Anisotropic Banach Spaces and Thermodynamic Formalism for Dispersing Billiard Maps Lecture 4: Geometric Potentials and Pressure, Part II

Mark Demers

Fairfield University Research supported in part by NSF grant DMS 1800321

Spring School on Transfer Operators Research Semester: Dynamics, Transfer Operators and Spectra Centre Interfacultaire Bernoulli, EPFL March 22 - 26, 2021

Lecture 4: Geometric Potentials and Pressure, Part II

Goal for today: Introduce Banach spaces adapted to the geometric potentials on which we prove a spectral gap for the transfer operator. Use this to prove existence and uniqueness of equilibrium states and analyticity of pressure function.

Recall from Lecture 3,

$$\mathcal{L}_t f(x) = \frac{f(T^{-1}x)}{|J^s T(T^{-1}x)|^{1-t}},$$

is the transfer operator corresponding to the potential $-t \log J^u T$, t > 0. Want to construct equilibrium state from the product of left and right maximal eigenvectors of \mathcal{L}_t .

Restrict to $t \in (0, t_*)$, where $t_* > 1$ is defined by

$$-t_*\log\Lambda = P(t_*)\,.$$

Reference: V. Baladi and M. Demers, *Thermodynamic formalism for dispersing billiards*, preprint 2020.

Stable Curves and Definition of Pressure

Fix $0 < t_0 < t_1 < t_*$. Consider $t \in [t_0, t_1]$.

- Choose $\theta > \Lambda^{-1}$ s.t. $\theta^t < e^{P(t)}$ for all $t \in [t_0, t_1]$.
- Fix $q \ge 2/t_0$ and choose $k_0, \delta_0 > 0$ s.t. one-step expansion holds for all $|W| \le \delta_0$.
- $\widehat{\mathcal{W}}_{H}^{s}$ set of homogeneous cone-stable curves with bounded curvature and length $\leq \delta_{0}$. $\mathcal{W}_{H}^{s} \subset \widehat{\mathcal{W}}_{H}^{s}$ set of (weakly) homogeneous stable manifolds.
- Define $\mathcal{S}_n = \cup_{i=0}^n T^{-i} \mathcal{S}_0$, $\mathcal{S}_n^{\mathbb{H}} = \cup_{i=0}^n T^{-i} \mathcal{S}_0^{\mathbb{H}}$
- $\mathcal{M}_0^{n,\mathbb{H}} = \text{connected components of } M \setminus (\mathcal{S}_{n-1}^{\mathbb{H}} \cup T^{-n} \mathcal{S}_0)$

•
$$Q_n(t) := \sum_{A \in \mathcal{M}_0^{n, \mathbb{H}}} \sup_{x \in A \cap M'} |J^s T^n(x)|^t$$
, $M' = M \setminus (\bigcup_{n \in \mathbb{Z}} S_n)$
• $P_*(t) := \lim_{n \to \infty} \frac{1}{n} \log Q_n(t)$

Fix $0 < \alpha \le 1/(q+1)$. For $f \in C^1(M)$, define the weak norm of f by $|f|_w = \sup \int f \psi \, dm_W$

$$|f|_{w} = \sup_{W \in \mathcal{W}_{H}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\alpha}(W) \\ |\psi|_{\mathcal{C}^{\alpha}(W)} \le 1}} \int_{W} f \,\psi \, dm_{W}$$

Define \mathcal{B}_w to be the completion of $C^1(M)$ in the $|\cdot|_w$ norm.

Remark: Norms defined on stable manifolds \mathcal{W}^s rather than cone-stable curves $\widehat{\mathcal{W}}^s$. We make this choice because J^sT varies Hölder continuously along $W \in \mathcal{W}^s$, but only measurably transverse to stable direction. These norms are not well suited to study perturbations of the dynamics.

For t = 1, J^sT disappears and one can use $\widehat{\mathcal{W}}^s$ instead. Such norms are robust under perturbations [D., Zhang '13].

