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Lecture 4: Geometric Potentials and Pressure, Part Il

Goal for today: Introduce Banach spaces adapted to the
geometric potentials on which we prove a spectral gap for the
transfer operator. Use this to prove existence and uniqueness of
equilibrium states and analyticity of pressure function.

Recall from Lecture 3,
(12
|JsT(T—1x)[ -t~

is the transfer operator corresponding to the potential —tlog J“T,
t > 0. Want to construct equilibrium state from the product of left
and right maximal eigenvectors of L;.

Restrict to t € (0,t.), where t, > 1 is defined by
—tylog A = P(t.).

Lif(r) =

Reference: V. Baladi and M. Demers, Thermodynamic formalism
for dispersing billiards, preprint 2020.
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Stable Curves and Definition of Pressure

Fix 0 < tg < t1 < t«. Consider t € [to, t1].
o Choose § > A~' sit. 08 < P for all t € [to, t1].

e Fix ¢ > 2/ty and choose kg, oy > 0 s.t. one-step expansion
holds for all |[W| < dy.

° Wfq set of homogeneous cone-stable curves with bounded
curvature and length < 4.
Wi, C Wy, set of (weakly) homogeneous stable manifolds.

o Define S, = U ,T~'Sy, Sy = Ul TSy
° _/\/lg’]HI = connected components of M \ (S& , UT"S))

° Qut)i= 30 sw [FT@)L M= M\ (UnezSn)
AempH

e P.(t) := lim llog Qn(t)

n—oo N
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Definition of Norms: Weak Norm

Fix0<a<1/(g+1).
For f € CY(M), define the weak norm of f by

|flw= sup  sup / fodmy .
WeWwsg yeC*(W)
[Yleawy<1

Define B, to be the completion of C*(M) in the | - |, norm.

Remark: Norms defined on stable manifolds W?* rather than
cone-stable curves W*. We make this choice because J°T varies
Holder continuously along W € W?, but only measurably
transverse to stable direction. These norms are not well suited to
study perturbations of the dynamics.

For t =1, J*T disappears and one can use W instead. Such
norms are robust under perturbations [D., Zhang '13].
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Definition of Norms: Strong Norm

Choose p > g +1, € (1/p,a) and v < min{l/p, a — 5}.
Define the strong stable norm of f by

Iflls = sup sup / £ dmuy
wewy  yecsw)  Jw

|¢|CB(W>§|W|71/I’

Define the strong unstable norm of f by

[fll=swp —sup ~ sup &
e<eo W1,WaeWE; |wi|ca(Wi)§1
d(W1,W2)<e dg (1 ,12)=0

[ in - /ngwg

The strong norm of f is defined to be || ||z = || flls + cullf]|u

Define B to be the completion of C1(M) in the || - ||z norm.
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Distances Between Curves and Test Functions

o View W € W as the graph of a function of the r-coordinate
over an interval Iy,

W ={Gw(r):relw}={(r,ow(r)) :r € lw}.
o Given W1, W5 € )7\/\5 with functions pw,, @w,, define
d(WhW?) = |IW1 A IW2| + ‘SOWl - 90W2‘01(IW101W2) )

if W1 and W3 lie in the same homogeneity strip, and
d(Wy, Ws) = oo otherwise.

o If d(W1,W2) < 00, then for 1/11 (S CO(Wl). 1/)2 c CO(WQ),
define

do (1, v2) = [¢1 0 Gwy — Y20 Gwalco(1y, i,y -

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Lasota-Yorke: Unmatched Pieces

For strong unstable norm, estimate ‘le LY o1 — [y, L2 f ¢2‘
g,,(m\
S_n
/// - \ gn(W2)
<
e Wo T—n \
Wi \

e Unmatched pieces have length at most A~/ is they are cut
by a singularity curve at time —j.
@ Use the strong stable norm to estimate,

/ Lrf = / 279 f o1y, T < A9/ 2| 207 [Ty, T g
Wi v

@ || -||s acts as ‘weak norm’ for || - ||, to control unmatched
pieces.
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Regularity of J*T'

Since B is defined as the completion of C1(M) in || - ||5, a priori, it
is not clear that £; acts continuously on B.
Lemma ( [Chernov, Markarian '06] )

For W € Wy, and n > 0, let Wy, (n) = { points in W whose
unstable manifold extends a length at least n on both sides of W'}.
Then myy (W \ Wy (n)) < Cn for some C > 0 indep. of W and 1.

Lemma ( [Baladi, D. '20] )

34C1,Cy > 0 such that for any homogeneous unstable curve U and
any p > 0, there exists U' C U with my (U \ U’) < Cyp such that

‘ J*T(z)

q
_ 1| < - /(g+1))
() 1]_02 (o1 d(@, ) + d(@, /D)

These two lemmas allow us to approximate £;f by C! functions in
the || - ||z norm.
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Banach Spaces

Theorem ([Baladi, D. '20])
@ We have a sequence of continuous inclusions,

CY(M) c BC By, C (C*(M))*.

@ The embedding of the unit ball of B in B, is compact.
@ There exist C, C,, > 0 such that for all f € B, n >0,

1L} flw < CQu(t)| fluw »
L2 £lls < C(AB=YPRQ, (£) + 64=1Pm) | £]|5 + Chl fluw)
1L7 fllu < CQult) (WY A™™ || fllu + Call £1Is) -

Implies the spectral radius of £; on B is at most e/*(®) and its
essential spectral radius < () if g < (V) (pressure gap).

