Anisotropic Banach Spaces and Thermodynamic Formalism for Dispersing Billiard Maps Lecture 6: Measure of Maximal Entropy, Part II

Mark Demers

Fairfield University Research supported in part by NSF grant DMS 1800321

Spring School on Transfer Operators Research Semester: Dynamics, Transfer Operators and Spectra Centre Interfacultaire Bernoulli, EPFL March 22 - 26, 2021

Lecture 6: Measure of Maximal Entropy, Part II

Goal for today: Introduce Banach spaces adapted to the potential for the measure of maximal entropy. Due to these modifications, we are not able to prove a spectral gap for the transfer operator, yet we will gain enough control to prove existence and uniqueness of the measure of maximal entropy.

Recall from Lecture 5,

$$\mathcal{L}_0 f(x) = \frac{f(T^{-1}x)}{J^s T(T^{-1}x)},$$

is the transfer operator corresponding to the potential for the measure of maximal entropy (MME). Want to construct the MME from the product of left and right maximal eigenvectors of \mathcal{L}_0 .

Reference: V. Baladi and M. Demers, *On the measure of maximal entropy for finite horizon Sinai billiard maps*, J. Amer. Math. Soc. **33** (2020), 381–449.

Map and Transfer Operator

- Billiard Map $T(r,\varphi)=(r_1,\varphi_1)$ is the collision map associated to a finite horizon Lorentz gas
 - Billiard table $\mathcal{Q} = \mathbb{T}^2 \setminus \bigcup_i B_i$; scatterers B_i .
 - $\bullet\,$ Boundaries of scatterers are \mathcal{C}^3 and have strictly positive curvature.
- Assume Finite Horizon condition: there is no trajectory making only tangential collisions => an upper bound on the free flight time between collisions.
- Transfer operator for geometric potential with t = 0,

$$\mathcal{L}_0 f = \frac{f \circ T^{-1}}{J^s T \circ T^{-1}}$$

- $J^sT\approx\cos\varphi$ so the potential is unbounded
- $J^{s}T$ is not continuous on any open set

Stable Curves and Definition of Topological Entropy

• $\widehat{\mathcal{W}}^s$ set of cone-stable curves with bounded curvature and length $\leq \delta_0$. $\mathcal{W}^s \subset \widehat{\mathcal{W}}^s$ set of local stable manifolds.

• For
$$n \in \mathbb{Z}$$
, define $\mathcal{S}_n = \cup_{i=0}^{-n} T^i \mathcal{S}_0$,

*M*ⁿ₀ = connected components of *M* \ *S_n* for *n* ≥ 1 *h*_{*} := lim_{n→∞} 1/n log #*M*ⁿ₀

In Lecture 5, we established:

 $\exists \delta_1, c_1 > 0$ such that for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$#\mathcal{G}_n(W) \ge c_1 #\mathcal{M}_0^n$$
, for all $n \ge 1$.

and exact exponential growth of $\#\mathcal{M}_0^n$: $\exists C_2 \geq 1$ s.t.

$$e^{nh_*} \le \#\mathcal{M}_0^n \le C_2 e^{nh_*}$$
, for all $n \ge 1$.

All results today will use following additional assumption on T.

- Fix $n_0 \in \mathbb{N}$ and an angle φ_0 close to $\pi/2$.
- Let s₀ ∈ (0, 1) be the smallest number such that any orbit of length n₀ has at most s₀n₀ collisions with |φ| ≥ φ₀.

Finite horizon guarantees that we can always choose n_0 and φ_0 so that $s_0 < 1$. (Indeed, no triple tangencies implies that $s_0 \leq \frac{2}{3}$.)

Assumption: $h_* > s_0 \log 2$

Fact: If W is a local stable manifold, then $|T^{-1}W| \leq C|W|^{1/2}$.

Our assumption ensures that the growth due to tangential collisions does not exceed the exponential rate of growth given by h_* .

Toy Calculation in Previous Norms

Recall that the strong stable norm for t > 0 was

$$||f||_s = \sup_{W \in \mathcal{W}^s} \sup_{|\psi|_{C^{\alpha}(W)} \le |W|^{-1/p}} \int_W f\psi \, dm_W \,,$$

and the weight $|W|^{-1/p}$ was needed to control the contribution from unmatched pieces in the strong unstable norm estimate.