Definition of Norms: Strong Norm

Choose p > q + 1, $\beta \in (1/p, \alpha)$ and $\gamma < \min\{1/p, \alpha - \beta\}$. Define the strong stable norm of f by

$$||f||_{s} = \sup_{W \in \mathcal{W}_{H}^{s}} \sup_{\substack{\psi \in \mathcal{C}^{\beta}(W) \\ |\psi|_{\mathcal{C}^{\beta}(W)} \le |W|^{-1/p}}} \int_{W} f \, \psi \, dm_{W}$$

Define the strong unstable norm of f by

$$\|f\|_u = \sup_{\varepsilon \le \varepsilon_0} \sup_{\substack{W_1, W_2 \in \mathcal{W}_H^s \ |\psi_i|_{\mathcal{C}^\alpha(W_i)} \le 1 \\ d(W_1, W_2) \le \varepsilon}} \sup_{d_0(\psi_1, \psi_2) = 0} \varepsilon^{-\gamma} \left| \int_{W_1} f\psi_1 - \int_{W_2} f\psi_2 \right|$$

The strong norm of f is defined to be $||f||_{\mathcal{B}} = ||f||_s + c_u ||f||_u$, Define \mathcal{B} to be the completion of $C^1(M)$ in the $||\cdot||_{\mathcal{B}}$ norm.

Distances Between Curves and Test Functions

• View $W \in \widehat{\mathcal{W}}^s$ as the graph of a function of the r-coordinate over an interval I_W ,

$$W = \{G_W(r) : r \in I_W\} = \{(r, \varphi_W(r)) : r \in I_W\}.$$

• Given $W_1, W_2 \in \widehat{\mathcal{W}}^s$ with functions φ_{W_1} , φ_{W_2} , define

$$d(W_1, W_2) = |I_{W_1} \bigtriangleup I_{W_2}| + |\varphi_{W_1} - \varphi_{W_2}|_{C^1(I_{W_1} \cap I_{W_2})},$$

if W_1 and W_2 lie in the same homogeneity strip, and $d(W_1, W_2) = \infty$ otherwise.

• If $d(W_1,W_2)<\infty,$ then for $\psi_1\in C^0(W_1),$ $\psi_2\in C^0(W_2),$ define

$$d_0(\psi_1,\psi_2) = |\psi_1 \circ G_{W_1} - \psi_2 \circ G_{W_2}|_{C^0(I_{W_1} \cap I_{W_2})}.$$

Lasota-Yorke: Unmatched Pieces

For strong unstable norm, estimate $\left| \int_{W_1} \mathcal{L}_t^n f \psi_1 - \int_{W_2} \mathcal{L}_t^n f \psi_2 \right|$ $\mathcal{G}_n(W_1)$ $\mathcal{G}_n(W_2)$ $\mathcal{G}_n(W_2)$ $\mathcal{G}_n(W_2)$

- Unmatched pieces have length at most $\Lambda^{-j}\varepsilon$ is they are cut by a singularity curve at time -j.
- Use the strong stable norm to estimate,

$$\int_{W_i} \mathcal{L}_t^n f \, \psi = \int_{V_j} \mathcal{L}_t^{n-j} f \, \psi \circ T^j |J_{V_j} T^j|^t \le \Lambda^{-j/p} \varepsilon^{1/p} \|\mathcal{L}_t^{n-j} f\|_s |J_{V_j} T^j|_{C^0}^t$$

• $\|\cdot\|_s$ acts as 'weak norm' for $\|\cdot\|_u$ to control unmatched pieces.

Regularity of $J^{s}T$

Since \mathcal{B} is defined as the completion of $C^1(M)$ in $\|\cdot\|_{\mathcal{B}}$, a priori, it is not clear that \mathcal{L}_t acts continuously on \mathcal{B} .

Lemma ([Chernov, Markarian '06])

For $W \in \mathcal{W}_{H}^{s}$ and $\eta > 0$, let $W_{u}(\eta) = \{ \text{ points in } W \text{ whose} unstable manifold extends a length at least <math>\eta$ on both sides of $W \}$. Then $m_{W}(W \setminus W_{u}(\eta)) \leq C\eta$ for some C > 0 indep. of W and η .

Lemma ([Baladi, D. '20])

 $\exists C_1, C_2 > 0$ such that for any homogeneous unstable curve U and any $\rho > 0$, there exists $U' \subset U$ with $m_U(U \setminus U') \leq C_1 \rho$ such that

$$\left|\frac{J^{s}T(x)}{J^{s}T(y)} - 1\right| \le C_2\left(\rho^{-\frac{q}{q+1}}d(x,y) + d(x,y)^{1/(q+1)}\right)$$

These two lemmas allow us to approximate $\mathcal{L}_t f$ by C^1 functions in the $\|\cdot\|_{\mathcal{B}}$ norm.

