) =

ˆ
M
1HΘ
L̊nS
(
λ+f
1+λ

)
=

λ

1 + λ

ˆ
M
1HΘ
L̊nS1 +

1

1 + λ

ˆ
M
1HΘ
L̊nSf

=
λ

1 + λ
P1(xn ∈ Θ) +

1

1 + λ
Pf (xn ∈ Θ).

Hence by (8.23),

Pf (xn ∈ Θ) = (1 + λ)Pλ+f
1+λ

(xn ∈ Θ)− λP1(xn ∈ Θ)

= νnh(1HΘ
)
(
λ`(1) + `(f)

)
− νnh(1HΘ

)λ`(1) + λO
(
νnϑ

q
q+1

n)
= νnh(1HΘ

)`(f) + ‖f‖C1O
(
νnϑ

q
q+1

n)
.

8.5 Random Lorentz gas (lazy gates)

Consider a Lorentz gas as described in [AL, Section 2]. That is, we have a lattice of cells of size
one with circular obstacles of fixed radius r at their corners and a random obstacle B(z) of fixed
radius ρ and center in a set O at their interior.31 The central obstacle is small enough not to
intersect with the other obstacles but large enough to prevent trajectories from crossing the cell
without colliding with an obstacle. We call the openings between different cells gates, see Figure
6b, and require that no trajectory can cross two gates without making at least one collision with
the obstacles. Thus we fix r and ρ satisfying32 the following conditions:

1
3 ≤ r <

1
2 , and 1− 2r < ρ <

√
2

2 − r . (8.24)

31The assumption that all obstacles are circular is not essential and can be relaxed by requiring that the obstacles
at the corners are symmetric with respect to reflections as described in Section 8.4.

32Finite horizon requires r ≥ 1

1+
√

2
, yet our added condition that a particle cannot cross diagonally from, say, R̂1

to R̂2 without making a collision requires further that r ≥ 1
3
.
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With r and ρ fixed, the set of possible configurations of the central obstacle are described by
ω ∈ Ω = OZ2

. In order to ensure that particles cannot cross directly from R̂1 to R̂3 or from R̂2

to R̂4 without colliding with an obstacle, and to ensure a minimum distance between scatterers,
we fix ε∗ > 0 and require the center c = (c1, c2) of the random obstacle Bω, ω ∈ Ω, (the central
obstacle C5 in Figure 6b) to satisfy,

1− (r + ρ− ε∗) ≤ c1, c2 ≤ r + ρ− ε∗ . (8.25)

Note that (8.24) and (8.25) imply that all possible positions of the central scatterer Bω result in a
billiard table with τmin ≥ τ∗ := min{ε∗, 1− 2r} > 0.

On Ω the space of translations ξz, z ∈ Z2, acts naturally as [ξz(ω)]x = ωz+x, see Figure 6a.
We assume that the obstacle configurations are described by a measure Pe which is ergodic with
respect to the translations.

Bω(a) Bω(b)

Bω(0)
Bω(c)

a = (1, 0); b = (1, 1); c = (1, 0)

C2 C1

C3 C4

C5 R̂1R̂3

R̂2

R̂4

r

ρ

Fig 6a: Configuration of random obstacles Bω(z) Fig 6b: Poincaré section Ci and gates R̂i

Exactly as in the section 8.4, we assume that the gates are reflecting and become transparent
only after N collisions with the obstacles. Thus when the particle enters a cell it will stay in that
cell for at least N collisions with the obstacles, hence the lazy adjective.

As described in section 8.4, when the particle reflects against a gate one can reflect the table
three times and see the flow (for the times at which the gates are closed) as a flow in a finite horizon
Sinai billiard on the two torus. Note that the Poincaré section M = ∪5

i=1Ci × [−π
2 ,

π
2 ] in each cell

is exactly the same for each ω and z since the arclength of the boundary is always the same, while
the Poincaré map Tz changes depending on the position of the central obstacle, see Figure 6b. Let
us call F(τ∗) the collection of the different resulting billiard maps corresponding to tables that
maintain a minimum distance τ∗ > 0 between obstacles, as required by (8.24) and (8.25). (Note
that the parameters K∗ and E∗ of Section 8.3 are fixed in this class once r and ρ are fixed.) The
only difference with Section 8.4, as far as the dynamics in a cell is concerned, consists in the fact
that we have to be more specific about which cell the particle enters, as now exiting from one cell
means entering into another.

