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Lecture 3: Geometric Potentials and Pressure, Part |

Goal for today: Introduce geometric potentials and formulate
definition of associated topological pressure for finite horizon
Lorentz gas. Present initial results regarding growth lemmas,
topological and metric pressures.

Lecture 4: Introduce Banach spaces adapted to the geometric
potentials on which we prove a spectral gap for the transfer
operator. Use this to prove existence and uniqueness of equilibrium
states and analyticity of pressure function.

Reference: V. Baladi and M. Demers, Thermodynamic formalism
for dispersing billiards, preprint 2020.
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Periodic Lorentz gas (Sinai Billiard) [Sinai '68]

@ Billiard table Q = T?\U;B;;
scatterers B;.

@ Boundaries of scatterers are
C? and have strictly positive
curvature.

@ Billiard flow is given by a
point particle moving at O
unit speed with elastic

collisions at the boundary

Assume Finite Horizon condition: there is an upper bound on the
free flight time between collisions.
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The Associated Billiard Map

@ r = position coordinate
oriented clockwise on
boundary of scatterer 0B;

9 ¢ = angle outgoing
trajectory makes with
normal to scatterer

— M
M

M = (Ui OBZ) X [—%, %], the ¥
natural “collision” cross-section
for the billiard flow.

T :(ryo) = (r,¢) is the first ~,

return map: the billiard map. r

@ a hyperbolic map with singularities

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Pressure and Equilibrium States

Given a function ¢, define the pressure of ¢ by,
P(¢) :=sup {h,,(T) +/¢du : v invariant prob. measure}

If 1 is an invariant probability for T" satisfying
hu(T) + [ ¢dp = P(¢), then p is an equilibrium state for ¢.

For Holder continuous ¢, the existence and uniqueness of
equilibrium states has been established for many systems.

@ uniformly hyperbolic systems (Anosov and Axiom A)
[Sinai '72], [Bowen '74], [Ruelle '78]
@ nonuniformly hyperbolic maps and flows
@ Markov partitions [Sarig '11], [Lima, Matheus '18], [Buzzi,
Crovisier, Sarig '19]
@ Young towers [Pesin, Senti, Zhang '16]
@ non-uniform specification [Climenhaga, Thompson '13],
[Burns, Climenhaga, Fisher, Thompson 18]
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Geometric Potentials

Important family of potentials: geometric potentials,

to = —tlog J“T, teR.

ot =1 gives the smooth invariant measure pispg = cos pdrdy.
This is an equilibrium state for ¢ and uniqueness is proved in
a class of measures whose support decays sufficiently near
singularities [Katok, Strelcyn '86].

ot = 0 yields the measure of maximal entropy [Baladi, D. '20].
This is Bernoulli (and hence mixing) and globally unique, but
its rate of mixing is not known.

ot < 0 implies P(t) = oo since J“T is unbounded near
tangential collisions. Today restrict to ¢ > 0.

@ [Chen, Wang, Zhang '20] proves existence (but not uniqueness)
of equilibrium state for ¢ near 1 using Young towers.
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Associated Transfer Operator

The main tool we will use is the transfer operator associated to the
potential t¢ = —tlog J“T.

For a smooth hyperbolic system, the transfer operator with
spectral radius e’ (%) js

>, foT !
Lef = (J*T)tJsT) o T-1
For a billiard, setting F(z) = sin(Z(E*(z), E*(z))),

CSPB) _ p ) = ()T () 2

cos p(Tx) E(z) ’
Ecosy t _
u t ST — s 1-t
= DT = () O
So Zt has the same spectrum as
B foT™ !
Lof = (JsT)1—toT-1
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Associated Transfer Operator

foT™!
bf = (JoT) =t o T—T
For ¢t = 1, this corresponds to using psgs as the conformal
measure. We will identify a function f with the measure
dp = fdusgs- Then acting on distributions,

Yol

Lip(Y) = p <W) , test function ¢

Construct equilibrium state u; out of left and right eigenvectors of
L corresponding to the eigenvalue of maximum modulus.

