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Abstract. Using recent work of Carrand [Ca] on equilibrium states for the

billiard map, and bootstrapping via a “leapfrogging” method from [BD2], we
construct the unique measure of maximal entropy (MME) for two-dimensional

finite horizon Sinai (dispersive) billiard flows Φ1 (and show it is Bernoulli),

assuming the bound htop(Φ1)τmin > s0 log 2, where s0 ∈ (0, 1) quantifies the
recurrence to singularities. This bound holds in many examples (it is expected

to hold generically).

1. Introduction and Main Result

1.1. Background. Let Φt be a continuous flow on a compact manifold. The topo-
logical entropy of the flow, htop(Φ1), is the supremum, over ergodic probability
measures ν invariant under the (continuous) time-one map Φ1 of the Kolmogorov
entropy hν(Φ1). If a measure realising the supremum exists, it is called a measure
of maximal entropy (MME) for the flow.

For geodesic flows, the study of the MME has a rich history. In the case of strictly
negative curvature, the flow is Anosov, i.e. smooth and uniformly hyperbolic, and
the pioneering works of Bowen [Bo2] and Margulis [Ma1, Ma2] half a century ago
established existence, uniqueness, and mixing of the MME, leading to remarkable
consequences, in particular on the structure (counting and equidistribution) of peri-
odic orbits. For more general continuous flows, it became apparent [Bo0, Bo1, BW]
that (flow) expansivity implies existence of the MME, and combined [Fr] with the
(Bowen) specification property, also gives uniqueness.

Starting with the groundbreaking work of Knieper [Kn], most developments in
the past 25 years have concerned smooth geodesic flows for which the hyperbolicity
or compactness assumption are relaxed. In recent years, Climenhaga and Thompson
[CT] have revisited the Bowen specification approach, which has allowed them to
obtain several striking [CKW, B-T] results.

Sinai billiard flows, our object of study, are natural dynamical systems which
are uniformly hyperbolic, but not differentiable (we refer to [CM] for a full-fledged
introduction to mathematical billiards): A Sinai billiard table Q on the two-torus
T2 is a set Q = T2 \∪iOi, for finitely many pairwise disjoint convex closed domains
Oi with C3 boundaries having strictly positive curvature K. The billiard flow Φt,
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t ∈ R, is the motion of a point particle traveling in Q at unit speed and undergoing
specular reflections1 at the boundary of the scatterers Oi. The associated billiard
map T : M →M , on the compact metric set M = ∂Q×[−π2 ,

π
2 ], is the first collision

map on the boundary of Q. Grazing collisions cause discontinuities in the map T ,
but the flow is continuous (after identification of the incoming and outgoing angles).
The map is expansive [BD1], but this property is not automatically2 inherited by
the flow, since neither the map nor the return time is continuous. In particular, it is
not obvious that the flow satisfies a condition (such as asymptotic h-expansiveness
[Mi]) sufficient for the upper-semi continuity of the Kolmogorov entropy (see [Ca,
App. A–B]), and there does not appear to exist a quick way to prove the existence
— let alone uniqueness — of a MME for the billiard flow.

The purpose of the present paper is to furnish mild conditions guaranteeing
existence, uniqueness, and mixing (in fact, the Bernoulli property) of the MME for
Sinai billiards. This can be viewed as a first step towards the much harder open
problem of establishing equidistribution results for Sinai billiards.

Our proof is based on previous work of Carrand [Ca] (itself relying on [BD1])
and on [BD2]. These three papers use the3 technique of transfer operators acting on
anisotropic spaces, which was first introduced to billiards by Demers–Zhang [DZ1],
and recently applied to construct the measure of maximal entropy of the billiard
map [BD1].

1.2. Results. To state our main results, Theorem 1.4 and4 Corollary 1.5, we intro-
duce some basic notation. For x ∈ M , let τ(x) denote the flow time (return time)
from x to T (x), and set

τmin = inf τ > 0 , τmax = sup τ , Λ = 1 + 2τmin inf K .
Throughout, we assume finite horizon, that is: there are no trajectories making
only tangential collisions. Finite horizon implies τmax <∞.

Set

P (t) = sup
µ:T -invariant ergodic probability measure

{hµ(T )− t
∫
τdµ} , t ≥ 0 .

The real number P (t) is called the pressure of the potential −tτ and a probability
measure µt realising P (t) is called an equilibrium measure for −tτ .

Viewing Φ as the suspension of T under τ , Abramov’s formula says that any
ergodic probability measure ν invariant under the time-one map Φ1 satisfies

(1.1) ν =
µ∫
τdµ

⊗ Leb ,

where µ is an ergodic T -invariant probability measure, and, in addition,

(1.2) hν(Φ1) =
hµ(T )∫
τdµ

.

1At a tangential collision, the reflection does not change the direction of the particle.
2See [BW] for a definition of expansiveness for the flow. See [Bo0, Ex. 1.6] for a weaker

sufficient condition for existence.
3To our knowledge, the Climenhaga–Thompson specification approach has not been imple-

mented yet for Sinai billiards.
4The condition (1.4) there is discussed in Lemma 1.3.
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In the coordinates x = (r, ϕ), where r is arclength along ∂Oi and ϕ is the post-
collision angle with the normal to ∂Oi, let S0 = {(r, ϕ) ∈ M : ϕ = ±π2 } denote

the set of tangential collisions on M . Then for any n ∈ Z∗, the set Sn = ∪−ni=0T
iS0

is the singularity set of Tn. Following [BD1], define Mn
0 to be the set of maximal

connected components of M \ Sn for n ≥ 1, and set

h∗ = lim
n→∞

1

n
log #Mn

0

(existence of the limit is easy [BD1]). Then, for fixed ϕ < π/2 close to π/2 and
large n ∈ N, define s0(ϕ, n) ∈ (0, 1] to be the smallest number such that any orbit
of length equal to n has at most s0n collisions whose angles with the normal are
larger than ϕ in absolute value. If

(1.3) h∗ > s0 log 2

then [BD1] proves that P (0) = h∗, and there is a unique equilibrium measure
µ∗ = µ0 for t = 0, which is the unique MME of T . There are many billiards [BD1,
§2.4] satisfying (1.3), and in fact we do not know any billiard which violates it.
(Note also that Demers and Korepanov showed [DK] that a conjecture of Bálint
and Tóth, if true, implies that, generically, one can choose ϕ and n to make s0

arbitrarily small.)