To prove L; is quasi-compact, we need a lower bound on the
spectral radius.
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Lower Bound on Spectral Radius

The lower bound follows from our uniform growth result from
Lecture 3:

There exists ¢; > 0 s.t. for any W € W* with |W| > 01/3,

> 1w T oy = aQa(t), ¥n > 1, Vi € Jto, 1]
ergn(w)

Let W € Wy, with |W| > 61/3, choose ¢ = 1. For any n > 1,

/6"1— Z /\JWTn|t>6 Ca Z | Tw; T" oy

W ng W) ergn(W)

> e Cie1Qn(t) > e Ccyen )

Thus ||[£"1]s > Ce™P*(") and so the spectral radius of £ is e/*®).
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Spectral Decomposition of £,

Our exact exponential growth from Lecture 3 implies:
1L} |15 < CQu(t) < C'e" 1,
so that the peripheral spectrum of £; has no Jordan blocks.

There exist a finite set {Gj}é-vzo, 0o = 0, linear operators
II;, R : B O satistying II;,1I; = II; R = RII; = 0 with spectral
radius of R < 1, such that

N
€_P*(t)£t — Z e?ﬂ'@jﬂj +R
j=1

Proof of spectral gap follows similar lines as for Baker's map:
Define 1, = IIg1l. Show all eigenvectors corresponding to the
peripheral spectrum are measures absolutely continuous wrt vy,
and ¢; must be rational. Use mixing to show 1 is simple for LF for
k > 1. (Lack of smoothness complicates argument.)
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A Spectral Gap for L;

Theorem ([Baladi, D. "20])

For each tg > 0 and 1 < t., there exists a Banach space
B = B(to, t1) such that £; has a spectral gap:
o () is the eigenvalue of maximum modulus, it is simple, and
the remainder of the spectrum of L; is contained in a disk of
radius Ge*(), where & < 1 is uniform for ¢ € [to, t1].

Letting 14 and 7y denote the maximal right and and left
eigenvectors for L;, define

(v, Vi)
Y)=—"—"—2L, PpelC*M).
Ht( ) <thyt> ( )
Then p; is an invariant probability measure for I', and enjoys
exponential decay of correlations against Holder observables.

1 has no atoms, gives 0 weight to any C'! curve and is positive on
open sets. Moreover, [ |logd(z,S+1)|du < oco.
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Entropy of u; and a Variational Principle

Define B(x,n,e) = {y € M : d(T 'z, T"'y) < ¢,Vi € [0,n]}.

Proposition (Measure of Bowen Balls)

There exists C' > 0 s.t. forall z € M, n > 1, and y € B(x,n,¢),

pe(B(z,n,€)) < Ce~Px(t)+tlog ST (T"y)

[Brin, Katok '81] = for pup-a.e. x € M,

1
lim lim sup _E log ,ut(B(JU, n, 5)) = hut (T)

e=0 nooo

This plus the Proposition implies

B (T) > Pa(t) — t / log J*T djy = Pu(t) + 1 / log J*T dyiy

But Py(t) > hy,( —tflogJ“Tdut since P, (t) > P(t).
Conclude: Py (t) = h,,(T) —t [log J*T du, = P(t).
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Uniqueness of Equilibrium State

We prove uniqueness using the concept of tangent measure.

We say p is a C'-tangent measure at ¢ if
P(—tlog J'T + ¢) > P(t) + /qbdu, for all p € C1(M)

If 1 is an equilibrium state for —tlog J“T', then p is a tangent
measure [Walters '82].

We show there can be only one tangent measure for each t by
showing that for each ¢ € C''(M), the perturbed transfer operator
defined by

f o T_l 2¢poT—1

(JST)lftonle , z€C,

ﬁt,zdxf =

is an analytic perturbation of L,.
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Generalized Variational Principle

Theorem ([Baladi, D. "20])
Let ¢ € [to, t1] and ¢ € C1(M). For |z| sufficiently small,

@ L; .4 has a spectral gap on 55;

o the spectral radius of £; 4 is e’ (tlog J*T+2¢)

@ restricting to z € R,

i eP(—t log J“T+z¢)
dz

=0 [
z=0

o finally, P.(tlog J°T 4 z¢) = P(—tlog J“T + z¢) and there
exists a unique equilibrium measure attaining the supremum.

The derivative formula for e”’(—t10g 7“T+2¢) jmplies that any

tangent measure p must satisfy [ ¢dp = [ ¢dyy for all Ct
functions ¢. Thus p = p, so p is unique.
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Analyticity of P(t)

Since J*T is not piecewise Holder, a separate set of arguments is
needed to show that £; is analytic as a function of ¢, t € [to, t1].
Theorem

The function t — P(t) is analytic on (0, ¢,), with

P'(t) = /longTd,ut = /logJ“Tdut <0,

P'(t)=7" [/ (log J*T o T*)log J*T dpy, — (P'(t))*| > 0.
k>0
Moreover, P”(t) = 0 if and only if log J°T = f — f o T + P'(t) for
some f € L?(ju).
If there exists t1 # t2 in (0,¢.) such that p;, = uy,, then P(t) is
affine on (0,t4) and log J*T is u;-a.e. cohomologous to a constant
for all ¢t € (0,t,).
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