Recalling the notation of Section 8.4, if we call R(z) the cell at the position z ∈ Z2, then the
gates R̂i are subsets of ∂R(z). We denote by R̃(z) the lifted cell (viewed as a subset of T2) after

reflectingR(z) three times, and by (M̃, T̃z) the corresponding billiard map. As before, the projection

π : M̃ → M satisfies π ◦ T̃ = T ◦ π. Then the hole H̃(z) can be written as H̃(z) = ∪4
i=1H̃i(z),

where π(H̃i(z)) =: Hi(z) are the points x ∈ M such that O(T−1x) ∩ ∂R(z) ∈ R̂i.33 Due to our

33The hole depends on the trajectory of x, which is different in different cells and hence depends on z, while the
gates R̂i are independent of z.
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assumption (8.24), this point of intersection is unique for each x since consecutive collisions with
∂R cannot occur. Then H(z) = π(H̃(z)) = ∪4

i=1Hi(z).
As discussed in Section 8.4, the holes are neither of Type I nor of Type II, yet they satisfy (O1′)

and (O2) with P0 = 3 and Ct depending only on the uniform angle between the stable cone for the
induced billiard map and the horizontal and vertical directions.

Yet for our dynamics, when a particle changes cell at the Nth collision, it is because after N −1
collisions, that particle is in Gi(z) := T−1

z Hi(z), and in fact it will never reach Hi(z). Unfortunately,
the geometry of G(z) := ∪4

i=1Gi(z) is not convenient for our machinery since ∂G(z) may contain
stable curves, yet we will be able reconcile this difficulty after defining the dynamics precisely as
follows.

The phase space is Z2 ×M . For x ∈ M , denote by p(x) the position of x in R(z) and by θ(x)
the angle of its velocity with respect to the positive horizontal axis in R(z). We define

w(z, x) =



0 =: w0 if x 6∈ G(z)

e1 =: w1 if x ∈ G1(z)

e2 =: w2 if x ∈ G2(z)

−e1 =: w3 if x ∈ G3(z)

−e2 =: w4 if x ∈ G4(z).

Also we set W = {w0, . . . , w4}. If x ∈ Gi(z), then we call q̄(x) = (q, θ) ∈ R̂i × [0, 2π) the point
q̄ such that q = O(x) ∩ R̂i and θ = θ(x), i.e. without reflection at R̂i. We then consider q̄ as
a point in the cell z + w(z, x) = z + wi and call Tz,i(x) the post-collisional velocity at the next
collision with an obstacle under the flow starting at q̄. Note that in the cell R(z + wi), q̄ ∈ R̂ī,
where ī = i+ 2 (mod 4*).34 Thus if Φz

t denotes the flow in R(z), then with this notation, Gi(z) is
the projection on M of R̂i under the inverse flow Φz

−t while Hī(z+w(z, x)) is the projection on M

of R̂ī under the forward flow Φz+wi
t . Thus,

Hī(z + wi) = Tz,iGi(z) =⇒ 1Gi(z) ◦ T
−1
z,i = 1Hī(z+wi)

, (8.26)

which is a relation we shall use to control the action of the relevant transfer operators below.
Differing slightly from the previous section, here it is convenient to set Sz = TN−1

z , and define

F (z, x) =

{
(z, Sz ◦ Tz(x)) =: (z, Ŝz(x)) if x 6∈ G(z)

(z + w(z, x), Sz+w(z,x) ◦ Tz,i(p)) =: (z + w(z, x), Ŝz(x)) if x ∈ Gi(z).

We set (zn, xn) = Fn(z, x) and we call n the macroscopic time, which corresponds to Nn collisions
with the obstacles. The above corresponds to a dynamics in which when the particle enters a cell,
it is trapped in the cell for N collisions with the obstacles; then the gates open and until the next
collision the particle can change cells, after which it is trapped again for N collisions and so on.

We want to compute the probability that a particle visits the sets Gk0(z0), · · ·Gkn−1(zn−1), in
this order, where we have set G0(z) = M \∪4

i=1Gi(z). Similarly, we define H0(z) = M \∪4
i=1Hi(z).

This itinerary corresponds to a particle that at time i changes its position in the lattice by wki .
Following the notation of [AL], we call Pω the probability distribution in the path space WN

conditioned on the central obstacles being in the positions specified by ω ∈ Ω. Hence, if the particle
starts from the cell z0 = (0, 0) with x distributed according to a probability measure fdµSRB with

34By (mod 4*) we mean cyclic addition on 1, 2, 3, 4 rather than 0, 1, 2, 3.
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density f ∈ Cc,A,L(δ), then we have35 zn =
∑n−1

k=0 wki and, for each obstacle distribution ω ∈ Ω,

Pω(z0, z1, . . . , zn) =

ˆ
M
f(x)1Gk0

(z0)(x)1Gk1
(z1)(Ŝ0(x)) · · ·

· · ·1Gkn−1
(zn−1)(Ŝzn−2 ◦ · · · ◦ Ŝ0(x)) dµSRB(x)

=

ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gk0
(z0)f dµSRB

(8.27)

where L̊Gkj (zj) := LN−1
Tzj+1

LTzj ,kj1Gkj (zj), and we have set Tz,0 := Tz. See [AL] for more details. We

will prove below that if N is sufficiently large, then Theorem 8.9 applies to each operator L̊Gk . This
suffices to obtain an exponential loss of memory property (the analogue of the result obtained for
piecewise expanding maps in [AL, Theorem 6.1]), that is property Exp in [AL, Section 4.1]. This
is the content of the following theorem.