But now we have no Jacobian or homogeneity strips. So suppose $W \in \mathcal{W}^s$ s.t. $T^{-1}W$ has a single component with $|T^{-1}W| \approx |W|^{1/2}$. Then if $\psi = |W|^{-1/p}$,

$$\int_{W} \mathcal{L}_0 f \, \psi = |W|^{-1/p} \int_{T^{-1}W} f \le ||f||_s \frac{|T^{-1}W|^{1/p}}{|W|^{1/p}} \approx ||f||_s |W|^{-1/2p}$$

and taking sup over $W \in W^s$ yields ∞ . The spectral radius of $\mathcal{L}_0 = \infty$ on such a space, for any p > 0.

To avoid this, we use a logarithmic weight instead.

Definition of Norms: Weak Norm

Choose $\alpha,\beta,\varsigma>0$ and $\gamma>1$ such that

$$\beta < \alpha \leq 1/3, \quad 2^{s_0\gamma} < e^{h_*}, \quad \varsigma < \gamma \, .$$

Choose n_0 so that

$$\frac{1}{n_0} \log(K n_0 + 1) < h_* - \gamma s_0 \log 2 \,,$$

where K is from the linear bound on complexity.

Fix the length scale $\delta_0 > 0$ so that any $W \in \mathcal{W}^s$ (with $|W| \le \delta_0$) is cut into at most $Kn_0 + 1$ pieces by \mathcal{S}_{-n_0} .

For $f \in C^1(M)$, define the weak norm of f by

$$|f|_{w} = \sup_{W \in \mathcal{W}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\alpha}(W) \\ |\psi|_{\mathcal{C}^{\alpha}(W)} \leq 1}} \int_{W} f \, \psi \, dm_{W} \, .$$

Define \mathcal{B}_w to be the completion of $C^1(M)$ in the $|\cdot|_w$ norm.

Define the strong stable norm of f by

$$\|f\|_{s} = \sup_{W \in \mathcal{W}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\beta}(W) \\ |\psi|_{\mathcal{C}^{\beta}(W)} \le |\log|W||^{\gamma}}} \int_{W} f \,\psi \, dm_{W}$$

Define the **strong unstable norm** of f by

$$\|f\|_u = \sup_{\varepsilon \le \varepsilon_0} \sup_{\substack{W_1, W_2 \in \mathcal{W}^s \\ d(W_1, W_2) \le \varepsilon}} \sup_{\substack{|\psi_i|_{\mathcal{C}^\alpha(W_i)} \le 1 \\ d_0(\psi_1, \psi_2) = 0}} \left|\log \varepsilon\right|^{\varsigma} \left| \int_{W_1} f\psi_1 - \int_{W_2} f\psi_2 \right|$$

The strong norm of f is defined to be $||f||_{\mathcal{B}} = ||f||_s + ||f||_u$, Define \mathcal{B} to be the completion of $C^1(M)$ in the $|| \cdot ||_{\mathcal{B}}$ norm.

Recall Distances Between Curves and Test Functions

• View $W\in \widehat{\mathcal{W}}^s$ as the graph of a function of the r-coordinate over an interval I_W ,

$$W = \{G_W(r) : r \in I_W\} = \{(r, \varphi_W(r)) : r \in I_W\}.$$

• Given $W_1, W_2 \in \widehat{\mathcal{W}}^s$ with functions φ_{W_1} , φ_{W_2} , define

$$d(W_1, W_2) = |I_{W_1} \bigtriangleup I_{W_2}| + |\varphi_{W_1} - \varphi_{W_2}|_{C^1(I_{W_1} \cap I_{W_2})},$$

if $I_{W_1} \cap I_{W_2} \neq \emptyset$, and $d(W_1, W_2) = \infty$ otherwise.

