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Lecture 6: Measure of Maximal Entropy, Part II

Goal for today: Introduce Banach spaces adapted to the potential
for the measure of maximal entropy. Due to these modifications,
we are not able to prove a spectral gap for the transfer operator,
yet we will gain enough control to prove existence and uniqueness
of the measure of maximal entropy.

Recall from Lecture 5,

L0f(x) =
f(T−1x)

JsT (T−1x)
,

is the transfer operator corresponding to the potential for the
measure of maximal entropy (MME). Want to construct the MME
from the product of left and right maximal eigenvectors of L0.

Reference: V. Baladi and M. Demers, On the measure of maximal
entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc.
33 (2020), 381–449.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Map and Transfer Operator

Billiard Map T (r, ϕ) = (r1, ϕ1) is the collision map associated
to a finite horizon Lorentz gas

Billiard table Q = T2\∪iBi; scatterers Bi.
Boundaries of scatterers are C3 and have strictly positive
curvature.

Assume Finite Horizon condition: there is no trajectory
making only tangential collisions =⇒ an upper bound on the
free flight time between collisions.

Transfer operator for geometric potential with t = 0,

L0f =
f ◦ T−1

JsT ◦ T−1

JsT ≈ cosϕ so the potential is unbounded
JsT is not continuous on any open set
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Stable Curves and Definition of Topological Entropy

Ŵs set of cone-stable curves with bounded curvature and
length ≤ δ0. Ws ⊂ Ŵs set of local stable manifolds.

For n ∈ Z, define Sn = ∪−ni=0T
iS0,

Mn
0 = connected components of M \ Sn for n ≥ 1

h∗ := lim
n→∞

1

n
log #Mn

0

In Lecture 5, we established:

∃δ1, c1 > 0 such that for any W ∈ Ŵs with |W | ≥ δ1/3,

#Gn(W ) ≥ c1#Mn
0 , for all n ≥ 1.

and exact exponential growth of #Mn
0 : ∃C2 ≥ 1 s.t.

enh∗ ≤ #Mn
0 ≤ C2e

nh∗ , for all n ≥ 1.
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New Assumption: ‘Sparse Recurrence’ to Singularities

All results today will use following additional assumption on T .

Fix n0 ∈ N and an angle ϕ0 close to π/2.

Let s0 ∈ (0, 1) be the smallest number such that any orbit of
length n0 has at most s0n0 collisions with |ϕ| ≥ ϕ0.

Finite horizon guarantees that we can always choose n0 and ϕ0 so
that s0 < 1. (Indeed, no triple tangencies implies that s0 ≤ 2

3 .)

Assumption: h∗ > s0 log 2

Fact: If W is a local stable manifold, then |T−1W | ≤ C|W |1/2.

Our assumption ensures that the growth due to tangential collisions
does not exceed the exponential rate of growth given by h∗.
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Toy Calculation in Previous Norms

Recall that the strong stable norm for t > 0 was

‖f‖s = sup
W∈Ws

sup
|ψ|Cα(W )≤|W |−1/p

∫
W
fψ dmW ,

and the weight |W |−1/p was needed to control the contribution
from unmatched pieces in the strong unstable norm estimate.

But now we have no Jacobian or homogeneity strips. So suppose
W ∈ Ws s.t. T−1W has a single component with
|T−1W | ≈ |W |1/2. Then if ψ = |W |−1/p,∫
W
L0f ψ = |W |−1/p

∫
T−1W

f ≤ ‖f‖s
|T−1W |1/p

|W |1/p
≈ ‖f‖s|W |−1/2p

and taking sup over W ∈ Ws yields ∞. The spectral radius of
L0 =∞ on such a space, for any p > 0.

To avoid this, we use a logarithmic weight instead.
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Definition of Norms: Weak Norm

Choose α, β, ς > 0 and γ > 1 such that

β < α ≤ 1/3, 2s0γ < eh∗ , ς < γ .

Choose n0 so that

1

n0
log(Kn0 + 1) < h∗ − γs0 log 2 ,

where K is from the linear bound on complexity.

Fix the length scale δ0 > 0 so that any W ∈ Ws (with |W | ≤ δ0)
is cut into at most Kn0 + 1 pieces by S−n0 .

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W
f ψ dmW .

Define Bw to be the completion of C1(M) in the | · |w norm.
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Definition of Norms: Strong Norm

Define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|Cβ(W )
≤| log |W | |γ

∫
W
f ψ dmW

Define the strong unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

d(W1,W2)≤ε

sup
|ψi|Cα(Wi)

≤1

d0(ψ1,ψ2)=0

| log ε|ς
∣∣∣∣∫
W1

fψ1 −
∫
W2

fψ2

∣∣∣∣
The strong norm of f is defined to be ‖f‖B = ‖f‖s + ‖f‖u,

Define B to be the completion of C1(M) in the ‖ · ‖B norm.
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Recall Distances Between Curves and Test Functions

View W ∈ Ŵs as the graph of a function of the r-coordinate
over an interval IW ,

W = {GW (r) : r ∈ IW } = {(r, ϕW (r)) : r ∈ IW } .