Banach Spaces

Theorem ([Baladi, D. '20])

• We have a sequence of continuous inclusions,

$$\mathcal{C}^1(M) \subset \mathcal{B} \subset \mathcal{B}_w \subset (\mathcal{C}^\alpha(M))^*.$$

- The embedding of the unit ball of \mathcal{B} in \mathcal{B}_w is compact.
- There exist $C, C_n > 0$ such that for all $f \in \mathcal{B}$, $n \ge 0$,

 $\begin{aligned} & \|\mathcal{L}_t^n f\|_w \le CQ_n(t) \|f\|_w, \\ & \|\mathcal{L}_t^n f\|_s \le C \big(\Lambda^{-(\beta-1/p)n} Q_n(t) + \theta^{(t-1/p)n}\big) \|f\|_s + C_n \|f\|_w) \\ & \|\mathcal{L}_t^n f\|_u \le CQ_n(t) \big(n^{\gamma} \Lambda^{-\gamma n} \|f\|_u + C_n \|f\|_s\big). \end{aligned}$

Implies the spectral radius of \mathcal{L}_t on \mathcal{B} is at most $e^{P_*(t)}$ and its essential spectral radius $\langle e^{P_*(t)}$ if $\theta^t \langle e^{P_*(t)}$ (pressure gap).

To prove \mathcal{L}_t is quasi-compact, we need a **lower bound** on the spectral radius.

Lower Bound on Spectral Radius

The lower bound follows from our uniform growth result from Lecture 3:

There exists $c_1 > 0$ s.t. for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$\sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_1 Q_n(t) , \, \forall n \ge 1 \,, \, \forall t \in [t_0, 1] \,.$$

Let $W\in \mathcal{W}^s_H$ with $|W|\geq \delta_1/3,$ choose $\psi\equiv 1.$ For any $n\geq 1,$

$$\int_{W} \mathcal{L}_{t}^{n} 1 = \sum_{W_{i} \in \mathcal{G}_{n}(W)} \int_{W_{i}} |J_{W_{i}}T^{n}|^{t} \ge e^{-C_{d}} \sum_{W_{i} \in \mathcal{G}_{n}(W)} |J_{W_{i}}T^{n}|_{C^{0}(W_{i})}^{t}$$
$$\ge e^{-C_{d}} c_{1}Q_{n}(t) \ge e^{-C_{d}} c_{1}e^{nP_{*}(t)}$$

Thus $\|\mathcal{L}^n 1\|_s \ge Ce^{nP_*(t)}$ and so the spectral radius of \mathcal{L} is $e^{P_*(t)}$.

Spectral Decomposition of \mathcal{L}_t

Our exact exponential growth from Lecture 3 implies:

$$\|\mathcal{L}_t^n\|_{\mathcal{B}} \le CQ_n(t) \le C'e^{nP_*(t)},$$

so that the peripheral spectrum of \mathcal{L}_t has no Jordan blocks.

There exist a finite set $\{\theta_j\}_{j=0}^N$, $\theta_0 = 0$, linear operators $\Pi_j, R : \mathcal{B} \circlearrowleft$ satisfying $\Pi_i \Pi_j = \Pi_j R = R \Pi_j = 0$ with spectral radius of R < 1, such that

$$e^{-P_*(t)}\mathcal{L}_t = \sum_{j=1}^N e^{2\pi\theta_j} \Pi_j + R$$

Proof of spectral gap follows similar lines as for Baker's map: Define $\nu_t = \Pi_0 1$. Show all eigenvectors corresponding to the peripheral spectrum are measures absolutely continuous wrt ν_t , and θ_j must be rational. Use mixing to show 1 is simple for \mathcal{L}_t^k for $k \geq 1$. (Lack of smoothness complicates argument.)

A Spectral Gap for \mathcal{L}_t

Theorem ([Baladi, D. '20])

For each $t_0 > 0$ and $t_1 < t_*$, there exists a Banach space $\mathcal{B} = \mathcal{B}(t_0, t_1)$ such that \mathcal{L}_t has a spectral gap:

• $e^{P_*(t)}$ is the eigenvalue of maximum modulus, it is simple, and the remainder of the spectrum of \mathcal{L}_t is contained in a disk of radius $\bar{\sigma}e^{P_*(t)}$, where $\bar{\sigma} < 1$ is uniform for $t \in [t_0, t_1]$.

Letting ν_t and $\tilde{\nu}_t$ denote the maximal right and and left eigenvectors for \mathcal{L}_t , define

$$\mu_t(\psi) = \frac{\langle \nu_t, \psi \tilde{\nu}_t \rangle}{\langle \nu_t, \tilde{\nu}_t \rangle}, \quad \psi \in C^{\alpha}(M).$$

Then μ_t is an invariant probability measure for T, and enjoys exponential decay of correlations against Hölder observables.

