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Lecture 4: Geometric Potentials and Pressure, Part II

Goal for today: Introduce Banach spaces adapted to the
geometric potentials on which we prove a spectral gap for the
transfer operator. Use this to prove existence and uniqueness of
equilibrium states and analyticity of pressure function.

Recall from Lecture 3,

Ltf(x) =
f(T−1x)

|JsT (T−1x)|1−t
,

is the transfer operator corresponding to the potential −t log JuT ,
t > 0. Want to construct equilibrium state from the product of left
and right maximal eigenvectors of Lt.
Restrict to t ∈ (0, t∗), where t∗ > 1 is defined by

−t∗ log Λ = P (t∗) .

Reference: V. Baladi and M. Demers, Thermodynamic formalism
for dispersing billiards, preprint 2020.
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Stable Curves and Definition of Pressure

Fix 0 < t0 < t1 < t∗. Consider t ∈ [t0, t1].

Choose θ > Λ−1 s.t. θt < eP (t) for all t ∈ [t0, t1].

Fix q ≥ 2/t0 and choose k0, δ0 > 0 s.t. one-step expansion
holds for all |W | ≤ δ0.

Ŵs
H set of homogeneous cone-stable curves with bounded

curvature and length ≤ δ0.
Ws
H ⊂ Ŵs

H set of (weakly) homogeneous stable manifolds.

Define Sn = ∪ni=0T
−iS0, SHn = ∪ni=0T

−iSH0
Mn,H

0 = connected components of M \ (SHn−1 ∪ T−nS0)

Qn(t) :=
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsTn(x)|t, M ′ = M \ (∪n∈ZSn)

P∗(t) := lim
n→∞

1

n
logQn(t)
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Definition of Norms: Weak Norm

Fix 0 < α ≤ 1/(q + 1).

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

H

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W
f ψ dmW .

Define Bw to be the completion of C1(M) in the | · |w norm.

Remark: Norms defined on stable manifolds Ws rather than
cone-stable curves Ŵs. We make this choice because JsT varies
Hölder continuously along W ∈ Ws, but only measurably
transverse to stable direction. These norms are not well suited to
study perturbations of the dynamics.

For t = 1, JsT disappears and one can use Ŵs instead. Such
norms are robust under perturbations [D., Zhang ’13].
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Definition of Norms: Strong Norm

Choose p > q + 1, β ∈ (1/p, α) and γ < min{1/p, α− β}.
Define the strong stable norm of f by

‖f‖s = sup
W∈Ws

H

sup
ψ∈Cβ(W )

|ψ|Cβ(W )
≤|W |−1/p

∫
W
f ψ dmW

Define the strong unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

H
d(W1,W2)≤ε

sup
|ψi|Cα(Wi)

≤1
d0(ψ1,ψ2)=0

ε−γ
∣∣∣∣∫
W1

fψ1 −
∫
W2

fψ2

∣∣∣∣
The strong norm of f is defined to be ‖f‖B = ‖f‖s + cu‖f‖u,

Define B to be the completion of C1(M) in the ‖ · ‖B norm.
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Distances Between Curves and Test Functions

View W ∈ Ŵs as the graph of a function of the r-coordinate
over an interval IW ,

W = {GW (r) : r ∈ IW } = {(r, ϕW (r)) : r ∈ IW } .

Given W1,W2 ∈ Ŵs with functions ϕW1 , ϕW2 , define

d(W1,W2) = |IW1 4 IW2 |+ |ϕW1 − ϕW2 |C1(IW1
∩IW2

) ,

if W1 and W2 lie in the same homogeneity strip, and
d(W1,W2) =∞ otherwise.

If d(W1,W2) <∞, then for ψ1 ∈ C0(W1), ψ2 ∈ C0(W2),
define

d0(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |C0(IW1
∩IW2

) .
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Lasota-Yorke: Unmatched Pieces

For strong unstable norm, estimate
∣∣∣∫W1

Lnt f ψ1 −
∫
W2
Lnt f ψ2

∣∣∣

W1

W2

S−n

T−n

Gn(W1)

Gn(W2)

Unmatched pieces have length at most Λ−jε is they are cut
by a singularity curve at time −j.

