Anisotropic Banach Spaces and Thermodynamic Formalism for Dispersing Billiard Maps Lecture 3: Geometric Potentials and Pressure, Part I

Mark Demers Fairfield University Research supported in part by NSF grant DMS 1800321

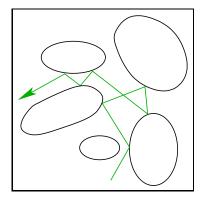
Spring School on Transfer Operators Research Semester: Dynamics, Transfer Operators and Spectra Centre Interfacultaire Bernoulli, EPFL March 22 - 26, 2021 **Goal for today:** Introduce geometric potentials and formulate definition of associated topological pressure for finite horizon Lorentz gas. Present initial results regarding growth lemmas, topological and metric pressures.

Lecture 4: Introduce Banach spaces adapted to the geometric potentials on which we prove a spectral gap for the transfer operator. Use this to prove existence and uniqueness of equilibrium states and analyticity of pressure function.

Reference: V. Baladi and M. Demers, *Thermodynamic formalism for dispersing billiards*, preprint 2020.

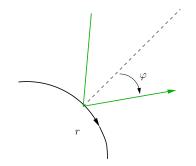
Periodic Lorentz gas (Sinai Billiard) [Sinai '68]

- Billiard table $\mathcal{Q} = \mathbb{T}^2 \setminus \bigcup_i B_i$; scatterers B_i .
- Boundaries of scatterers are C^3 and have strictly positive curvature.
- Billiard flow is given by a point particle moving at unit speed with elastic collisions at the boundary



Assume **Finite Horizon** condition: there is an upper bound on the free flight time between collisions.

The Associated Billiard Map

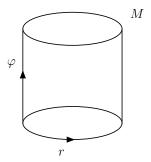


 $M = \left(\cup_i \partial B_i \right) \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \text{ the natural "collision" cross-section for the billiard flow.}$

 $T:(r,\varphi)\to (r',\varphi') \text{ is the first}$ return map: the billiard map.

• a hyperbolic map with singularities

- r =position coordinate oriented clockwise on boundary of scatterer ∂B_i
- $\varphi =$ angle outgoing trajectory makes with normal to scatterer



Pressure and Equilibrium States

Given a function $\phi,$ define the \ensure of ϕ by,

$$P(\phi) := \sup \left\{ h_{\nu}(T) + \int \phi \, d\nu : \nu \text{ invariant prob. measure} \right\}$$

If μ is an invariant probability for T satisfying $h_{\mu}(T) + \int \phi \, d\mu = P(\phi)$, then μ is an equilibrium state for ϕ .

For Hölder continuous ϕ , the existence and uniqueness of equilibrium states has been established for many systems.

• uniformly hyperbolic systems (Anosov and Axiom A) [Sinai '72], [Bowen '74], [Ruelle '78]

nonuniformly hyperbolic maps and flows

- Markov partitions [Sarig '11], [Lima, Matheus '18], [Buzzi, Crovisier, Sarig '19]
- Young towers [Pesin, Senti, Zhang '16]
- non-uniform specification [Climenhaga, Thompson '13], [Burns, Climenhaga, Fisher, Thompson '18]

Geometric Potentials

Important family of potentials: geometric potentials,

$$t\phi = -t\log J^u T, \quad t \in \mathbb{R}.$$

- t = 1 gives the smooth invariant measure $\mu_{\text{SRB}} = \cos \varphi dr d\varphi$. This is an equilibrium state for ϕ and uniqueness is proved in a class of measures whose support decays sufficiently near singularities [Katok, Strelcyn '86].
- t = 0 yields the measure of maximal entropy [Baladi, D. '20]. This is Bernoulli (and hence mixing) and globally unique, but its rate of mixing is not known.
- t < 0 implies $P(t) = \infty$ since $J^u T$ is unbounded near tangential collisions. Today restrict to t > 0.
- [Chen, Wang, Zhang '20] proves existence (but not uniqueness) of equilibrium state for t near 1 using Young towers.

Associated Transfer Operator

The main tool we will use is the transfer operator associated to the potential $t\phi = -t \log J^u T$.