Using Abramov’s formula, Carrand showed the following:

Proposition 1.1 ([Ca, Lemma 2.5, Cor. 2.6]). The real number t = htop(Φ1) > 0
is the unique t such that P (t) = 0. In addition, the set of equilibrium measures of
T for −htop(Φ1)τ is in bijection with the set of MMEs of the flow via (1.1).

Denote Σnτ :=
∑n−1
k=0 τ ◦ T k (to avoid confusion with Sn and the notation Sδn

below). We next state Carrand’s main results (see also Proposition 3.1 below).

Theorem 1.2 ([Ca, Theorem 2.1, Theorem 1.2]). (a) The following5 limits exist:

P∗(t) = lim
n→∞

1

n
logQn(t) , with Qn(t) =

∑
A∈Mn

0

|e−tΣnτ |C0(A) , ∀t ≥ 0 .

Moreover, P∗(t) > P∗(s) ≥ P (s) for all 0 ≤ t < s, and6 t 7→ P∗(t) is convex.

(b) If t ≥ 0 is such that

(1.4) P∗(t) + tτmin > s0 log 2 ,

and

(1.5) log Λ > t(τmax − τmin) ,

then there is a unique equilibrium measure µt for −tτ . This measure charges all
open sets, is Bernoulli, and P∗(t) = P (t). Finally, µt is T -adapted,7 that is

(1.6)

∫
| log d(x,S±1)| dµt <∞ .

5By [BD1] we always have P∗(0) = h∗ ≥ P (0).
6The fact that P∗(t) is strictly decreasing is immediate, see (3.5). Convexity follows from the

Hölder inequality as in [BD2, Prop 2.6].
7To establish (1.6), Carrand shows that the µt measure of the ε-neighbourhood of S±1 is

bounded by Ct| log ε|γ for γ > 1 and Ct <∞.
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In view of Proposition 1.1 and Theorem 1.2, to establish existence and uniqueness
of the MME of the finite horizon flow Φ, it suffices to check (1.4) and (1.5) for
t = htop(Φ1) > 0. We next discuss these conditions. The first one is very mild:

Lemma 1.3. The bound (1.4) holds at t = htop(Φ1) as soon as

(1.7) htop(Φ1)τmin > s0 log 2 .

The bound (1.7) holds as soon as

(1.8) h∗
τmin

τmax
> s0 log 2 .

If (1.4) holds for some t′ ≥ 0 then it holds for all t ∈ [0, t′].

It is not hard to find [Ca, Remark 5.6] billiards satisfying (1.7).

Proof. The first claim follows from Proposition 1.1 and the bound P∗(t) ≥ P (t)
for all t ≥ 0. The second claim holds because (1.2) implies htop(Φ1) ≥ h∗∫

τdµ∗
≥

h∗
τmax

. Finally, the first claim of Lemma 3.3 below implies that t 7→ P∗(t) + tτmin is
nonincreasing. �

The second condition (1.5) will require more efforts. Obviously, for any finite
horizon billiard, there exists t̃ > 0 such that (1.5) holds for all t ∈ [0, t̃]. How-
ever, we do8 not know any billiard such that (1.5) holds for t = htop(Φ1) (that is,
log Λ > htop(Φ1)(τmax − τmin)). Fortunately, it turns out that (1.5) is not neces-
sary: Assuming only finite horizon and (1.4) at t = htop(Φ1), we will extend the
conclusion of Theorem 1.2 to t = htop(Φ1) by adapting the bootstrapping argument
in [BD2, Lemma 3.10] (used there to cross the value x = 1 at which the pressure
for −x log JuT vanishes). This is our main result:

Theorem 1.4. Let T be a finite horizon Sinai billiard map such that (1.4) holds at
t = htop(Φ1). Then for all t ∈ [0, htop(Φ1)], we have P∗(t) = P (t), and there exists
a unique T -invariant probability measure µt realising P (t). This measure charges
all nonempty open sets, is Bernoulli and T -adapted.

Our proof furnishes t∞ ≥ htop(Φ1) such that the key Small Singular Pressure
properties (3.1), (3.2), and (3.3) hold for all t ∈ [0, t∞]. If t∞ > htop(Φ1) and if
(1.4) holds for some t2 ∈ (htop(Φ1), t∞], then the conclusion of Theorem 1.4 holds
for all t ∈ [0, t2].

Theorem 1.2 and Proposition 1.1 of Carrand, combined with Theorem 1.4 and
the proof of [Ca, Props. 7.1 and 7.2] for Bernoullicity of the flow, give:

Corollary 1.5. Let T be a finite horizon Sinai billiard map such that (1.4) holds
at t = htop(Φ1). Then

ν∗ :=
µhtop(Φ1)∫
τ dµhtop(Φ1)

⊗ Leb

is the unique measure of maximal entropy of the billiard flow. This measure is
Bernoulli, it charges all nonempty open sets, and it is flow adapted, that is9

(1.9)

∫
Ω

| log dΩ(x,S±0 )| dν∗ <∞ , Ω = Q× S1 ,

8Note that (1.2) implies htop(Φ1)(τmax − τmin) ≤ h∗(τmax/τmin − 1).
9Note that (1.9) implies that log ‖DΦt‖ is integrable for each t ∈ [−τmin, τmin] so that, by

subadditivity, it is integrable for each t ∈ R.
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where dΩ is the Euclidean metric, S−0 = {Φ−s(z) : z ∈ S0 , s ≤ τ(T−1z)}, and
S+

0 = {Φs(z) : z ∈ S0 , s ≤ τ(z)}.

Contrary to [BD2], homogeneity layers are not used for our potentials −tτ . They
are not needed because τ is piecewise Hölder and thus eτ satisfies piecewise bounded
distortion. The results of Carrand [Ca] that we build upon are based on bounds
for transfer operators acting on Banach spaces of distributions defined with the
logarithmic modulus of continuity of [BD1]. We could not find a Banach norm
giving a spectral gap (there is no analogue of [BD2, Lemmas 3.3 and 3.4] for ς 6= 0,
see [Ca, Lemma 3.1] for γ 6= 0 where (log |W |/ log |Wi|)γ replaces (|Wi|/|W |)ς). We
thus do not have exponential mixing for (T, µhtop(Φ1)). (Even if we had, it would

not immediately imply exponential mixing for (Φ1, ν∗).)