Theorem 8.20. There exist C∗ > 0, ϑ ∈ (0, 1) and N ∈ N such that for P-a.e. ω ∈ Ω, if x is
distributed according to f ∈ Cc,A,L(δ), with f ≥ 0 and

´
M f dµSRB = 1, z0 = (0, 0), and the gates

open only once every N collisions, then for all n > m ≥ 0 and all w ∈WN,∣∣Pω(wkn | wk0 . . . wkn−1)− Pξzmω(wkn | wkm . . . wkn−1)
∣∣ ≤ C∗ϑn−m. (8.28)

Proof. Note that for m ≥ 0, ξzmω sends the cell at zm to (0,0). Thus according to equation (8.27),
for x distributed according to f ∈ Cc,A,L(δ) with z0 = (0, 0), we have

Pξzmω(wkm , . . . wkn) =

ˆ
M
L̊Gkn (zn) · · · L̊Gkm (zm)f dµSRB .

As remarked earlier, the sets Gi(z) do not satisfy assumption (O2) so that Proposition 8.7 does
not apply directly. Yet, it follows from (8.26) that for g ∈ Cc,A,L(δ),

L̊Gkj (zj)g = LN−1
Tzj+1

LTzj ,kj (1Gkj (zj)g) = LN−1
Tzj+1

(
1Hk̄j

(zj+1)LTzj ,kj g
)
,

where, as before, k̄j = kj + 2 (mod 4*). Then, just as in the proof of Proposition 8.7, it may
be the case that LTzj ,kj g is not in Cc,A,L(δ). Yet, it is immediate from our estimates in Section 5

that LTzj ,kj g ∈ Cc′,A′,3L(δ) for any billiard map Tzj ,kj ∈ F(τ∗) for some constants c′, A′ depending

only on F(τ∗). As in the proof of Proposition 8.7, we may choose constants c′′ ≥ c′, A′′ ≥ A′

and L′′ ≥ 3L and δ > 0 sufficiently small to satisfy the hypotheses of Theorem 6.12. Then
since the sets Hi(z) do satisfy (O1′) and (O2) with P0 = 3 and Ct depending only on the angle
between the stable cone and the vertical and horizontal directions, which has a uniform minimum
in the family F(τ∗), there exists χ < 1 and N sufficiently large as in Proposition 8.7 so that36[
LN−1
Tzj+1

1Hk̄j
(zj+1)

]
Cc′,A′,3L(δ) ⊂ Cχc,χA,χL(δ), and both χ and N are independent of zj+1 and kj .

This implies in particular that

L̊Gi(z)Cc,A,L(δ) ⊂ Cχc,χA,χL(δ) for each i and all z ∈ Z2.

35Since z0 = (0, 0), it is equivalent to specify z1, . . . zn or wk0 , . . . wkn−1 since wkj can be recovered as wkj = zj+1−zj .
36Here in fact our operators are of the form Ln1H while in Proposition 8.7 they have the form Ln1Hc for some

set H. Yet, this is immaterial since the boundaries of H and Hc in M are the same so that (O1′) and (O2), and in
particular Lemma 8.6, apply equally well to both sets.
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Now the assumption that the gates only open every N collisions implies that for every ω ∈ Ω, every
path is the result of an N -admissible sequence.

As in the proof of Theorem 7.3, using the fact that µSRB(·) is homogeneous and order preserv-

ing on Cc,A,L(δ) and that µSRB(L̄mf) = µSRB(f) = 1, where L̄mf =
L̊Gkm−1(zm−1)···L̊Gk0

(z0)f´
M L̊Gkm−1(zm−1)···L̊Gk0

(z0)f
∈

Cc,A,L(δ), we estimate as in (7.6) and (7.7),ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)(f − L̄mf) dµSRB

≤ Cϑn−m min

{ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f,

ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)L̄mf
}
,

(8.29)

for some ϑ < 1 depending on the diameter of Cχc,χA,χL(δ) in Cc,A,L(δ).
Finally, the left hand side of (8.28) reads∣∣∣∣∣

´
M L̊Gkn−1

(zn−1) · · · L̊Gk0
(z0)f´

M L̊Gkn−2
(zn−2) · · · L̊Gk0

(z0)f
−

´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)f

∣∣∣∣∣
≤

∣∣∣∣∣
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)L̄mf −
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zn−2) · · · L̊Gkm (zm)L̄mf

∣∣∣∣∣
+

∣∣∣∣∣
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)L̄mf

−

´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)f

∣∣∣∣∣
≤ Cϑn−m + Cϑn−m−1 ,

where we have applied (8.29) twice and used the fact that

´
M L̊Gkn−1

(zn−1)···L̊Gkm (zm)g´
M L̊Gkn−2

(zkn−2
)···L̊Gkm (zm)g

≤ 1 for any

g ∈ Cc,A,L(δ).