For a smooth hyperbolic system, the transfer operator with spectral radius $e^{P(t\phi)}$ is

$$\widetilde{\mathcal{L}}_t f = \frac{f \circ T^{-1}}{((J^u T)^t J^s T) \circ T^{-1}}$$

For a billiard, setting $E(x)=\sin(\angle(E^s(x),E^u(x))),$

$$\frac{\cos\varphi(x)}{\cos\varphi(Tx)} = J_{\text{Leb}}T(x) = J^sT(x)J^uT(x)\frac{E(Tx)}{E(x)},$$
$$\implies (J^uT)^tJ^sT = \left(\frac{E\cos\varphi}{(E\cos\varphi)\circ T}\right)^t(J^sT)^{1-t},$$

So $\widetilde{\mathcal{L}}_t$ has the same spectrum as

$$\mathcal{L}_t f = \frac{f \circ T^{-1}}{(J^s T)^{1-t} \circ T^{-1}}$$

Associated Transfer Operator

$$\mathcal{L}_t f = \frac{f \circ T^{-1}}{(J^s T)^{1-t} \circ T^{-1}}$$

For t = 1, this corresponds to using μ_{SRB} as the conformal measure. We will identify a function f with the measure $d\mu = f d\mu_{\text{SRB}}$. Then acting on distributions,

$$\mathcal{L}_t \mu(\psi) = \mu\left(\frac{\psi \circ T}{(J^s T)^{1-t}}\right) \,, \quad \text{test function } \psi$$

Construct equilibrium state μ_t out of left and right eigenvectors of \mathcal{L}_t corresponding to the eigenvalue of maximum modulus.

Sources of difficulty:

- T has discontinuities so a topological definition of pressure must overcome the effect of this cutting.
- The potential is not Hölder continuous
 - $J^sT \approx \cos \varphi$ so the potential is unbounded
 - $\bullet \ J^sT$ is not continuous on any open set

Weight Function for Topological Pressure

To control the evolution of $\mathcal{L}_t^n f$, must control integrals of the type,

$$\int_W \mathcal{L}^n_t f \,\psi \, dm_W = \int_{T^{-n}W} f \,\psi \circ T^n \, |J^s T^n|^t \, dm_{T^{-n}W} \,.$$

- $W \in \mathcal{W}_{H}^{s}$, the set of (weakly) homogeneous local stable manifolds with uniformly bounded curvature
- m_W is arclength measure on W
- $\psi \in C^{\alpha}(W)$ is a Hölder continuous test function
- f is an element of our Banach space (closure of $C^1(M)$ in some norm)

 $T^{-n}W = \cup_i W_i$, $W_i \in \mathcal{G}_n(W)$, homogeneous components.

We need to estimate precisely how $\sum_{W_i} |J^s T^n|_{C^0(W_i)}^t$ grows as a function of n and W. This resembles the expression from our growth lemma in Lecture 2.

Homogeneity Strips and Modified One-step Expansion

$$H_{\pm k} = \{ (r, \varphi) \in M : (k+1)^{-q} \le |\varphi \mp \frac{\pi}{2}| \le k^{-q} \}, \quad k \ge k_0$$

For $V \in \widehat{\mathcal{W}}^s$, let V_i denote the homogeneous connected components of $T^{-1}V$.

Lemma (Modified One-step Expansion)

Fix $t_0 > 0$ and $q \ge 2/t_0$. There exists $\theta(t_0) < 1$, $k_0(t_0), \delta_0(t_0) > 0$ such that for all $V \in \widehat{\mathcal{W}}^s$,

$$\sup_{|V| \le \delta_0} \sum_{V_i} |J_{V_i} T|^t_* < \theta^t \,, \quad \text{for all } t \ge t_0.$$

The proof is similar to the standard estimate: near a tangential collision, $\sum_{k\geq k_0} |J_{V_i}T|_*^t \sim \sum_{k\geq k_0} k^{-qt} \leq Ck_0^{-1}$. Then k_0 can be chosen large enough (and δ_0 small enough) to make θ^t arbitrarily close to Λ^{-t} , where $\Lambda = 1 + 2\mathcal{K}_{\min}\tau_{\min}$.