The paper is organised as follows: Section 2 is devoted to recalling notation
from [BD1] and to two basic lemmas on cone stable curves iterated by the billiard
map. Section 3 is the core of the paper: In §3.1, after defining the Small Singu-
lar Pressure (SSP) conditions (3.1), (3.2), and (3.3) and stating Carrand’s condi-
tional Theorem 3.1, we reduce Theorem 1.4 to showing SSP for some t ≥ htop(Φ1)
(Lemma 3.2). Then we set up the bootstrap mechanism, by introducing in (3.4) the
supremum t∞ > 0 of parameters satisfying SSP (this is the new idea). Lemma 3.3
embodies our version of the first ingredient of the bootstrap from [BD2, Definition
3.9] (“pressure gap”), constructing a “pivot” t∗ < t∞ and its associated parameter
s∗(t∗) > t∞. The key lemmas inspired by the second ingredient of bootstrapping
[BD2, Lemmas 3.10–3.11] (“leapfrogging across t∗ via the Hölder inequality”), are
stated and proved in §3.2. Finally, Lemma 3.2 (and thus Theorem 1.4) is proved
in §3.3: We assume for a contradiction that t∞ < htop(Φ1). Since t∗ < t∞, this
implies, by results from [Ca] recalled in Proposition 1.1 and Theorem 1.2(a), that
the pressure of t∗ is positive. Then, we exploit this positivity in order to pass over
the pivot t∗ via the key lemmas from §3.2, obtaining the desired contradiction.

Observe that using Carrand’s [Ca] analysis of families more general than gt =
−tτ , the results of the present paper extend to suitable one parameter-families gt
of piecewise Hölder potentials. We abstain from spelling out the details.

2. Notations. n-step Expansion. Growth Lemma

We recall here some facts about hyperbolicity and complexity of finite horizon
Sinai billiards. There exist continuous families of stable and unstable cones, Cs and
Cu, which can be taken constant in M , and a constant C1 ∈ (0, 1) such that,

(2.1) ‖DTn(x)v‖ ≥ C1Λn‖v‖ , ∀v ∈ Cu , ‖DT−n(x)v‖ ≥ C1Λn‖v‖ , ∀v ∈ Cs ,

where, as before, Λ = 1 + 2τminKmin is the minimum hyperbolicity constant.
A fundamental fact about this class of billiards is the linear bound on the growth

in complexity due to Bunimovich [Ch, Lemma 5.2],

There exists K ≥ 1 such that for all n ≥ 0, the number of curves in S±n
that intersect at a single point is at most Kn.

(2.2)

The parameter γ > 1 defining the Banach space norms in [Ca] is chosen so that
h∗ > s0γ log 2, which is possible due to (1.3). Next, choosing m so large that,

1
m log(Km+ 1) < h∗ − s0γ log 2 ,
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we take δ0 = δ0(m) ∈ (0, 1/C1) so that any stable curve of length at most δ0 can
be cut by S−` into at most K`+ 1 connected components for all 0 ≤ ` ≤ 2m.

Let Ŵs be, as in [BD1, §5], the set of (cone-stable) curves whose tangent vectors
lie in the stable cone for T , with length at most δ0 and curvature bounded above by
a constant CK depending only on the table (homogeneity layers are not used). The

constant CK is chosen large enough that T−1Ŵs ⊂ Ŵs, up to subdivision of curves.

For n ≥ 1, δ ∈ (0, δ0], and W ∈ Ŵs, let Gδn(W ), Lδn(W ), Sδn(W ), and Iδn(W ) be as
in [BD1, §5]: Set Gδ0(W ) = W and define Gδn(W ) for n ≥ 1 to be the set of smooth
components of T−1W ′ for W ′ ∈ Gδn−1(W ), with elements longer than δ subdivided
to have length between δ/2 and δ. More precisely, if a smooth component U has
length `δ + ρ with ` ≥ 1 and 0 ≤ ρ < δ, we decompose U into:

• either ` ≥ 2 pieces of length δ, if ρ = 0,
• or ` ≥ 1 piece(s) of length δ and one piece of length ρ, placed at one of the

edges of U , if ρ ≥ δ/2,
• or ` − 1 ≥ 0 piece(s) of length δ, one piece of length δ/2 (at one tip) and

one piece of length ρ+ δ/2 (at the other tip), if ρ ∈ (0, δ/2).

Let Lδn(W ) denote the set of curves in Gδn(W ) that have length at least δ/3 and
let Sδn(W ) = Gδn(W )\Lδn(W ). For 0 ≤ k < n, we say that U ∈ Gδk(W ) is an ancestor
of V ∈ Gδn(W ) if Tn−kV ⊆ U , and we define Iδn(W ) to be those curves in Gδn(W )
that have no ancestors of length at least δ/3 (aside from perhaps W itself).

Finally, let δ1 < δ0 and n1 ≥ m be chosen so that [BD1, eq. (5.6)] holds: For
any stable curve W with |W | ≥ δ1/3 and n ≥ n1,

#Lδ1n (W ) ≥ 2
3#Gδ1n (W ) .

Up to replacing δ1 by a smaller constant, we may and shall only consider values
of δ of the form δ0/2

N for N ≥ 0. By induction on N , selecting the short tips in a

compatible way when dividing δ by two, we require that10 for all W ∈ Ŵs,

(2.3) ∀n ≥ 1 , if δ′′ < δ′ then ∀U ′′ ∈ Lδ
′′

n (W ) , ∃!U ′ ∈ Gδ
′

n (W ) with U ′′ ⊂ U ′ ,
For t ≥ 0, we introduce the following shorthand notation,

Sδn(W, t) :=
∑

Wi∈Sδn(W )

|e−tΣnτ |C0(Wi) , G
δ
n(W, t) :=

∑
Wi∈Gδn(W )

|e−tΣnτ |C0(Wi) ,

and

Lδn(W, t) := Gδn(W, t)− Sδn(W, t) , Iδn(W, t) :=
∑

Wi∈Iδn(W )

|e−tΣnτ |C0(Wi) .