Sources of difficulty:
o T" has discontinuities so a topological definition of pressure
must overcome the effect of this cutting.
@ The potential is not Holder continuous
o J°T =~ cos ¢ so the potential is unbounded
@ J°T is not continuous on any open set
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Weight Function for Topological Pressure

To control the evolution of £} f, must control integrals of the type,

/ E?fwdmw = / waTn |J8Tn|t me—nw.
w T-"W

o W € Wy, the set of (weakly) homogeneous local stable
manifolds with uniformly bounded curvature

@ myy is arclength measure on W

@ € C*(W) is a Holder continuous test function

@ f is an element of our Banach space (closure of C1(M) in
some norm)

"W =U;W,;, W; € G,(W), homogeneous components.
We need to estimate precisely how )y [J¥T™ tCO(WiT) grows as a

function of n and W. This resembles the expression from our
growth lemma in Lecture 2.
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Homogeneity Strips and Modified One-step Expansion

Hikz{(TaSO)EM:(k+1)_q§|90¢g\§k_q}, k> ko

For V € 17\/\3, let V; denote the homogeneous connected
components of 771V

Lemma (Modified One-step Expansion)

Fix to > 0 and q > 2/ty. There exists 0(to) < 1, ko(to),do(to) >0
such that for all V'€ W?,

sup > [Jy,TIL < 6", forallt>to.
|V|§50 Vz

The proof is similar to the standard estimate: near a tangential
collision, >y~ |y, T|L ~ > k>ko k=9t < Cky!'. Then ko can be
chosen large enough (and dy small enough) to make 6 arbitrarily
close to A~t, where A = 1 + 2K min Tmin.
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A Definition of Topological Pressure

@ Define S, = UL\ TSy, .

S =ur TS

@ Let M@ = connected components
of M\ Sy,

° /\/lg,H = connected components of N
M\ (S5, UT"S) 5

Define for t > 0,
0Qu(t):= > sup [T @), M =M\ (UpezSn)

| TEANM’
AeM{

.1
o P.(t) := nh_)rgo - log Q,(t)

M\ S,

@ The limit exists since the sequence log @, (t) is subadditive:
Qn+k(t) < Qu()Qx(1). It follows, Qn(t) > e,
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Properties of P,(t) and Variational Inequality

Theorem
For a finite horizon Sinai billiard:
a) Py(t) is a convex, continuous, decreasing function for t > 0;

b) P.(t) satisfies a variational inequality,
P.(t) > P(t) = sup {hu(T)—t/log JUT dp = p T-inv. prob.}

Proof. (a) follows from Qn(ct + (1 — )s) < Qn(t)*Qn(s)' 2.
(b) relies on the continuation of singularities property. This implies
that setting P = M}, then the elements of P", = \/_ T~'P
are simply connected. This plus the uniform hyperbolicity of T'
implies P is a generating partition. Then using that

Jalog J*T dp = — [, log J*T dy for an invariant measure 4, a
standard estimate (e.g. [Walters '82]) implies

hu(T) —t [, log JUT dp < Pi(t). O
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Definition of t, > 1

Want to prove that Py (t) = P(t) for t € (0,%.) for some ¢, > 1.
To do this, need to prove exact exponential growth of @, (t):
30, >0 st "0 < Qu(t) < Cpe®)
and uniform growth along stable curves,
Joo > 05t YW € WS, [W[ =61, > [JwT" ko, > coQnlt).

WieGn (W)

ot,:=sup{t >0:—tlogA < P(t)}
Pressure Gap: A~t < e® for t < t,

P(t
“ @ Two cases: t € (0,1] and ¢t € (1,¢,).
‘ . @ Fix tg > 0 and prove above estimates
NG+ for t € [to, 1].

—tlogA o Fix t1 < ty and prove above estimates

fort € [1,t4].
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Restricting to ¢ € [to, t1]

Fixing typ > 0 and ¢ < t,, we can choose 6 < 1 such that the
intersection point between tlogf and P(t) is to the right of ¢;.

] H ¢

tlog 6
—tlog A

Then we can choose ¢, ky and J;y so that the one-step expansion
holds for the chosen € uniformly for all t € [to, t1].

Note: For t < t;, 6" < eP’®) < ().
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Growth Lemmas for ¢ € [ty, 1]

For 61 < 8o, let G201 (W) denote the analogous collection as
Gn (W), but with respect to the length scale d; rather than dy.