Given W1,W2 ∈ Ŵs with functions ϕW1 , ϕW2 , define

d(W1,W2) = |IW1 4 IW2 |+ |ϕW1 − ϕW2 |C1(IW1
∩IW2

) ,

if IW1 ∩ IW2 6= ∅, and d(W1,W2) =∞ otherwise.

If d(W1,W2) <∞, then for ψ1 ∈ C0(W1), ψ2 ∈ C0(W2),
define

d0(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |C0(IW1
∩IW2

) ,
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No contraction of ‖ · ‖u
The logarithmic modulus of continuity in the strong unstable norm
prevents contraction of ‖ · ‖u.

For strong unstable norm, estimate
∣∣∣∫W1

Ln0f ψ1 −
∫
W2
Ln0f ψ2

∣∣∣

W1

W2

S−n

T−n

Gn(W1)

Gn(W2)

If d(W 1,W 2) ≤ ε, and if W 1
i ∈ Gn(W 1), W 2

i ∈ Gn(W 2
i ) are

matched, then d(W 1
i ,W

2
i ) ≤ CΛ−nε.

But the contraction is | logCΛ−nε|ς
| log ε|ς , and taking the supremum

over ε > 0 yields 1.
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Banach Spaces and Inequalities

Theorem ([Baldi, D. ’20])

We have a sequence of inclusions,

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

Assume h∗ > s0 log 2. There exists C > 0 such that for all
f ∈ B, n ≥ 0,

|Lnf |w ≤ C|f |w#Mn
0

‖Lnf‖s ≤ C(σn‖f‖s + |f |w)#Mn
0 , for some σ < 1

‖Lnf‖u ≤ C(‖f‖u + ‖f‖s)#Mn
0

The inequalities above are not true Lasota-Yorke inequalities due
to lack of contraction in the strong unstable norm.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Bounds on the Spectral Radius of L0

Although we do not prove quasi-compactness of L0 on B, we do
have good control of ‖Ln0‖B.

Our upper bound #Mn
0 ≤ C2e

nh∗ plus our ‘Lasota-Yorke’
inequalities imply that ‖Ln0‖B ≤ Cenh∗ , for all n ≥ 1.

Our lower bound on #Gn(W ) implies that

‖Ln0 1‖s ≥ |Ln0 1|w ≥
∫
W
Ln0 1 =

∑
Wi∈G

δ1
n (W )

|Wi|

≥ δ1

3

3

4
#Gδ1n (W ) ≥ Cenh∗ .

This implies that the sequence e−nh∗Ln0 1 is uniformly bounded
away from 0 and ∞ in the strong norm. We use this fact to
construct an eigenmeasure for L0 with eigenvalue eh∗ .
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Construction of µ∗

The sequence

νn =
1

n

n−1∑
k=0

e−kh∗Lk01, is uniformly bounded in B.

By compactness, a subsequence converges in Bw.
Let ν ∈ Bw be a limit point of νn. ν is a measure.

Similarly, let ν̃ ∈ (Bw)∗ be a limit point of the sequence

1

n

n−1∑
k=0

e−kh∗(L∗0)k(dµSRB).

Define µ∗(ψ) =
ν̃(ψν)

ν̃(ν)
, for ψ ∈ C1(M).

Since L0ν = eh∗ν and L∗0ν̃ = eh∗ ν̃, we have µ∗(ψ ◦ T ) = µ∗(ψ),
i.e. µ∗ is an invariant measure for T .
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Hyperbolicity of µ∗

Key Fact: Although ν ∈ Bw, it follows from the convergence of
νn to ν in the | · |w norm that ‖ν‖B <∞.

This implies estimates of the form:

For any k ∈ Z, ∃Ck > 0 s.t.

ν(Nε(Sk)) ≤ Ck(− log ε)−γ , µ∗(Nε(Sk)) ≤ Ck(− log ε)−γ .

Nε(Sk) = ε-neighborhood of Sk in M , γ > 1.∫
M
− log d(x,S±1) dµ∗(x) <∞ (µ∗ is T -adapted).

µ∗-a.e. x ∈M has a stable and unstable manifold of positive
length. The same is true with respect to ν.
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Ergodicity of µ∗

Since µ∗ is hyperbolic, we cover a
full measure set of M with Cantor
rectangles, and study the properties
of µ∗ on each rectangle.

A Cantor Rectangle R

Lemma (Absolute continuity of holonomy)

On each Cantor rectangle R, the holonomy map sliding along
unstable manifolds in R is absolutely continuous with respect to
the conditional measures of µ∗ on stable manifolds.

That ‖ν‖B <∞ is crucial to the proof of the lemma.