A Definition of Topological Pressure

• Define
$$S_n = \bigcup_{i=0}^n T^{-i} S_0$$
,
 $S_n^{\mathbb{H}} = \bigcup_{i=0}^n T^{-i} S_0^{\mathbb{H}}$
• Let $\mathcal{M}_0^n = \text{connected components}$
of $M \setminus S_n$,
• $\mathcal{M}_0^{n,\mathbb{H}} = \text{connected components of}$
 $M \setminus (S_{n-1}^{\mathbb{H}} \cup T^{-n} S_0)$
Define for $t > 0$,
• $Q_n(t) := \sum_{A \in \mathcal{M}_0^{n,\mathbb{H}}} \sup_{x \in A \cap M'} |J^s T^n(x)|^t$, $M' = M \setminus (\bigcup_{n \in \mathbb{Z}} S_n)$
• $P_*(t) := \lim_{n \to \infty} \frac{1}{n} \log Q_n(t)$

• The limit exists since the sequence $\log Q_n(t)$ is subadditive: $Q_{n+k}(t) \leq Q_n(t)Q_k(t)$. It follows, $Q_n(t) \geq e^{nP_*(t)}$.

Properties of $P_*(t)$ and Variational Inequality

Theorem

For a finite horizon Sinai billiard:

- a) $P_*(t)$ is a convex, continuous, decreasing function for t > 0;
- b) $P_*(t)$ satisfies a variational inequality,

$$P_*(t) \ge P(t) = \sup\left\{h_{\mu}(T) - t \int \log J^u T \, d\mu : \mu \text{ } T\text{-inv. prob.}\right\}$$

Proof. (a) follows from $Q_n(\alpha t + (1 - \alpha)s) \leq Q_n(t)^{\alpha}Q_n(s)^{1-\alpha}$. (b) relies on the continuation of singularities property. This implies that setting $\mathcal{P} = \mathcal{M}_0^1$, then the elements of $\mathcal{P}_{-n}^n = \bigvee_{i=-n}^n T^{-i}\mathcal{P}$ are simply connected. This plus the uniform hyperbolicity of T implies \mathcal{P} is a generating partition. Then using that $\int_M \log J^s T \, d\mu = -\int_M \log J^u T \, d\mu$ for an invariant measure μ , a standard estimate (e.g. [Walters '82]) implies $h_\mu(T) - t \int_M \log J^u T \, d\mu \leq P_*(t)$.

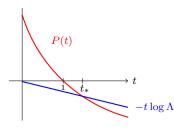
Definition of $t_* > 1$

Want to prove that $P_*(t) = P(t)$ for $t \in (0, t_*)$ for some $t_* > 1$. To do this, need to prove exact exponential growth of $Q_n(t)$:

$$\exists C_2 > 0 \ s.t. \ e^{nP_*(t)} \le Q_n(t) \le C_2 e^{nP_*(t)},$$

and uniform growth along stable curves,

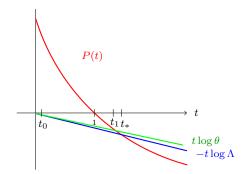
$$\exists c_0 > 0 \, s.t. \, \forall W \in \widehat{\mathcal{W}}^s, |W| \ge \delta_1, \sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_0 Q_n(t) \, .$$



- $t_* := \sup\{t > 0 : -t \log \Lambda < P(t)\}$ Pressure Gap: $\Lambda^{-t} < e^{P(t)}$ for $t < t_*$
- Two cases: $t \in (0,1]$ and $t \in (1,t_*)$.
- Fix $t_0 > 0$ and prove above estimates for $t \in [t_0, 1]$.
- Fix $t_1 < t_*$ and prove above estimates for $t \in [1, t_1]$.

Restricting to $t \in [t_0, t_1]$

Fixing $t_0 > 0$ and $t_1 < t_*$, we can choose $\theta < 1$ such that the intersection point between $t \log \theta$ and P(t) is to the right of t_1 .



Then we can choose q, k_0 and δ_0 so that the one-step expansion holds for the chosen θ uniformly for all $t \in [t_0, t_1]$.