In particular, Theorem 8.20, together with37 [AL, Theorem 6.4], implies that limn→∞
1
nzn = 0

for Pe almost all ω, that is, the walker has, Pe-almost-surely, no drift. See [AL, Section 6] for
details.38 This latter fact could be deduced also from the ergodicity result in [Le06, Theorem 5.4];
however, Theorem 8.20 is much stronger (indeed, by [AL, Theorem 6.4], it implies [Le06, Theorem
5.4]) since it proves some form of memory loss that is certainly not implied by ergodicity alone. It
is therefore sensible to expect that more information on the random walk will follow from Theorem
8.20, although this will require further work.

We conclude with a corollary of Theorem 8.20 which implies the same exponential loss of
memory for particles distributed according to two different initial distributions. For f ∈ Cc,A,L(δ),
let Pω,f (·) denote the probability in the path space WN conditioned on the central obstacles being
in position ω ∈ Ω and with x initially distributed according to fdµSRB.

Corollary 8.21. There exist C > 0 and ϑ ∈ (0, 1) such that for all f, g ∈ Cc,A,L(δ) with
´
M f =´

M g = 1 and P-a.e. ω ∈ Ω, if z0 = (0, 0), then for all n ≥ 0 and all w ∈WN,∣∣Pω,f (wkn | wk0 . . . wkn−1)− Pω,g(wkn | wk0 . . . wkn−1)
∣∣ ≤ Cϑn.

37Remark that [AL, Theorem 6.4] requires µSRB(Gi(z)) to be the same for each i and z, independently of ω. This is
precisely the case here since Gi(z) is defined as the projection of R̂i under the inverse flow Φz−t, and Leb(R̂i× [0, 2π))
in the phase space of the flow is independent of i, while µSRB is the projection onto M of Lebesgue measure, which
is invariant under the flow.

38The arguments in [AL, Section 6] are developed for expanding maps, but the relevant parts apply verbatim to
the present context.
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Proof. The proof is the same as that of Theorem 8.20 since (8.29) holds as well with L̄mf replaced
by g.
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[AFGV] J. Atnip, G. Froyland, C. González-Tokman and S. Vaienti, Thermodynamic formalism for random
weighted covering systems, Comm. Math. Phys. 386:2 (2021), 819–902.

[B1] V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: C∞ foliations, Algebraic and
Topological Dynamics, Sergiy Kolyada, Yuri Manin and Tom Ward, eds. Contemporary Mathematics,
Amer. Math. Society, (2005) 123-136.

[B2] V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, a Functional
Approach, Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in
Mathematics, 68, Springer Ergebnisse, 2018.

[BD1] V. Baladi and M.F. Demers, On the measure of maximal entropy for finite horizon Sinai billiard
maps, J. Amer. Math. Soc. 33 (2020), 381–449.

[BD2] V. Baladi and M.F. Demers, Thermodynamic formalism for dispersing billiards, preprint 2020.

[BDL] V. Baladi, M.F. Demers and C. Liverani Exponential decay of correlations for finite horizon Sinai
billiard flows. Invent. Math. 211 (2018), no. 1, 39–177.

[BT] V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann.
Inst. Fourier. 57 (2007), 127-154.

[BDKL] P. Balint, J. De Simoi, V. Kaloshin and M. Leguil, Marked length spectrum, homoclinic orbits and
the geometry of open dispersing billiards, Comm. Math. Phys. 374 (2020), 1531–1575.

[Bir] G. Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227.

[BKL] M. Blank; G. Keller; C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity
15 (2002), no. 6, 1905–1973.

[BSC] L. Bunimovich, Ya. G. Sinai, and N. Chernov, Markov partitions for two-dimensional hyperbolic
billiards, Russian Math. Surveys 45 (1990), 105-152.

[C1] N. Chernov, Advanced statistical properties of dispersing billiards, J. Stat. Phys. 122 (2006), 1061–
1094.

[C2] N. Chernov, Sinai billiards under small external forces II, Ann. Henri Poincaré, 9 (2008), 91–107.
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