Consequences:

Each Cantor rectangle R belongs to one ergodic component.

Since T is topologically mixing, we can force images of
rectangles to overlap =⇒ (Tn, µ∗) is ergodic for all n.
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Mixing and Bernoulli Property of µ∗

The local product structure of the Cantor rectangles, together
with a global argument showing that a full measure set of
points on each component of M can be connected by a
network of stable/unstable manifolds, enables us to prove that
(T, µ∗) is K-mixing, following techniques of [Pesin ’77, ’92].

K-mixing + hyperbolicity + absolute continuity of µ∗ +
bounds on µ∗(Nε(S±1))
=⇒ the partition M1

−1 is very weakly Bernoulli, following
the technique of [Chernov, Haskell ’96].

Since
∨∞
n=−∞ T

−n(M1
−1) generates the full σ-algebra for T ,

this implies by [Ornstein, Weiss ’73] that (T, µ∗) is Bernoulli.
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Entropy of µ∗

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε, ∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M and n ≥ 1,

µ∗(B(x, n, ε)) ≤ Ce−nh∗ .

[Brin, Katok ’81] =⇒ for µ∗-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

− 1

n
logµ∗(B(x, n, ε)) = hµ∗(T

−1) = hµ∗(T ).

This plus the Proposition implies hµ∗(T ) ≥ h∗
But h∗ ≥ hµ∗(T ) by Theorem 1.

Conclude: h∗ = hµ∗(T ).
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Uniqueness of µ∗

The Bowen argument for uniqueness uses

∀ε > 0, ∃C > 0 s.t. for µ∗-a.e. x ∈M, µ∗(B(x, n, ε)) ≥ Ce−nh∗ .

This fails for billiards due to rate of approach to singularity set.
Rather: ∀η > 0 and µ∗-a.e. x ∈M ,

∃C = C(η, x) > 0 s.t. µ∗(B(x, n, ε)) ≥ Ce−n(h∗+η).

This is not sufficient for the Bowen argument.

However: we prove a version of this estimate that ‘most’ x ∈M
belong to an element of Mj

0 satisfying good lower bounds ‘often.’

Choose n̄ ∈ N s.t. (Kn̄+ 1)1/n̄ < eh∗/4

Choose δ2 > 0 s.t. if A ∈Mn
−k satisfies

max{diamu(A), diams(A)} ≤ δ2 ,

then A \ S±n̄ consist of at most Kn̄+ 1 connected components.
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Nonuniform Lower Bounds

Sh2n
0 := {A ∈M2n

0 :∀j, 0 ≤ j ≤ n/2,
T jA ⊂ E ∈M2n−j

0 s.t. diams(E) < δ2}

Similar definition for Sh0
−2n with diamu(E) replacing diams(E).

Lemma

Let B2n = {A ∈M2n
0 : either A ∈ Sh2n

0 or T 2nA ∈ Sh0
−2n}

There exists C > 0 s.t. for all n ≥ 1, #B2n ≤ Ce7nh∗/4.

Lemma

∀k ≥ 1, if E ∈Mk
0 with diams(E) ≥ δ2 and diamu(T kE) ≥ δ2

then µ∗(E) ≥ Cδ2e−kh∗ , for some Cδ2 > 0.

If A ∈ G2n =M2n
0 \B2n, then ∃j ≤ n s.t. T jA ⊂ E ∈M2n−j

0

and E satisfies second lemma.

Together with a time shift to group elements of M2n
0 according to

M2n−j
0 , this is sufficient to adapt the Bowen argument.
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Variational Principle and Measure of Maximal Entropy

Theorem ([Baladi, D. ’20])

Let T be the billiard map corresponding to a finite horizon periodic
Lorentz gas. Assume h∗ > s0 log 2. Then,

h∗ = lim
n→∞

1

n
log #Mn

0 = sup
µ
hµ(T ).

Moreover, there exists a unique T -invariant measure µ∗ such that

hµ∗(T ) = h∗

h∗ = P (0) = limt↓0 P (t) = limt↓0 P∗(t)

h∗ = htop(T,M ′)

(T, µ∗) is Bernoulli and positive on open sets∫
− log d(x,S±1) dµ∗(x) <∞

Last item implies that µ∗ is T -adapted. By [Lima, Matheus ’18],
Buzzi ’20], ∃C > 0 such that Pn(T ) ≥ Cenh∗ , for n large.
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Open Questions

Can one establish a rate of mixing for µ∗?

Other limit theorems and properties of µ∗? e.g. Central Limit
Theorem

Can one find a finite horizon Sinai billiard table with
h∗ ≤ s0 log 2?

If so, does an MME exist and is it T -adapted?

For the geometric potentials −t log JuT , what happens for
t > t∗? Is P (t) analytic for all t > 0 or is there a phase
transition at some t? > 1? If so, how does t? depend on the
table?
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