The lemma below replaces the usual one-step expansion (see [BD2, Lemma 3.1]):

Lemma 2.1 (n-Step Expansion). For any t0 > 0 and θ0 ∈ (e−τmin , e−τmin/2) there
exist a finite n0(t0, θ0) ≥ 2 and δ̄0 = δ0

2N
> 0 such that

(2.4) S δ̄0n0
(W, t) ≤ Gδ0n0

(W, t) < θn0t
0 , ∀W ∈ Ŵs with |W | ≤ δ̄0 , ∀t ≥ t0 .

10We use this in the proof of Lemma 3.7 below. An alternative way to guarantee (2.3) for a

fixed length scale δ′ is to define Gδ′n (W ) as usual and treat it as the canonical partition of T−nW .

Then for any δ′′ < δ′/2 one can define Gδ′′n (W ) as a refinement of Gδ′n (W ), guaranteeing (2.3).

This is done implicitly in the proof of [BD2, Lemma 3.11] and could be applied in our Lemma 3.7
below by taking δ′ = δt∗ of that lemma. We do not adopt this approach since the canonical scale
would not be chosen until nearly the end of our proof.
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See also [Ca, Lemma 3.1(a)].

Proof. Clearly, sup−tτ ≤ −tτmin < 0 if t > 0. For any n0 ≥ 1, there exists

δ̄0(n0) = δ0
2N

such that any W ∈ Ŵs with |W | < δ̄0 is such that T−n0(W ) has at
most (Kn0 + 1) connected components [Ch, Lemma 5.2]. In addition using [CM,

Ex. 4.50] as in [BD1, Proof of Lemma 5.1], we have |T−jW | ≤ C ′|W |2−s0j for a
uniform C ′ > 0 and all j ≥ 1 (see also [Ca, Lemma 3.1]). Up to taking smaller δ̄0,
depending on δ0 (and n0), we can assume that |T−jW | ≤ δ0 for all 0 ≤ j ≤ n0.
Then, for |W | ≤ δ̄0, there can be no additional subdivisions of T−n0(W ) due to
pieces growing longer than δ0, so that

(2.5) Gδ0n0
(W, t) ≤ (Kn0 + 1)e−tn0τmin .

The same bound applies to S δ̄0n0
(W, t), since any element of S δ̄0n0

(W ) must be created
by a genuine cut by a singularity, not an additional subdivision due to pieces growing
longer than δ̄0. For any fixed t0 > 0 and θ0 ∈ (e−τmin , e−τmin/2), we can find
n0 = n0(t0, θ0) ≥ 2 such that (Kn0 +1)1/n0 ≤ θt00 eτmint0 . Since θt00 e

τmint0 ≤ θt0eτmint

for all t ≥ t0, it follows that (2.4) holds for δ̄0 = δ̄0(n0, δ0). �

Lemma 2.1 implies the following analogue11 of [BD2, Lemmas 3.3–3.4, ζ = 0]:

Lemma 2.2 (Growth Lemma). Fix θ0 ∈ (e−τmin , e−τmin/2) and t0 > 0. Suppose

δ ≤ δ0 and m1(δ) ≥ n0(t0, θ0) are such that any W ∈ Ŵs with |W | ≤ δ has
the property that W \ S−j comprises at most Kj + 1 connected components for all

1 ≤ j ≤ 2m1. Then for any t ≥ t0 and each W ∈ Ŵs with |W | ≤ δ, we have

(2.6) Iδn(W, t) ≤ θnt0 , ∀n ≥ m1 ,

(2.7) Iδn(W, t) ≤ Km1θ
nt
0 , ∀n < m1 ,

and

(2.8) Gδn(W, t) ≤ 4

C1δ
Qn(t) ,∀n ≥ 1 .

Proof. Let n0(t0, θ0) and δ̄0(n0, δ0) be given by Lemma 2.1. By choice of n0, if
ε = τmin + log θ0 > 0, then (Kn0 + 1)1/n0 ≤ eεt0 . Remark that (Kn + 1)1/n

decreases to 1 for n ≥ 2 since K ≥ 1. Thus (Kn+1)1/n ≤ eεt0 for all n ≥ n0. With
this observation, for δ and m1 as in the statement of the lemma, the bound (2.6)
can be proved by induction on n (just like [BD2, Lemma 3.3] for ζ = 0), writing
n = qm1 + `, with q ≥ 1 and 0 ≤ ` < m1, using q − 1 times the bound (2.5) with
m1 iterates in place of n0, and using it one last time with m1 + ` iterates, since
elements of Iδn(W ) have been short at each intermediate step.

For n < m1, the bound (2.7) follows from the relation between δ and m1.
Finally, to show (2.8), first note that, since each Wi ∈ Gδn(W ) is contained in a

single element of Mn
0 , and since |T−nV | ≥ C1Λn|V | for any stable curve |V | (due

to (2.1)), there can be at most 2/(C1δ) + 2 elements of Gδn(W ) in one element of
Mn

0 . Note also that |e−tΣnτ |C0(Wi) ≤ |e−tΣnτ |C0(A) whenever Wi ⊂ A ∈Mn
0 . This

gives the required bound since C1δ < 1. �

11See [Ca, Lemma 3.1(b)] for the replacement for [BD2, Lemmas 3.3–3.4, ζ 6= 0], using a
logarithmic weight with γ > 0 as in [BD1].
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3. Bootstrapping

3.1. Preparations: Small Singular Pressure. Two Bounds from [Ca]. We
say that Small Singular Pressure #1 (SSP.1) holds at t ≥ 0 for ε ∈ (0, 1/4] if

there exist δt = δ(ε) =
δ0

2Nt
∈ (0, δ1] and a finite nt = nt(ε) ≥ n1(3.1)

such that
Sδtn (W, t)

Gδtn (W, t)
≤ ε , ∀n ≥ nt , ∀W ∈ Ŵs with |W | ≥ δt/3 ,

and, in addition, ∑
n≥nt

sup
W∈Ŵs

|W |≥δt/3

e−ntτmin

Lδtn (W, t)
<∞(3.2)

together with its “time-reversal,” obtained by replacing T with its inverse T−1, Ŵs

by Ŵu, and replacing τ with τ ◦ T−1 (that is, replacing Σnτ with
∑n
i=1 τ ◦ T−i =

(Σnτ) ◦ T−n), both hold.
Assume that (3.1) and (3.2) hold at t ≥ 0 for ε ≤ 1/4, δt, and nt. Then we say

that Small Singular Pressure #2 (SSP.2) holds at t for ε if12

for any W ∈ Ŵs there exists n∗t (|W |, δt, ε) ∈ [nt,∞) such that(3.3)

Sδtn (W, t)

Gδtn (W, t)
≤ 2ε , ∀n ≥ n∗t (|W |, δt, ε) ,

together with its time-reversal (in the sense defined above) both hold.