• If $d(W_1,W_2)<\infty$, then for $\psi_1\in C^0(W_1)$, $\psi_2\in C^0(W_2)$, define

$$d_0(\psi_1,\psi_2) = |\psi_1 \circ G_{W_1} - \psi_2 \circ G_{W_2}|_{C^0(I_{W_1} \cap I_{W_2})},$$

No contraction of $\|\cdot\|_u$

The logarithmic modulus of continuity in the strong unstable norm prevents contraction of $\|\cdot\|_u$.

For strong unstable norm, estimate $\left|\int_{W_1} \mathcal{L}_0^n f\,\psi_1 - \int_{W_2} \mathcal{L}_0^n f\,\psi_2
ight|$

- If $d(W^1, W^2) \leq \varepsilon$, and if $W_i^1 \in \mathcal{G}_n(W^1)$, $W_i^2 \in \mathcal{G}_n(W_i^2)$ are matched, then $d(W_i^1, W_i^2) \leq C\Lambda^{-n}\varepsilon$.
- But the contraction is $\frac{|\log C\Lambda^{-n}\varepsilon|^{\varsigma}}{|\log \varepsilon|^{\varsigma}}$, and taking the supremum over $\varepsilon > 0$ yields 1.

Theorem ([Baldi, D. '20])

• We have a sequence of inclusions,

$$\mathcal{C}^1(M) \subset \mathcal{B} \subset \mathcal{B}_w \subset (\mathcal{C}^\alpha(M))^*.$$

• The embedding of the unit ball of \mathcal{B} in \mathcal{B}_w is compact.

• Assume $h_* > s_0 \log 2$. There exists C > 0 such that for all $f \in \mathcal{B}$, $n \ge 0$,

$$\begin{split} |\mathcal{L}^n f|_w &\leq C |f|_w \# \mathcal{M}_0^n \\ \|\mathcal{L}^n f\|_s &\leq C(\sigma^n \|f\|_s + |f|_w) \# \mathcal{M}_0^n \,, \quad \text{for some } \sigma < 1 \\ \|\mathcal{L}^n f\|_u &\leq C(\|f\|_u + \|f\|_s) \# \mathcal{M}_0^n \end{split}$$

The inequalities above are not true Lasota-Yorke inequalities due to lack of contraction in the strong unstable norm.

Bounds on the Spectral Radius of \mathcal{L}_0

Although we do not prove quasi-compactness of \mathcal{L}_0 on \mathcal{B} , we do have good control of $\|\mathcal{L}_0^n\|_{\mathcal{B}}$.

- Our upper bound $\#\mathcal{M}_0^n \leq C_2 e^{nh_*}$ plus our 'Lasota-Yorke' inequalities imply that $\|\mathcal{L}_0^n\|_{\mathcal{B}} \leq C e^{nh_*}$, for all $n \geq 1$.
- Our lower bound on $\#\mathcal{G}_n(W)$ implies that

$$\begin{split} \|\mathcal{L}_{0}^{n}1\|_{s} &\geq |\mathcal{L}_{0}^{n}1|_{w} \geq \int_{W} \mathcal{L}_{0}^{n}1 = \sum_{W_{i} \in \mathcal{G}_{n}^{\delta_{1}}(W)} |W_{i}| \\ &\geq \frac{\delta_{1}}{3} \frac{3}{4} \# \mathcal{G}_{n}^{\delta_{1}}(W) \geq Ce^{nh_{*}} \,. \end{split}$$

This implies that the sequence $e^{-nh_*}\mathcal{L}_0^n 1$ is uniformly bounded away from 0 and ∞ in the strong norm. We use this fact to construct an eigenmeasure for \mathcal{L}_0 with eigenvalue e^{h_*} .

Construction of μ_*

• The sequence

 $\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} \mathcal{L}_0^k 1, \text{ is uniformly bounded in } \mathcal{B}.$

By compactness, a subsequence converges in \mathcal{B}_w . Let $\nu \in \mathcal{B}_w$ be a limit point of ν_n . ν is a measure.

• Similarly, let $\tilde{\nu} \in (B_w)^*$ be a limit point of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} e^{-kh_*} (\mathcal{L}_0^*)^k (d\mu_{\text{SRB}}).$

• Define
$$\mu_*(\psi) = \frac{\tilde{\nu}(\psi\nu)}{\tilde{\nu}(\nu)}$$
, for $\psi \in C^1(M)$.