Use the strong stable norm to estimate,∫
Wi

Lnt f ψ =

∫
Vj

Ln−jt f ψ◦T j |JVjT j |t ≤ Λ−j/pε1/p‖Ln−jt f‖s|JVjT j |tC0

‖ · ‖s acts as ‘weak norm’ for ‖ · ‖u to control unmatched
pieces.
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Regularity of JsT

Since B is defined as the completion of C1(M) in ‖ · ‖B, a priori, it
is not clear that Lt acts continuously on B.

Lemma ( [Chernov, Markarian ’06] )

For W ∈ Ws
H and η > 0, let Wu(η) = { points in W whose

unstable manifold extends a length at least η on both sides of W}.
Then mW (W \Wu(η)) ≤ Cη for some C > 0 indep. of W and η.

Lemma ( [Baladi, D. ’20] )

∃C1, C2 > 0 such that for any homogeneous unstable curve U and
any ρ > 0, there exists U ′ ⊂ U with mU (U \ U ′) ≤ C1ρ such that∣∣∣∣JsT (x)

JsT (y)
− 1

∣∣∣∣ ≤ C2

(
ρ
− q
q+1d(x, y) + d(x, y)1/(q+1)

)
.

These two lemmas allow us to approximate Ltf by C1 functions in
the ‖ · ‖B norm.
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Banach Spaces

Theorem ([Baladi, D. ’20])

We have a sequence of continuous inclusions,

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(M))∗.

The embedding of the unit ball of B in Bw is compact.

There exist C,Cn > 0 such that for all f ∈ B, n ≥ 0,

|Lnt f |w ≤ CQn(t)|f |w ,
‖Lnt f‖s ≤ C

(
Λ−(β−1/p)nQn(t) + θ(t−1/p)n

)
‖f‖s + Cn|f |w)

‖Lnt f‖u ≤ CQn(t)
(
nγΛ−γn‖f‖u + Cn‖f‖s

)
.

Implies the spectral radius of Lt on B is at most eP∗(t) and its
essential spectral radius < eP∗(t) if θt < eP∗(t) (pressure gap).

To prove Lt is quasi-compact, we need a lower bound on the
spectral radius.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Lower Bound on Spectral Radius

The lower bound follows from our uniform growth result from
Lecture 3:

There exists c1 > 0 s.t. for any W ∈ Ŵs with |W | ≥ δ1/3,∑
Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ c1Qn(t) , ∀n ≥ 1 , ∀t ∈ [t0, 1] .

Let W ∈ Ws
H with |W | ≥ δ1/3, choose ψ ≡ 1. For any n ≥ 1,∫

W
Lnt 1 =

∑
Wi∈Gn(W )

∫
Wi

|JWiT
n|t ≥ e−Cd

∑
Wi∈Gn(W )

|JWiT
n|tC0(Wi)

≥ e−Cdc1Qn(t) ≥ e−Cdc1enP∗(t)

Thus ‖Ln1‖s ≥ CenP∗(t) and so the spectral radius of L is eP∗(t).
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Spectral Decomposition of Lt
Our exact exponential growth from Lecture 3 implies:

‖Lnt ‖B ≤ CQn(t) ≤ C ′enP∗(t) ,

so that the peripheral spectrum of Lt has no Jordan blocks.

There exist a finite set {θj}Nj=0, θ0 = 0, linear operators
Πj , R : B 	 satisfying ΠiΠj = ΠjR = RΠj = 0 with spectral
radius of R < 1, such that

e−P∗(t)Lt =

N∑
j=1

e2πθjΠj +R

Proof of spectral gap follows similar lines as for Baker’s map:
Define νt = Π01. Show all eigenvectors corresponding to the
peripheral spectrum are measures absolutely continuous wrt νt,
and θj must be rational. Use mixing to show 1 is simple for Lkt for
k ≥ 1. (Lack of smoothness complicates argument.)
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A Spectral Gap for Lt
Theorem ([Baladi, D. ’20])

For each t0 > 0 and t1 < t∗, there exists a Banach space
B = B(t0, t1) such that Lt has a spectral gap:

eP∗(t) is the eigenvalue of maximum modulus, it is simple, and
the remainder of the spectrum of Lt is contained in a disk of
radius σ̄eP∗(t), where σ̄ < 1 is uniform for t ∈ [t0, t1].