Note: For $t < t_1$, $\theta^t < e^{P(t)} \le e^{P_*(t)}$.

Growth Lemmas for $t \in [t_0, 1]$

For $\delta_1 < \delta_0$, let $\mathcal{G}_n^{\delta_1}(W)$ denote the analogous collection as $\mathcal{G}_n(W)$, but with respect to the length scale δ_1 rather than δ_0 .

Lemma ('Long' elements of $\mathcal{G}_n(W)$ carry most weight)

 $\forall \varepsilon > 0 \ \exists \delta_1, n_1 > 0 \ s.t \ \forall W \in \widehat{\mathcal{W}}^s \ with \ |W| \ge \delta_1/3 \ and \ all \ n \ge n_1$,

$$\sum_{\substack{W_i \in \mathcal{G}_n^{\delta_1}(W_i) \\ |W_i| < \delta_1/3}} |J_{W_i} T^n|_{C^0(W_i)}^t \le \varepsilon \sum_{W_i \in \mathcal{G}_n^{\delta_1}(W)} |J_{W_i} T^n|_{C^0(W_i)}^t$$

Proof uses one-step expansion and grouping according to most recent long ancestor, together with the following lower bound:

$$\sum_{W_i \in \mathcal{G}_k^{\delta_1}(V)} |J_{W_i} T^k|_{C^0(W_i)}^t = \sum_{W_i \in \mathcal{G}_k^{\delta_1}(V)} |J_{W_i} T^k|_{C^0(W_i)}^{t-1} |J_{W_i} T^k|_{C^0(W_i)}^{t-1}$$
$$\geq C_1 \Lambda^{k(1-t)} \sum_{W_i \in \mathcal{G}_k^{\delta_1}(V)} \frac{|T^k W_i|}{|W_i|} \geq C_1 \Lambda^{k(1-t)} |V| \delta_1^{-1}.$$

Mark Demers

Thermodynamic Formalism for Dispersing Billiards

Prevalence of 'long' partition elements

Define
$$\mathcal{A}_n(\delta) = \{A \in \mathcal{M}_0^{n,\mathbb{H}} : \operatorname{diam}^u(T^n A) \ge \delta/3\}.$$

Lemma ('Long' elements of $\mathcal{M}_{-n}^{0,\mathbb{H}}$ carry most weight) There exist $\delta_2 > 0$ and $c_0 > 0$ such that

$$\sum_{A \in \mathcal{A}_n(\delta_2)} \sup_{x \in A} |J^s T^n(x)|^t \ge c_0 Q_n(t), \ \forall n \in \mathbb{N}, \ \forall t \in [t_0, 1].$$

Uses version of one-step expansion for elements of $\mathcal{M}_{-n}^{0,\mathbb{H}}$, as well as the following distortion bound:

 $\exists C > 0 \text{ s.t. for all } n \geq 1$, if $W_1, W_2 \in \widehat{\mathcal{W}}^s_{\mathbb{H}}$ are such that $W_1, W_2 \subset A \in \mathcal{M}^{n,\mathbb{H}}_0$, and all $x \in W_1, y \in W_2$,

$$\left|\log \frac{J_{W_1}T^n(x)}{J_{W_2}T^n(y)}\right| \le C.$$

Uses that the stable cones are globally defined, even though $E^{s}\ \mbox{is}$ only measurable.

Uniform Growth for $W \in \widehat{\mathcal{W}}^s$ and Supermultiplicativity

Proposition

a) There exists $c_1 > 0$ s.t. for any $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3$,

$$\sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0(W_i)}^t \ge c_1 Q_n(t) , \, \forall n \ge 1 \,, \, \forall t \in [t_0, 1] \,.$$

b) There exists $c_2 > 0$ s.t. for all $k, n \ge 1$,

$$Q_{n+k}(t) \ge c_2 Q_n(t) Q_k(t) \,.$$

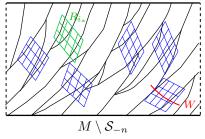
(b) follows from (a) and first growth lemma, since

$$\sum_{W_i \in \mathcal{G}_{n+k}^{\delta_1}(W)} |J_{W_i} T^{n+k}|_{C^0}^t \ge C \sum_{V_j \in L_n^{\delta_1}(W)} |J_{V_j} T^n|_{C^0}^t \sum_{W_i \in \mathcal{G}_k^{\delta_1}(V_j)} |J_{W_i} T^k|_{C^0}^t$$