Lemma ('Long’ elements of G, (W) carry most weight)
Ve >0 d61,n1 >0 st VW e W* with |W| > 61/3 and all n > nq,

> Mooy < Y I goar

Wiegal (W) Wiegal (W)
|[Wi|<d1/3

Proof uses one-step expansion and grouping according to most
recent long ancestor, together with the following lower bound:

D T ooy = D wiT ooyl Iw T Go,
WieGH (V) WGl (V)

k
> ClAk(l—t) Z |T W| > ) Ak (1-1¢) |V‘5_
WieG (V)
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Prevalence of ‘long’ partition elements

Define A, (6) = {A € Mp™ : diam*(T"A) > §/3}.

H

., carry most weight)

Lemma (‘Long’ elements of M%

There exist 65 > 0 and ¢y > 0 such that

Z sup |J5T™(x)|" > co Qn(t), Yn € N, Vt € [to, 1].
A€ AL (55) T4
0,H

. as well

Uses version of one-step expansion for elements of M
as the following distortion bound:

dC > 0s.t. foralln > 1, if W, Wy € Wﬁl are such that
Wi, Wy € Ae MIPH and all 2 € Wy, y € Wy,

JWlTn(x)
JWzTn(y)

Uses that the stable cones are globally defined, even though E¥ is
only measurable.

<C.

‘log
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Uniform Growth for W € W* and Supermultiplicativity

Proposition
a) There exists ¢; > 0 s.t. for any W € W* with |W| > d1/3,
Z Tw: T o,y = 1@n(t), Yn > 1, Vi € [to,1].
Wi€Gn(W)

b) There exists co > 0 s.t. for all k,n > 1,

Qn+k(t) = c2Qn(t)Qu(t) -

(b) follows from (a) and first growth lemma, since

Yoo I e =C Y0 T e D w T

WieGol (W) VieL (W) WieG, (V)

Immediate corollary of (b) is exact exponential growth of @, (¢):

enPe(t) < Qu(t) < 202—1@”13*('5) Vn > 1, Vt € [ty,1].
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Justification for (a) Lower Bound on Growth

M\S_,
@ ‘Cover’” M with k(d2) Cantor rectangles R; s.t. any stable/
unstable curve of length d2/3 properly crosses at least one R;
0 Al = {A € Ay(62) € My™ : T A properly crosses R;}
@ Jiy st Y0, gie supy [ ST > LQn (1)
o Take W € W* with |W| > 61/3 > 62/3. Crosses one R;.
@ Use mixing of SRB measure to ensure that V. T-NW
crosses R; , N depends only on Js.
© Then 3 . cq, vy |Jw: T"[¢o will be comparable to
> acai- SuD 4 [J*T™[" using our generalized distortion bound.
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Growth Lemmas for ¢ > 1

The main issue for ¢t > 1 is getting a lower bound on the sum over
Gn(t). We do this by interpolation.

Holder inequality: ¢ > 1, choose s < 1, a € (0,1) s.t
Il=at+(1—-a)s.

a -«
POITED DR (Z ) (Z )

This implies,
mn 1/
Z |JWTn‘tCO > (Z |JWT ‘CO) / > CenPr(s)(a=1)/a
ergn(W) ' (Z |J Tn|C ) 1 @ /O(
o= 1%5 = QT_l = % So we can make the lower bound

Py (s)

n(t=1X where y = lim,_,- 527

/\

arbitrarily close to e~
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Interpolating from ¢t =1tot =t

Pu(t) . . .
@ Set s1 = intersection point
of sub-tangent to P, (t) at
1 o ¢ t =1 with line tlog 6.
to tit,

tlog6

@ Our interpolation gives a lower bound up to s;:
S wica, ) | Iw, T o > C'e™™7Dx - for all t € [1,51]
Use this to prove growth lemmas since 6" < eX(t=1) if t < ;.
@ Next interpolate from s; to sg, where so is the intersection
point of the subtangent to P,(t) at ¢t = s with the line
tlog 6. Continuing inductively, this process accumulates on ¢,
and passes t7 in finitely many steps. So we establish the
growth lemmas and exact exponential growth of @, (t) with
constants depending only on ¢y and ;.
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