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Lecture 5: Measure of Maximal Entropy, Part I

Goal for today: Describe changes necessary to study the case
t = 0 corresponding to the measure of maximal entropy; formulate
definition of topological entropy for billiard. Present initial results
regarding growth lemmas, topological and metric entropies.

Lecture 6: Introduce Banach spaces adapted to the potential in
the case t = 0. We are not able to prove a spectral gap for the
transfer operator, yet we have enough control to prove existence
and uniqueness of the measure of maximal entropy.

Reference: V. Baladi and M. Demers, On the measure of maximal
entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc.
33 (2020), 381–449.
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Map and Transfer Operator

Billiard Map T (r, ϕ) = (r1, ϕ1) is the collision map associated
to a finite horizon Lorentz gas

Billiard table Q = T2\∪iBi; scatterers Bi.
Boundaries of scatterers are C3 and have strictly positive
curvature.

Assume Finite Horizon condition: there is no trajectory
making only tangential collisions =⇒ an upper bound on the
free flight time between collisions.

Transfer operator for geometric potential with t = 0,

L0f =
f ◦ T−1

JsT ◦ T−1

JsT ≈ cosϕ so the potential is unbounded
JsT is not continuous on any open set
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Previous Results on Topological Entropy

A continuous map on a noncompact set M ′ ⊂M .

The set S0 = {(r, ϕ) ∈M : ϕ = ±π
2 } corresponds to

tangential collisions.

For n ∈ Z, Sn = ∪ni=0T
−iS0 is the singularity set for Tn.

Define M ′ = M \ (∪∞n=−∞Sn). T : M ′ 	 is a continuous map.

[Chernov ’91] studied the topological entropy of the billiard map T
on an invariant subset M1 ⊂M ′ using a countable Markov
partition η1. He showed that

htop(T,M ′) ≥ htop(T,M1) = htop(σ,Σ1),

where (σ,Σ1) is the TMC derived from the Markov partition η1.

Also, Pn(T ) ≥ enhtop(T,M1), Pn = # periodic pts of period n.
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Weight Function for Topological Entropy

To control the evolution of Ln0f , must control integrals of the type,∫
W
Ln0f ψ dmW =

∫
T−nW

f ψ ◦ Tn dmT−nW .

W ∈ Ws, the set of local stable manifolds with uniformly
bounded curvature

mW is arclength measure on W

ψ ∈ Cα(W ) is a Hölder continuous test function

f is an element of our Banach space (closure of C1(M) in
some norm)

T−nW = ∪iWi, smooth, connected components.

We need to estimate precisely how
∑

Wi
1 grows as a function of n

and W . Without a Jacobian, the growth lemmas will look
different; we cannot use homogeneity strips.
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Step 1: A Definition of Topological Entropy

Let Mn
−k = connected

components of M \ (S−k ∪Sn).

Define

h∗ = lim
n→∞

1

n
log #Mn

0

M \ Sn
The limit exists since the sequence log #Mn

0 is subadditive:
#Mn+m

0 ≤ #Mn
0 ·#Mm

0 .

h∗ is the exponential rate of growth of the number of pieces
created by the discontinuities of T . It does not depend on a
choice of metric.

TnSn = S−n =⇒ #Mn
0 = #M0

−n. So h∗(T ) = h∗(T
−1).
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Connection to Bowen Definitions

For n ≥ 1, define the dynamical distance:

dn(x, y) = max
0≤i≤n

d(T ix, T iy),

where d(x, y) = Euclidean distance on each Mi = ∂Bi × [−π
2 ,

π
2 ],

and d(x, y) = 10 maxi diam(Mi) when x, y are in different Mi.

E is (n, ε)-separated set if for all x 6= y ∈ E, dn(x, y) > ε.
rn(ε) := maximum cardinality of any (n, ε)-separated set

F is (n, ε)-spanning set if ∀x ∈M , ∃ y ∈ F s.t.
dn(x, y) ≤ ε.
sn(ε) := minimum cardinality of any (n, ε)-spanning set

Define
hsep = lim

ε→0
lim sup
n→∞

1

n
log rn(ε)

hspan = lim
ε→0

lim sup
n→∞

1

n
log sn(ε)
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Connection to Bowen Definitions

The finite horizon condition implies the following lemma.

Lemma

There exists ε0, depending only on the table Q, such that for all
n ≥ 1, if x, y lie in different elements of Mn

0 , then dn(x, y) ≥ ε0.

Lemma + uniform hyperbolicity of T =⇒

Proposition ([Baladi, D. ’20])

For a finite horizon Lorentz gas,

h∗ = hsep = hspan.

Moreover, for any k ≥ 1,

h∗ = lim
n→∞

1

n
log #Mn

−k,

where Mn
−k are the connected components of M \ (S−k ∪ Sn).
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Dynamical Refinements of Partitions

In order to connect h∗ to measure theoretic entropy, it is
convenient to express it in terms of dynamical refinements of a
partition. Define

P := maximal connected sets on which T and T−1 are continuous

For each k, n ∈ N,

Define Pn−k =
∨n
i=−k T

−iP, a partition of M

P̊n−k = interiors of elements of Pn−k,
a partition of M \ (S−k ∪ Sn)

Pn−k ≈ P̊n−k+ isolated points due to multiple tangencies

P̊n−k =Mn+1
−k−1

This relies on the continuation of singularities property
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Characterization of h∗ and Variational Inequality

Theorem ([Baladi, D. ’20])

For a finite horizon Sinai billiard,

h∗ = hsep = hspan

For any k ≥ 0,

h∗ = lim
n→∞

1

n
log #Mn

−k = lim
n→∞

1

n
log #Pn−k

h∗ satisfies a variational inequality,

h∗ ≥ sup{hµ(T ) : µ is a T -invariant Borel prob. measure}

The variational inequality is a straightforward consequence of the
fact that P is a generator for T , and the entropy of a partition is
bounded by its cardinality.
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Gn(W ) and Linear Complexity Bound

To obtain a precise estimate on the spectral radius of L0, we will
need precise estimates on the growth rates of #Mn

0 and #Gn(W ).