Since $\mathcal{L}_0 \nu = e^{h_*} \nu$ and $\mathcal{L}_0^* \tilde{\nu} = e^{h_*} \tilde{\nu}$, we have $\mu_*(\psi \circ T) = \mu_*(\psi)$, i.e. μ_* is an invariant measure for T.

Hyperbolicity of μ_*

Key Fact: Although $\nu \in \mathcal{B}_w$, it follows from the convergence of ν_n to ν in the $|\cdot|_w$ norm that $\|\nu\|_{\mathcal{B}} < \infty$.

This implies estimates of the form:

• For any
$$k \in \mathbb{Z}$$
, $\exists C_k > 0$ s.t.

 $u(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}, \qquad \mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_k)) \leq C_k(-\log \varepsilon)^{-\gamma}.$

$$\mathcal{N}_{\varepsilon}(\mathcal{S}_k) = \varepsilon$$
-neighborhood of \mathcal{S}_k in M , $\gamma > 1$.

•
$$\int_M -\log d(x, \mathcal{S}_{\pm 1}) d\mu_*(x) < \infty$$
 (μ_* is *T*-adapted).

 μ_{*}-a.e. x ∈ M has a stable and unstable manifold of positive length. The same is true with respect to ν.

Ergodicity of μ_*

Since μ_* is hyperbolic, we cover a full measure set of M with Cantor rectangles, and study the properties of μ_* on each rectangle.

A Cantor Rectangle ${\cal R}$

Lemma (Absolute continuity of holonomy)

On each Cantor rectangle R, the holonomy map sliding along unstable manifolds in R is absolutely continuous with respect to the conditional measures of μ_* on stable manifolds.

That $\|\nu\|_{\mathcal{B}} < \infty$ is crucial to the proof of the lemma.

Consequences:

- Each Cantor rectangle R belongs to one ergodic component.
- Since T is topologically mixing, we can force images of rectangles to overlap $\implies (T^n, \mu_*)$ is ergodic for all n.

- The local product structure of the Cantor rectangles, together with a global argument showing that a full measure set of points on each component of M can be connected by a network of stable/unstable manifolds, enables us to prove that (T, μ_{*}) is K-mixing, following techniques of [Pesin '77, '92].
- K-mixing + hyperbolicity + absolute continuity of μ_* + bounds on $\mu_*(\mathcal{N}_{\varepsilon}(\mathcal{S}_{\pm 1}))$

 \implies the partition \mathcal{M}_{-1}^1 is **very weakly Bernoulli**, following the technique of [Chernov, Haskell '96].

Since $\bigvee_{n=-\infty}^{\infty} T^{-n}(\mathcal{M}_{-1}^1)$ generates the full σ -algebra for T, this implies by [Ornstein, Weiss '73] that (T, μ_*) is Bernoulli.

Entropy of μ_*

$$\text{Define } B(x,n,\varepsilon) = \{y \in M : d(T^{-i}x,T^{-i}y) \leq \varepsilon, \forall i \in [0,n] \}.$$

Proposition (Measure of Bowen Balls) There exists C > 0 s.t. for all $x \in M$ and $n \ge 1$,

 $\mu_*(B(x, n, \varepsilon)) \le C e^{-nh_*}.$

- [Brin, Katok '81] \implies for μ_* -a.e. $x \in M$, $\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_*(B(x, n, \varepsilon)) = h_{\mu_*}(T^{-1}) = h_{\mu_*}(T).$
- This plus the Proposition implies $h_{\mu*}(T) \ge h_*$
- But $h_* \ge h_{\mu_*}(T)$ by Theorem 1.
- Conclude: $h_* = h_{\mu_*}(T)$.