Note that the time-reversal of conditions (3.1), (3.2), and (3.3) involve stable
curves for T−1, that is, unstable curves for T . In view of the time reversibility
of the billiard dynamics (see [CM, Sect. 2.14] for the precise involution ι), since
τ ◦ T−1 = τ ◦ ι, and τ ◦ ι is precisely the free flight time under T−1,the conditions
for T and τ are equivalent13 with those for T−1 = ιT ι and τ ◦ T−1 = τ ◦ ι.

To establish Theorem 1.2, Carrand proved14 the following consequence of SSP:

Proposition 3.1 ([Ca, Theorem 1.2]). Assume15 (1.4) and that SSP.1 and SSP.2
hold16 at t > 0 for ε = 1/4. Then there is a unique equilibrium measure µt for
−tτ , this measure is T -adapted, charges nonempty open sets, and is Bernoulli. In
addition, P∗(t) = P (t).

Therefore, to show Theorem 1.4 it suffices to prove the following lemma:

Lemma 3.2. There exists t2 ≥ htop(Φ1) such that (3.1), (3.2), and (3.3) hold at
all t ∈ [0, t2] for ε = 1/4.

12In the analogous condition of [BD1, Cor 5.3], there exists a uniform Ct such that

n∗t (|W |, δt, ε) = Ctnt
| log(|W |/δt)|
| log ε| .

13This equivalence does not always hold in [Ca] where tτ is replaced by a more general g.
14In particular, Carrand shows that (3.1) and (3.2) imply the analogues [Ca, Prop. 3.5 and

3.8] of [BD2, Prop. 3.14 and 3.15] for the Banach norm of [BD1]. He does not get a spectral gap.
15See also Lemma 1.3.
16SSP.1 suffices to construct the invariant measure µt and check it is T -adapted. SSP.2 is used

to show ergodicity, which gives that µt is an equilibrium state for −tτ , as well as the other claims.
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Setting

tC =
log Λ

τmax − τmin
> 0 ,

[Ca, Lemmas 3.2 and 3.3 and Corollary 3.4] gives that, for any fixed ε ∈ (0, 1/4],
each t ∈ [0, tC ] satisfies SSP (that is, (3.1), (3.2), and (3.3)) for δt(ε) > 0, nt(ε) <∞,
and Ct <∞.

The starting point of our bootstrap argument is the following definition

(3.4) t∞ := sup{t′ ≥ 0 such that (3.1), (3.2), and (3.3) hold for all 0 ≤ t ≤ t′} .

We already know that t∞ ≥ tC > 0. If P (t∞) < 0, then t∞ > htop(Φ1), and
we have shown Lemma 3.2. Otherwise, Lemma 3.7 below will establish that any
0 ≤ t < s∗ satisfies (3.1), (3.2), and (3.3) where s∗ > t∞ is constructed in the next
lemma (inspired by [BD2, Definition 3.9]).

Lemma 3.3 (Pressure gap: Constructing the “pivot” t∗). For all t > 0, the fol-
lowing limit exists and belongs to [−τmax,−τmin]:

P ′−(t) := lim
s↑t

P∗(t)− P∗(s)
t− s

.

In addition, for any θ0 ∈ (e−τmin , e−τmin/2), defining

s∗(t) :=
t|P ′−(t)|

|P ′−(t)|+ (log θ0)/2
, t ∈ (0, t∞) ,

there exists t∗ ∈ (0, t∞) such that s∗ := s∗(t∗) > t∞.

Remark 3.4. The parameter s∗(t∗) > t∗ is defined so that

θ
s∗/2
0 e|P

′
−(t∗)|(s∗−t∗) = 1 .

The reason for this will become clear in the proof of Lemma 3.7.

Proof. Existence of the limit follows from the convexity of P∗(t) which implies that
left (and right) derivatives exist at every t > 0. Next, if 0 < s < t, we have

(3.5)
∑

A∈Mn
0

|e−tΣnτ |C0(A) ≤ |en(s−t)τmin |
∑

A∈Mn
0

|e−sΣnτ |C0(A) , ∀n ≥ 1 ,

which implies P ′−(t) ≤ −τmin. A similar computation gives P ′−(t) ≥ −τmax.
Next, to construct t∗, we first check that

(3.6) s∗(t) > t ·
(
1 +

τmin

4τmax

)
, ∀t ∈ (0, t∞) .

Indeed, since
1

1− | log θ0|
2|P ′−(t)|

≥ 1 +
| log θ0|
2|P ′−(t)|

,

the bound (3.6) follows from the fact that |P ′−(t)| ≤ τmax implies

| log θ0|
2|P ′−(t)|

∈
[ τmin

4τmax
, 1
)
.

Then, taking t∗ = t∞ − υ for υ ∈ (0, t∞), it suffices to pick υ > 0 such that(
1 +

τmin

4τmax

)(
t∞ − υ

)
> t∞ .
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Since t∞ ≥ tC = log Λ/(τmax − τmin), the above bound holds as soon as

υ < log Λ · (τmax − τmin)−1 ·
(
1 + 4

τmax

τmin

)−1
.

�

We record for further use two key bounds due to Carrand. Assume that (3.1)
(3.2) hold for t, then by [Ca, Prop 3.5] there exists c0,t > 0 such that

(3.7) Gδtn (W, t) ≥ c0,tenP∗(t) , ∀n ≥ 1 , ∀W ∈ Ŵs with |W | ≥ δt/3 ,

and by [Ca, Prop 3.8] there exists c1,t > 0 such that

(3.8) Qn(t) ≤ 2

c1,t
enP∗(t) , ∀n ≥ 1 ,

Observe that (3.8) together with (2.8) give the upper bound

(3.9) Gδn(W, t) ≤ 4

C1δ
Qn(t) ≤ 8

C1δc1,t
enP∗(t) , ∀n ≥ 1 , ∀δ ≤ δ0 .