Define Gn(W ) without homogeneity strips

For W ∈ Ŵs, define G1(W ) to be the maximal, connected
components of T−1W subdivided to length at most δ0 (t.b.d.)

Define Gn(W ) = {G1(Wi) : Wi ∈ Gn−1(W )}.
Recall the linear complexity bound.

For x ∈M , let N(Sn, x) denote the number of singularity curves
in Sn that meet at x. Define N(Sn) = supx∈M N(Sn, x).

Lemma (Bunimovich, Chernov, Sinai ’90)

Assume finite horizon. There exists K > 0 depending only on the
configuration of scatterers such that N(Sn) ≤ Kn for all n ≥ 1.

Choose n0 s.t. n−10 log(Kn0 + 1) < h∗. Choose δ0 s.t. any stable
curve of length ≤ δ0 is cut into at most Kn0 + 1 pieces by S−n0 .
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Fragmentation Lemma (Growth Lemma)

Let Lδn(W ) = {Wi ∈ Gδn(W ) : |W | ≥ δ/3}.
Shδn(W ) = Gδn(W ) \ Lδn(W ).

Lemma ([Baladi, D. ’20])

For all ε > 0 there exists n1, δ > 0 s.t. for all n ≥ n1,

#Shδn(W ) ≤ ε#Gδn(W ) for all W ∈ Ŵs with |W | ≥ δ/3.

Idea of Proof: Choose ε > 0 and n1 s.t. 3C−10 (Kn1 + 1)Λ−n1 < ε.
Choose δ > 0 s.t. if |W | < δ then T−n1W comprises at most
Kn1 + 1 connected components of length at most δ0.

Then Shδn1
(W ) contains at most Kn1 + 1 elements while

|T−n1W | ≥ C0Λ
n1δ/3, where Λ = 1 + 2Kminτmin.

Thus #Gδn1
(W ) ≥ C0Λ

n1/3 and so
#Shδn1 (W )

#Gδn1 (W )
≤ ε by choice of n1.

Argument can be iterated, grouping by most recent long ancestor.
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Fragmentation of Mn
0

This lemma can also be formulated for elements of Mn
0 and M0

−n.

Let δ1, n1 ≥ n0 correspond to ε = 1/4 in fragmentation lemma:

For all W ∈ Ŵs with |W | ≥ δ1/3,

#Lδ1n (W ) ≥ 3
4#Gδ1n (W ) , ∀n ≥ n1 .

Define Ls(Mn
0 ) := {A ∈Mn

0 : diams(A) ≥ δ1/3}
Lu(M0

−n) := {B ∈M0
−n : diamu(B) ≥ δ1/3}

Lemma

There exists c0 > 0 s.t. for all n ≥ 1,

#Ls(Mn
0 ) ≥ c0δ1#Mn

0 and #Lu(M0
−n) ≥ c0δ1#M0

−n .
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Fragmentation Lemmas =⇒ Uniform Bounds on Growth

Proposition

a) ∃ c1 > 0 such that for any W ∈ Ŵs with |W | ≥ δ1/3,

#Gn(W ) ≥ c1#Mn
0 ∀n ≥ 1 .

b) There exists c2 > 0 such that for all k, n ≥ 1,

#Mn+k
0 ≥ c2#Mn

0 ·#Mk
0 .

(b) implies exact exponential growth of #Mn
0 ,

enh∗ ≤ #Mn
0 ≤ 2c−12 enh∗ for all n ≥ 1.

(a) + fragmentation lemma =⇒ (b) since

#Gn+k(W ) ≥
∑

Vj∈L
δ1
n (W )

#Gk(Vj) ≥ #Lδ1n (W )c1#Mk
0

≥ 3c1
4 #Gδ1n (W )#Mk

0 ≥
3c21
4

#Mn
0#Mk

0
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Justification for (a) Lower Bound on Growth of #Gn(W )

M \ S−n

Ri∗

W

‘Cover’ M with k(δ2) Cantor rectangles Ri s.t. any stable/
unstable curve of length δ1/3 properly crosses at least one Ri

∃i∗ s.t. #{Lu(M0
−n) properly crossing Ri∗} ≥ c0δ1

k #M0
−n

Take W ∈ Ŵs with |W | ≥ δ1/3. Crosses one Rj .

Use mixing of SRB measure to ensure that T−NW crosses
Ri∗ , N depends only on δ1.

Then #Gn+N (W ) ≥ c0δ1
k #Mn

0
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Uniform Growth of Stable Curves

A corollary of our uniform bounds is the uniform growth rate of
|T−nW | in terms of h∗.

Corollary

There exists C > 0 s.t. for all W ∈ Ŵs with |W | ≥ δ1/3, for all
n ≥ n1,

Cenh∗ ≤ |T−nW | ≤ C−1enh∗ .

Proof: Our uniform bounds give,

Cenh∗ ≤ #Gn(W ) ≤ C−1enh∗

But also, |T−nW | ≤ δ0#Gn(W ), giving the upper bound. And

|T−nW | =
∑

Wi∈G
δ1
n

|Wi| ≥
δ1
3

#Lδ1n (W ) ≥ δ1
4

#Gδ1n (W ) ,

giving the lower bound. 2
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