 μ_t has no atoms, gives 0 weight to any C^1 curve and is positive on open sets. Moreover, $\int |\log d(x, \mathcal{S}_{\pm 1})| d\mu_t < \infty$.

Entropy of μ_t and a Variational Principle

 $\text{Define }B(x,n,\varepsilon)=\{y\in M: d(T^{-i}x,T^{-i}y)\leq \varepsilon, \forall i\in [0,n]\}.$

Proposition (Measure of Bowen Balls)

There exists C > 0 s.t. for all $x \in M$, $n \ge 1$, and $y \in B(x, n, \varepsilon)$,

$$\mu_t(B(x, n, \varepsilon)) \le C e^{-nP_*(t) + t \log J^s T^n(T^{-n}y)}$$

• [Brin, Katok '81] \implies for μ_t -a.e. $x \in M$, $\lim_{\varepsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu_t(B(x, n, \varepsilon)) = h_{\mu_t}(T).$

• This plus the Proposition implies

$$h_{\mu_t}(T) \ge P_*(t) - t \int \log J^s T \, d\mu_t = P_*(t) + t \int \log J^u T \, d\mu_t$$

But P_{*}(t) ≥ h_{µt}(T) − t ∫ log J^uT dµt since P_{*}(t) ≥ P(t).
Conclude: P_{*}(t) = h_{µt}(T) − t ∫ log J^uT dµt = P(t).

Uniqueness of Equilibrium State

We prove uniqueness using the concept of **tangent measure**. We say μ is a C^1 -tangent measure at t if

$$P(-t\log J^uT + \phi) \ge P(t) + \int \phi \, d\mu \,, \quad \text{for all } \phi \in C^1(M)$$

If μ is an equilibrium state for $-t \log J^u T$, then μ is a tangent measure [Walters '82].

We show there can be only one tangent measure for each t by showing that for each $\phi\in C^1(M),$ the perturbed transfer operator defined by

$$\mathcal{L}_{t,z\phi}f = \frac{f \circ T^{-1}}{(J^s T)^{1-t} \circ T^{-1}} e^{z\phi \circ T^{-1}}, \quad z \in \mathbb{C},$$

is an analytic perturbation of \mathcal{L}_t .

Theorem ([Baladi, D. '20])

Let $t \in [t_0, t_1]$ and $\phi \in C^1(M)$. For |z| sufficiently small,

- $\mathcal{L}_{t,z\phi}$ has a spectral gap on \mathcal{B} ;
- the spectral radius of $\mathcal{L}_{t,z\phi}$ is $e^{P(-t\log J^u T + z\phi)}$;
- restricting to $z \in \mathbb{R}$,

$$\left. \frac{d}{dz} e^{P(-t \log J^u T + z\phi)} \right|_{z=0} = e^{P(t)} \int \phi \, d\mu_t \,;$$

• finally, $P_*(t \log J^s T + z\phi) = P(-t \log J^u T + z\phi)$ and there exists a unique equilibrium measure attaining the supremum.

The derivative formula for $e^{P(-t \log J^u T + z\phi)}$ implies that any tangent measure μ must satisfy $\int \phi d\mu = \int \phi d\mu_t$ for all C^1 functions ϕ . Thus $\mu = \mu_t$, so μ_t is unique.

Analyticity of P(t)

Since J^sT is not piecewise Hölder, a separate set of arguments is needed to show that \mathcal{L}_t is analytic as a function of $t, t \in [t_0, t_1]$.

Theorem

The function $t \mapsto P(t)$ is analytic on $(0, t_*)$, with

$$P'(t) = \int \log J^s T \, d\mu_t = -\int \log J^u T \, d\mu_t < 0 \,,$$

$$P''(t) = \sum_{k \ge 0} \left[\int (\log J^s T \circ T^k) \log J^s T \, d\mu_t - (P'(t))^2 \right] \ge 0 \,.$$

Moreover, P''(t) = 0 if and only if $\log J^s T = f - f \circ T + P'(t)$ for some $f \in L^2(\mu_t)$.

If there exists $t_1 \neq t_2$ in $(0, t_*)$ such that $\mu_{t_1} = \mu_{t_2}$, then P(t) is affine on $(0, t_*)$ and $\log J^s T$ is μ_t -a.e. cohomologous to a constant for all $t \in (0, t_*)$.