Finally, (3.1) and (3.7) imply the following lower bound for any scale δ = δ0/2
N .

Lemma 3.5. For all t ∈ (0, t∞) and δ = δ0/2
N , there exists c0,t(δ) > 0 such that

(3.10) Gδn(W, t) ≥ c0,t(δ)enP∗(t) , ∀n ≥ 1 , ∀W ∈ Ŵs with |W | ≥ δ/3 .

The time reversal of the statement holds for T−1.

Proof. First, assume δ < δt. Each element of Lδtn (W ) contains at least δt/(3δ)
elements of Gδn(W ). So if |W | ≥ δt/3, then (3.1) and bounded distortion for τ give

(3.11) Gδn(W, t) ≥ e−tCδt
3δ

Lδtn (W, t) ≥ e−tCδt
4δ

Gδtn (W, t) ≥ e−tCδtc0,t
4δ

enP∗(t) ,

for all n ≥ nt, where we have used (3.7) in the last step.
Next, if |W | ∈ [δ/3, δt/3), then there exists nW ≤ C ′ log(δt/δ) such that T−nW (W )

has a connected component V of length at least δt/3. This is because while T−nW
remains short, the number of components of T−nW is at most Kn + 1 by (2.2)
while |T−nW | ≥ C1Λn|W | according to (2.1). Thus setting n̄ = max{nW , nt}, we
apply (3.11) to V to estimate for n ≥ n̄.

Gδn(W, t) ≥ Gδn−n̄(V, t)e−n̄τmax ≥ e−n̄(τmax+P∗(t))e−tC
δt
4δ
c0,te

nP∗(t) ,

which proves (3.10) by definition of n̄. If n < n̄, then trivially

Gδn(W, t) ≥ e−nτmax ≥ e−n|τmax+P∗(t)|enP∗(t) ≥ e−n̄|τmax+P∗(t)|enP∗(t) .

Finally, if δ ≥ δt, then since each element of Gδn(W ) contains at most 3δ/δt
elements of Lδtn (W ) and Sδtn (W ) ⊂ Sδn(W ), we have

Gδtn (W, t) = Sδtn (W, t) + Lδtn (W, t) ≤ Sδn(W, t) +
3δ

δt
Gδn(W, t) ≤

(
1 +

3δ

δt

)
Gδn(W, t) ,

which gives the required lower bound on Gδn(W, t), applying (3.7).
The time reversed statement of the lemma follows immediately using the re-

versibility of the billiard, as explained earlier. �
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3.2. Key Lemmas. In view of Lemma 3.7 below, we adapt [BD2, Lemma 3.10]:

Lemma 3.6 (Leapfrogging via the Hölder Inequality). For all17 t ≥ t∗ and κ > 0

there exists ωκ = ωκ(t∗, t) > 0 such that for all W ∈ Ŵs with |W | ≥ δt∗/3,

Gδn(W, t) ≥ ωκ(t∗, t)

δ
·en(P∗(t∗)−(|P ′−(t∗)|+κ)(t−t∗)) ,(3.12)

∀δ =
δ0
2N
≤ δt∗ , ∀n ≥ nt∗ .

In addition, for each δ = δ0
2N

< δ0 there exists ω∗κ = ω∗κ(t∗, t, δ) > 0 such that for

all W ∈ Ŵs with |W | ≥ δ/3,

(3.13) Gδn(W, t) ≥ ω∗κ(t∗, t, δ) · en(P∗(t∗)−(|P ′−(t∗)|+κ)(t−t∗)) , ∀n ≥ 1 .

Finally, the time reversals of (3.12) and (3.13) also hold for the billiard map T−1.

The proof gives constants ωκ(t∗, t) and ω∗κ(t∗, t, δ) which tend to zero as t→∞
(because the constant η in the proof tends to zero as t→∞).

Proof. We start with (3.12) (for t ≥ t∗). Recall from the proof of (3.11) that for
u ∈ (0, t∞) and δ < δu, if |W | ≥ δu/3 and n ≥ nu, then

(3.14) Gδn(W,u) ≥ e−uC δu
4δ
c0,ue

nP∗(u) , ∀δ < δu ,

since each Vi ∈ Lδun (W ) contains at least δu/3δ elements of Gδn(W ).
Now, for s ∈ (0, t∗), taking η(s, t, t∗) ∈ (0, 1] such that ηt + (1 − η)s = t∗, the

Hölder inequality gives
∑
i a
t∗
i ≤

(∑
i a
t
i

)η(∑
i a
s
i

)1−η
for any positive numbers ai.

It follows that for all δ≤ δt∗ , each W ∈ Ŵs with |W | ≥ δt∗/3 and any n ≥ nt∗ ,

Gδn(W, t) ≥ (Gδn(W, t∗))
1/η

(Gδn(W, s))(1−η)/η

≥
(
e−t∗C

δt∗
4δ
c0,t∗e

nP∗(t∗)

)1/η (
8

C1δc1,s
enP∗(s)

)1−1/η

=
1

δ

(
e−t∗C

δt∗
4
c0,t∗

)1/η (
8

C1c1,s

)1−1/η

en(P∗(t∗)−P∗(s)) 1−η
η enP∗(t∗) ,(3.15)

where we used (3.14) with u = t∗ for the lower bound in the numerator, and (3.9)
for s for the upper bound in the denominator, recalling that {s, t∗} ⊂ (0, t∞) and
δt∗ ≤ δ1 < δ0.

Since η(s, t, t∗) = (t∗ − s)/(t− s), we have

(P∗(t∗)− P∗(s))
1− η
η

=
t− t∗
t∗ − s

(P∗(t∗)− P∗(s)) .

Fix κ > 0 and choose s = s(κ, t∗) ∈ (0, 1) close enough to t∗ (i.e. small enough
ηκ = η(s(κ, t∗), t, t∗) > 0) such that (since 0 < s < t∗ and P ′−(u) < 0 for all u > 0)

(3.16) (P∗(s)− P∗(t∗))/(t∗ − s) ≤ |P ′−(t∗)|+ κ .

The bound (3.12) follows, setting, for s = s(κ, t∗) (recall that ηκ depends on t),

ωκ(t∗, t) =

(
e−t∗C

δt∗
4
c0,t∗

)1/ηκ ( 8

C1c1,s

)1−1/ηκ

.