Immediate corollary of (b) is exact exponential growth of $Q_n(t)$:

$$e^{nP_*(t)} \le Q_n(t) \le 2c_2^{-1}e^{nP_*(t)} \quad \forall n \ge 1, \, \forall t \in [t_0, 1].$$

Justification for (a) Lower Bound on Growth



- 'Cover' M with $k(\delta_2)$ Cantor rectangles R_i s.t. any stable/ unstable curve of length $\delta_2/3$ properly crosses at least one R_i • $\mathcal{A}_n^i := \{A \in \mathcal{A}_n(\delta_2) \subset \mathcal{M}_0^{n,\mathbb{H}} : T^n A \text{ properly crosses } R_i\}$ • $\exists i_* \text{ s.t. } \sum_{A \in \mathcal{A}_n^{i*}} \sup_A |J^s T^n|^t \geq \frac{c_0}{k} Q_n(t)$
- Take $W \in \widehat{\mathcal{W}}^s$ with $|W| \ge \delta_1/3 \ge \delta_2/3$. Crosses one R_j .
- Use mixing of SRB measure to ensure that $V \subset T^{-N}W$ crosses R_{i_*} , N depends only on δ_2 .
- Then $\sum_{W_i \in \mathcal{G}_n(V)} |J_{W_i}T^n|_{C^0}^t$ will be comparable to $\sum_{A \in \mathcal{A}_n^{i_*}} \sup_A |J^sT^n|^t$ using our generalized distortion bound.

Growth Lemmas for t > 1

The main issue for t > 1 is getting a lower bound on the sum over $\mathcal{G}_n(t)$. We do this by interpolation.

Holder inequality: t > 1, choose s < 1, $\alpha \in (0, 1)$ s.t. $1 = \alpha t + (1 - \alpha)s$.

$$\sum_{i} a_{i} = \sum_{i} a_{i}^{\alpha t + (1-\alpha)s} \le \left(\sum_{i} a_{i}^{t}\right)^{\alpha} \left(\sum_{i} a_{i}^{s}\right)^{1-\alpha}$$

This implies,

$$\sum_{W_i \in \mathcal{G}_n(W)} |J_{W_i} T^n|_{C^0}^t \ge \frac{(\sum_i |J_{W_i} T^n|_{C^0})^{1/\alpha}}{(\sum_i |J_{W_i} T^n|_{C^0}^s)^{(1-\alpha)/\alpha}} \ge C e^{nP_*(s)(\alpha-1)/\alpha}$$

 $\begin{array}{l} \alpha=\frac{1-s}{t-s}\implies \frac{\alpha-1}{\alpha}=\frac{1-t}{1-s}. \mbox{ So we can make the lower bound} \\ \mbox{arbitrarily close to } e^{-n(t-1)\chi} \mbox{ where } \chi=\lim_{s\rightarrow 1^-}\frac{P_*(s)}{1-s}. \end{array}$

Interpolating from t = 1 to $t = t_1$

 $P_*(t)$

 t_0

• Set s_1 = intersection point of sub-tangent to $P_*(t)$ at t = 1 with line $t \log \theta$.

Our interpolation gives a lower bound up to s₁: ∑_{W_i∈G_n(W)} |J_{W_i}Tⁿ|^t_{C⁰} ≥ C'e^{-n(t-1)χ} for all t ∈ [1, s₁] Use this to prove growth lemmas since θ^t < e^{χ(t-1)} if t < s₁.
Next interpolate from s₁ to s₂, where s₂ is the intersection point of the subtangent to P_{*}(t) at t = s₁ with the line t log θ. Continuing inductively, this process accumulates on t_{*} and passes t₁ in finitely many steps. So we establish the growth lemmas and exact exponential growth of Q_n(t) with constants depending only on t₀ and t₁.

 $t \log \theta$