Uniqueness of μ_*

The Bowen argument for uniqueness uses

 $\forall \varepsilon > 0, \exists C > 0 \text{ s.t. for } \mu_*\text{-a.e. } x \in M, \ \ \mu_*(B(x,n,\varepsilon)) \geq C e^{-nh_*}.$

This **fails for billiards** due to rate of approach to singularity set. Rather: $\forall \eta > 0$ and μ_* -a.e. $x \in M$,

$$\exists C = C(\eta, x) > 0 \text{ s.t. } \mu_*(B(x, n, \varepsilon)) \geq C e^{-n(h_* + \eta)}.$$

This is not sufficient for the Bowen argument.

However: we prove a version of this estimate that 'most' $x \in M$ belong to an element of \mathcal{M}_0^j satisfying good lower bounds 'often.'

Choose
$$\bar{n} \in \mathbb{N}$$
 s.t. $(K\bar{n}+1)^{1/\bar{n}} < e^{h_*/4}$

Choose $\delta_2 > 0$ s.t. if $A \in \mathcal{M}^n_{-k}$ satisfies

 $\max\{\mathsf{diam}^u(A),\mathsf{diam}^s(A)\} \le \delta_2\,,$

then $A \setminus S_{\pm \bar{n}}$ consist of at most $K\bar{n} + 1$ connected components.

Nonuniform Lower Bounds

$$\begin{split} Sh_0^{2n} &:= \{A \in \mathcal{M}_0^{2n} : \forall j, 0 \leq j \leq n/2, \\ T^j A \subset E \in \mathcal{M}_0^{2n-j} \text{ s.t. } \operatorname{diam}^s(E) < \delta_2 \} \end{split}$$

Similar definition for Sh_{-2n}^0 with diam^{*u*}(*E*) replacing diam^{*s*}(*E*).

Lemma

Let $B_{2n} = \{A \in \mathcal{M}_0^{2n} : \text{ either } A \in Sh_0^{2n} \text{ or } T^{2n}A \in Sh_{-2n}^0\}$ There exists C > 0 s.t. for all $n \ge 1$, $\#B_{2n} \le Ce^{7nh_*/4}$.

Lemma

 $\forall k \geq 1$, if $E \in \mathcal{M}_0^k$ with diam^s $(E) \geq \delta_2$ and diam^u $(T^k E) \geq \delta_2$

then
$$\mu_*(E) \ge C_{\delta_2} e^{-kh_*}$$
, for some $C_{\delta_2} > 0$.

If $A \in G_{2n} = \mathcal{M}_0^{2n} \setminus B_{2n}$, then $\exists j \leq n \text{ s.t. } T^j A \subset E \in \mathcal{M}_0^{2n-j}$ and E satisfies second lemma.

Together with a time shift to group elements of \mathcal{M}_0^{2n} according to \mathcal{M}_0^{2n-j} , this is sufficient to adapt the Bowen argument.

Theorem ([Baladi, D. '20])

Let T be the billiard map corresponding to a finite horizon periodic Lorentz gas. Assume $h_*>s_0\log 2.$ Then,

$$h_* = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{M}_0^n = \sup_{\mu} h_{\mu}(T).$$

Moreover, there exists a unique $T\text{-}\mathrm{invariant}$ measure μ_* such that

• $h_{\mu_*}(T) = h_*$

•
$$h_* = P(0) = \lim_{t \downarrow 0} P(t) = \lim_{t \downarrow 0} P_*(t)$$

- $h_* = h_{top}(T, M')$
- (T,μ_{\ast}) is Bernoulli and positive on open sets

•
$$\int -\log d(x, \mathcal{S}_{\pm 1}) d\mu_*(x) < \infty$$

Last item implies that μ_* is *T*-adapted. By [Lima, Matheus '18], Buzzi '20], $\exists C > 0$ such that $P_n(T) \ge Ce^{nh_*}$, for n large.

- Can one establish a rate of mixing for μ_* ?
- Other limit theorems and properties of $\mu_*?$ e.g. Central Limit Theorem
- Can one find a finite horizon Sinai billiard table with $h_* \leq s_0 \log 2$?
- If so, does an MME exist and is it *T*-adapted?
- For the geometric potentials $-t \log J^u T$, what happens for $t > t_*$? Is P(t) analytic for all t > 0 or is there a phase transition at some $t_* > 1$? If so, how does t_* depend on the table?