17The same proof works replacing t∗ by an arbitrary number in (0, t∞), as long as t ≥ t∗.
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For (3.13), we use that (3.9) for s and Lemma 3.5 for t∗ imply that for any

δ ∈ (0, δt∗), for each W ∈ Ŵs with |W | ≥ δ/3, and all n ≥ 1,
(3.17)

Gδn(W, t) ≥ (Gδn(W, t∗))
1/η

(Gδn(W, s))(1−η)/η
≥
(
c0,t∗(δ) · enP∗(t∗)

)1/η( 8

C1δc1,s
enP∗(s)

)(η−1)/η
,

where we used (3.10) for t∗. We conclude by taking s = s(κ, t∗) ∈ (0, 1) close
enough to t∗ such that (3.16) holds, setting (again, ηκ depends on t)

ω∗κ(t∗, t, δ) = c0,t∗(δ)
1/ηκ(8)1−1/ηκ(C1δc1,s)

1/ηκ−1 .

�

Our second key lemma is inspired by [BD2, Lemma 3.11] (the proof below re-
quires a more involved decomposition of orbits):

Lemma 3.7. Let t∗ < t∞ and s∗(t∗) > t∞ be as in Lemma 3.3. If P (t∗) ≥ 0 then
the SSP conditions (3.1), (3.2), and (3.3) hold at all t ∈ [t∗, s∗) for ε = 1/4.

Proof of Lemma 3.7. We first consider condition (3.1) of SSP.1.
By definition of s∗ (recall that inf |P ′−(s)| > − log θ0/2)

(3.18) θ
t′/2
0 e|P

′
−(t∗)|(t′−t∗) < 1 , ∀t∗ ≤ t′ < s∗ .

Thus for all t′ ∈ [t∗, s∗) there exists κ1 = κ(t∗, t
′) > 0 such that

(3.19) ε̄ := sup
t∗≤t≤t′

(
θ
t/2
0 e(|P ′−(t∗)|+κ1)(t−t∗)

)
< 1 .

For m1 ≥ max{n0(t∗, θ0), nt∗} to be chosen later depending on ε = 1/4, ε̄, δt∗ , and
κ1, pick δ3(m1)∈ (0, δt∗ ] (similarly to the choice of δ̄0 in the proof of Lemma 2.1)
so small that any stable curve of length at most δ3 can be cut into at most Kj + 1
connected components by S−j for 0 ≤ j ≤ 2m1.

For n ≥ m1, write n = `m1 + r, for some 0 ≤ r < m1 and ` ≥ 1. Let W ∈ Ŵs

with |W | ≥ δ3/3. We group the curves Wi ∈ Sδ3n (W ) with |Wi| < δ3/3, as in
the proof of [BD2, Lemma 3.11], according to the largest k ∈ {0, . . . , ` − 1} such

that T (`−k)m1+rWi ⊂ Vj ∈ Lδ3km1
(W ) (such a k must exist since |W | ≥ δ3/3 while

|Wi| < δ3/3). Denote18 by Īδ3(`−k)m1+r(Vj) the set of Wi ∈ Gδ3n (W ) thus associated

with Vj ∈ Lδ3km1
(W ) (such elements are known to be small only at iterates jm1 +r).

For such Wi, T
(`−k′)m1+r(Wi) is contained in an element of Gδ3m1k′

(W ) shorter than

δ3/3 for k′ < k. So for k > 0, we may apply the inductive bound (2.6) since

elements of Īδ3(`−k)m1+r(Vj) can only be created by intersections with S−m1 at the

first `− k − 1 iterates and with S−m1−r at the last step. For k = 0, W itself may
be longer than δ3. Thus we first subdivide W into at most δ0/δ3 curves of length
at most δ3 and then apply (2.6) to each piece. This yields, for t∗ ≤ t ≤ t′,

Sδ3n (W, t) ≤
`−1∑
k=0

∑
Vj∈L

δ3
km1

(W )

|e−tΣkm1
τ |C0(Vj)

∑
Wi∈Ī

δ3
(`−k)m1+r

(Vj)

|e−tΣ(`−k)m1+rτ |C0(Wi)

18Note that Īδ
(`−k)m1+r

(Vj) was abusively denoted Iδ
(`−k)m1+r

(Vj) in the proof of [BD1,

Lemma 5.2], see footnote 23 there.
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≤ δ0
δ3
θtn0 +

`−1∑
k=1

∑
Vj∈L

δ3
km1

(W )

|e−tΣkm1
τ |C0(Vj)θ

t((`−k)m1+r)
0 .(3.20)

Next, recalling (2.3), for any k ≥ 1, each Vj ∈ Lδ3km1
(W ) is contained in an el-

ement Ui ∈ G
δt∗
km1

(W ). Since |Vj | ≥ δ3/3, there are at most 3δt∗/δ3 different Vj

corresponding to each fixed Ui. Then we group each Ui ∈ G
δt∗
km1

(W ) according to

its most recent long ancestor Wa ∈ L
δt∗
j (W ) for some j ∈ [0, km1]. Note that

j = 0 is possible if |W | ≥ δt∗/3. If |W | < δt∗/3, and no such time j exists for Ui,
then by convention we also associate the index j = 0 to such Ui. In either case,

Ui ∈ I
δt∗
km1

(W ), and we may apply (2.6) after possibly subdividing W into at most

δ0/δt∗ curves of length at most δt∗ . Then, for j ≥ 1, we apply (2.7) from Lemma 2.2

to each Iδt∗km1−j(·) (since δ3 ≤ δt∗ , the constant m1(δt∗) ≤ m1(δ3), so the bound

holds with our chosen m1, although it may not be optimal),

Lδ3km1
(W, t) ≤ 3δt∗

δ3

( ∑
Ui∈I

δt∗
km1

(W )

|e−tΣkm1
τ |C0(Ui)

+

km1∑
j=1

∑
Wa∈L

δt∗
j (W )

|e−tΣjτ |C0(Wa)

∑
Ui∈I

δt∗
km1−j

(Wa)

|e−tΣkm1−jτ |C0(Ui)

)

≤ 3δt∗
δ3

(
δ0
δt∗

θtkm1
0 +

km1∑
j=1

∑
Wa∈L

δt∗
j (W )

|e−tΣjτ |C0(Wa)Km1θ
t(km1−j)
0

)
.