Letting νt and ν̃t denote the maximal right and and left
eigenvectors for Lt, define

µt(ψ) =
〈νt, ψν̃t〉
〈νt, ν̃t〉

, ψ ∈ Cα(M) .

Then µt is an invariant probability measure for T , and enjoys
exponential decay of correlations against Hölder observables.

µt has no atoms, gives 0 weight to any C1 curve and is positive on
open sets. Moreover,

∫
| log d(x,S±1)| dµt <∞.
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Entropy of µt and a Variational Principle

Define B(x, n, ε) = {y ∈M : d(T−ix, T−iy) ≤ ε, ∀i ∈ [0, n]}.

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all x ∈M , n ≥ 1, and y ∈ B(x, n, ε),

µt(B(x, n, ε)) ≤ Ce−nP∗(t)+t log JsTn(T−ny).

[Brin, Katok ’81] =⇒ for µt-a.e. x ∈M ,

lim
ε→0

lim sup
n→∞

− 1

n
logµt(B(x, n, ε)) = hµt(T ).

This plus the Proposition implies

hµt(T ) ≥ P∗(t)− t
∫

log JsT dµt = P∗(t) + t

∫
log JuT dµt

But P∗(t) ≥ hµt(T )− t
∫

log JuT dµt since P∗(t) ≥ P (t).

Conclude: P∗(t) = hµt(T )− t
∫

log JuT dµt = P (t).
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Uniqueness of Equilibrium State

We prove uniqueness using the concept of tangent measure.

We say µ is a C1-tangent measure at t if

P (−t log JuT + φ) ≥ P (t) +

∫
φdµ , for all φ ∈ C1(M)

If µ is an equilibrium state for −t log JuT , then µ is a tangent
measure [Walters ’82].

We show there can be only one tangent measure for each t by
showing that for each φ ∈ C1(M), the perturbed transfer operator
defined by

Lt,zφf =
f ◦ T−1

(JsT )1−t ◦ T−1
ezφ◦T

−1
, z ∈ C ,

is an analytic perturbation of Lt.
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Generalized Variational Principle

Theorem ([Baladi, D. ’20])

Let t ∈ [t0, t1] and φ ∈ C1(M). For |z| sufficiently small,

Lt,zφ has a spectral gap on B;

the spectral radius of Lt,zφ is eP (−t log JuT+zφ);

restricting to z ∈ R,

d

dz
eP (−t log JuT+zφ)

∣∣∣∣
z=0

= eP (t)

∫
φdµt ;

finally, P∗(t log JsT + zφ) = P (−t log JuT + zφ) and there
exists a unique equilibrium measure attaining the supremum.

The derivative formula for eP (−t log JuT+zφ) implies that any
tangent measure µ must satisfy

∫
φdµ =

∫
φdµt for all C1

functions φ. Thus µ = µt, so µt is unique.
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Analyticity of P (t)

Since JsT is not piecewise Hölder, a separate set of arguments is
needed to show that Lt is analytic as a function of t, t ∈ [t0, t1].

Theorem

The function t 7→ P (t) is analytic on (0, t∗), with

P ′(t) =

∫
log JsT dµt = −

∫
log JuT dµt < 0 ,

P ′′(t) =
∑
k≥0

[∫
(log JsT ◦ T k) log JsT dµt − (P ′(t))2

]
≥ 0 .

Moreover, P ′′(t) = 0 if and only if log JsT = f − f ◦ T + P ′(t) for
some f ∈ L2(µt).

If there exists t1 6= t2 in (0, t∗) such that µt1 = µt2 , then P (t) is
affine on (0, t∗) and log JsT is µt-a.e. cohomologous to a constant
for all t ∈ (0, t∗).
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