Combining this estimate with (3.20) yields (summing over k for the j = 0 terms
and adding the term corresponding to k = 0),

(3.21) Sδ3n (W, t) ≤ 3δ0
δ3

n

m1
θtn0 +

3δt∗
δ3

`−1∑
k=1

km1∑
j=1

Km1θ
t(n−j)
0 L

δt∗
j (W, t) .

For fixed k ∈ {1, . . . , ` − 1}, and for each 1 ≤ j ≤ km1 such that L
δt∗
j (W ) 6= ∅,

the lower bound (3.12) in Lemma 3.6 and the distortion constant e−tC ≥ e−t
′C

imply (note that n− j ≥ `m1 + r − km1 ≥ r +m1 ≥ nt∗),

Gδ3n (W, t) ≥
∑

Wa∈L
δt∗
j (W )

e−tC |e−tΣjτ |C0(Wa)

∑
Wi∈G

δ3
n−j(Wa)

|e−tΣn−jτ |C0(Wi)

≥ ωκ1
(t∗, t)

δ3et
′C

e(n−j)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))
∑

Wa∈L
δt∗
j (W )

|e−tΣjτ |C0(Wa) .(3.22)

Combining (3.21) with either (3.22) (for j ≥ 1) or (3.13) from Lemma 3.6 (for

j = 0) and setting ∆ = 3et
′Cδt∗Km1, yields (using that P (t∗) ≥ 0),

Sδ3n (W, t)

Gδ3n (W, t)
≤ n

3δ0
δ3m1

θtn0

ω∗κ1
(t∗, t, δ3)en(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))

+

`−1∑
k=1

km1∑
j=1

3δt∗
δ3
Km1θ

t(n−j)
0 L

δt∗
j (W, t)

ωκ1 (t∗,t)

δ3et
′C e(n−j)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))L

δt∗
j (W, t)
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≤ 3δ0
δ3 · ω∗κ1

(t∗, t, δ3) ·m1
n(e−P∗(t∗)ε̄)n +

∆

ωκ1
(t∗, t)

`−1∑
k=1

km1∑
j=1

(e−(P∗(t∗)ε̄)n−j

≤ 3δ0
δ3 · ω∗κ1

(t∗, t, δ3) ·m1
nε̄n +

∆

ωκ1
(t∗, t)

1

1− ε̄

`−1∑
k=1

ε̄n−km1

≤ 3δ0
δ3 · ω∗κ1

(t∗, t, δ3) ·m1
nε̄n +

3et
′Cδt∗Km1

ωκ1(t∗, t)·
ε̄m1

(1− ε̄)(1− ε̄m1)
.(3.23)

To establish (3.1), choose first m1 ≥ nt∗ such that the second term is less than ε
2 ,

setting δt := δ3(m1), and then nt ≥ m1 such that the first term is less than ε
2 for

n ≥ nt.
We next show (3.2). For n ≥ nt, we deduce from (3.1) and (3.13) (for small

κ > 0) that, for all W ∈ Ŵs with |W | ≥ δt/3,

Lδtn (W, t) ≥ 3

4
Gδtn (W, t) ≥ 3

4
ω∗κ(t∗, t, δt)e

nP∗(t∗)e−n(t−t∗)(|P ′−(t∗)|+κ) .

Since e−|P
′
−(t∗)|(t−t∗) > θ

t/2
0 ≥ e−tτmin/2 by (3.18), while P∗(t∗) ≥ 0, it suffices to

take κ such that (t− t∗)κ+ t
2τmin < tτmin to complete the proof of (3.2).

It remains to consider SSP.2. We may assume |W | < δt∗/3 since otherwise (3.1)
from SSP.1 implies (3.3) with n∗t = nt. As observed in the proof of [BD1, Cor. 5.3],
there exists C̄2 (depending only on the billiard table) such that the first iterate `0
at which Gδt∗`0 (W ) contains at least one element of length more than δt∗/3 satisfies

`0 ≤ n2 = n2(δt∗) := C̄2| log(|W |/δt∗)| .

Since |W | < δt∗/3, it suffices to consider the term corresponding to j = 0 (and
k = 0) in (3.23) (the other one is bounded by ε/2 for n ≥ m1 for m1 chosen as
above). For this purpose, for any n = `m1 + r ≥ m1, the first term of (3.21) is
replaced by

(3.24)
δt∗
3δ3

θtn0 +

`−1∑
k=1

3δt∗
δ3

θtn0 ≤
3δt∗n

δ3m1
θtn0 ,

where we have applied (2.6) from Lemma 2.2. For any n ≥ max{n2,m1}, the bound
(3.13) from Lemma 3.6 is replaced by

(3.25) Gδ3n (W, t) ≥ ω∗κ1
(t∗, t, δ3) · e−tn2τmaxe(n−n2)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗)) .

Dividing (3.24) by (3.25), the term corresponding to j = 0 in (3.23) is bounded by

3δt∗
n
m1
θtn0

δ3 · ω∗κ1
(t∗, t, δ3) · e−tn2τmaxe(n−n2)(P∗(t∗)−(|P ′−(t∗)|+κ1)(t−t∗))

≤ 3δt∗e
tn2τmax

m1 · ω∗κ1
(t∗, t, δ3) · δ3

nε̄n−n2 .

We conclude, since, if n∗t /n2 is large enough (depending on t, ε̄, δ3 = δt) then

n(ε̄n/n2etτmax)n2 <
ε

2
·
ε̄n2 ·m1·δ3 · ω∗κ1

(t∗, t, δ3)

3δt∗
, ∀n ≥ n∗t .

�
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3.3. Theorem 1.4: Proof of Lemma 3.2. In view of the discussion above
Lemma 3.2, it only remains to show Lemma 3.2 to establish Theorem 1.4:

Proof of Lemma 3.2. If P (t∞) < 0 we are done, as explained before Lemma 3.3.
Assume for a contradiction that P (t∞) ≥ 0. Let t∗ < t∞ and s∗(t∗) > t∞ be as in
Lemma 3.3, and fix t∞ < t2 < s∗. Then Lemma 3.7 applied to ε = 1/4 gives that
the SSP conditions (3.1), (3.2), and (3.3) hold for all t ∈ [0, t2]. Since t2 > t∞, this
is a contradiction. �
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