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Lecture 3: Geometric Potentials and Pressure, Part I

Goal for today: Introduce geometric potentials and formulate
definition of associated topological pressure for finite horizon
Lorentz gas. Present initial results regarding growth lemmas,
topological and metric pressures.

Lecture 4: Introduce Banach spaces adapted to the geometric
potentials on which we prove a spectral gap for the transfer
operator. Use this to prove existence and uniqueness of equilibrium
states and analyticity of pressure function.

Reference: V. Baladi and M. Demers, Thermodynamic formalism

for dispersing billiards, preprint 2020.
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Periodic Lorentz gas (Sinai Billiard) [Sinai ’68]

Billiard table Q = T
2\∪iBi;

scatterers Bi.

Boundaries of scatterers are
C3 and have strictly positive
curvature.

Billiard flow is given by a
point particle moving at
unit speed with elastic
collisions at the boundary

Assume Finite Horizon condition: there is an upper bound on the
free flight time between collisions.
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The Associated Billiard Map

r

ϕ

M =
(
∪i ∂Bi

)
× [−π

2 ,
π
2 ], the

natural “collision” cross-section
for the billiard flow.

T : (r, ϕ) → (r′, ϕ′) is the first
return map: the billiard map.

r = position coordinate
oriented clockwise on
boundary of scatterer ∂Bi

ϕ = angle outgoing
trajectory makes with
normal to scatterer

ϕ

M

r

a hyperbolic map with singularities
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Pressure and Equilibrium States

Given a function φ, define the pressure of φ by,

P (φ) := sup
{
hν(T ) +

∫
φdν : ν invariant prob. measure

}

If µ is an invariant probability for T satisfying
hµ(T ) +

∫
φdµ = P (φ), then µ is an equilibrium state for φ.

For Hölder continuous φ, the existence and uniqueness of
equilibrium states has been established for many systems.

uniformly hyperbolic systems (Anosov and Axiom A)
[Sinai ’72], [Bowen ’74], [Ruelle ’78]

nonuniformly hyperbolic maps and flows

Markov partitions [Sarig ’11], [Lima, Matheus ’18], [Buzzi,
Crovisier, Sarig ’19]
Young towers [Pesin, Senti, Zhang ’16]
non-uniform specification [Climenhaga, Thompson ’13],
[Burns, Climenhaga, Fisher, Thompson ’18]
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Geometric Potentials

Important family of potentials: geometric potentials,

tφ = −t log JuT, t ∈ R .

t = 1 gives the smooth invariant measure µSRB = cosϕdrdϕ.
This is an equilibrium state for φ and uniqueness is proved in
a class of measures whose support decays sufficiently near
singularities [Katok, Strelcyn ’86].

t = 0 yields the measure of maximal entropy [Baladi, D. ’20].
This is Bernoulli (and hence mixing) and globally unique, but
its rate of mixing is not known.

t < 0 implies P (t) = ∞ since JuT is unbounded near
tangential collisions. Today restrict to t > 0.

[Chen, Wang, Zhang ’20] proves existence (but not uniqueness)
of equilibrium state for t near 1 using Young towers.
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Associated Transfer Operator

The main tool we will use is the transfer operator associated to the
potential tφ = −t log JuT .

For a smooth hyperbolic system, the transfer operator with
spectral radius eP (tφ) is

L̃tf =
f ◦ T−1

((JuT )tJsT ) ◦ T−1

For a billiard, setting E(x) = sin(∠(Es(x), Eu(x))),

cosϕ(x)

cosϕ(Tx)
= JLebT (x) = JsT (x)JuT (x)

E(Tx)

E(x)
,

=⇒ (JuT )tJsT =

(
E cosϕ

(E cosϕ) ◦ T

)t

(JsT )1−t

So L̃t has the same spectrum as

Ltf =
f ◦ T−1

(JsT )1−t ◦ T−1
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Associated Transfer Operator

Ltf =
f ◦ T−1

(JsT )1−t ◦ T−1

For t = 1, this corresponds to using µSRB as the conformal
measure. We will identify a function f with the measure
dµ = fdµSRB. Then acting on distributions,

Ltµ(ψ) = µ

(
ψ ◦ T

(JsT )1−t

)
, test function ψ

Construct equilibrium state µt out of left and right eigenvectors of
Lt corresponding to the eigenvalue of maximum modulus.

Sources of difficulty:

T has discontinuities so a topological definition of pressure
must overcome the effect of this cutting.
The potential is not Hölder continuous

JsT ≈ cosϕ so the potential is unbounded
JsT is not continuous on any open set
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Weight Function for Topological Pressure

To control the evolution of Ln
t f , must control integrals of the type,

∫

W
Ln
t f ψ dmW =

∫

T−nW
f ψ ◦ T n |JsT n|t dmT−nW .

W ∈ Ws
H , the set of (weakly) homogeneous local stable

manifolds with uniformly bounded curvature

mW is arclength measure on W

ψ ∈ Cα(W ) is a Hölder continuous test function

f is an element of our Banach space (closure of C1(M) in
some norm)

T−nW = ∪iWi, Wi ∈ Gn(W ), homogeneous components.

We need to estimate precisely how
∑

Wi
|JsT n|tC0(Wi)

grows as a
function of n and W . This resembles the expression from our
growth lemma in Lecture 2.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Homogeneity Strips and Modified One-step Expansion

H±k = {(r, ϕ) ∈M : (k + 1)−q ≤ |ϕ∓
π

2
| ≤ k−q} , k ≥ k0

For V ∈ Ŵs, let Vi denote the homogeneous connected
components of T−1V .

Lemma (Modified One-step Expansion)

Fix t0 > 0 and q ≥ 2/t0. There exists θ(t0) < 1, k0(t0), δ0(t0) > 0

such that for all V ∈ Ŵs,

sup
|V |≤δ0

∑

Vi

|JVi
T |t∗ < θt , for all t ≥ t0.

The proof is similar to the standard estimate: near a tangential
collision,

∑
k≥k0

|JVi
T |t∗ ∼

∑
k≥k0

k−qt ≤ Ck−1
0 . Then k0 can be

chosen large enough (and δ0 small enough) to make θt arbitrarily
close to Λ−t, where Λ = 1 + 2Kminτmin.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



A Definition of Topological Pressure

Define Sn = ∪n
i=0T

−iS0,
SH
n = ∪n

i=0T
−iSH

0

Let Mn
0 = connected components

of M \ Sn,

Mn,H
0 = connected components of

M \ (SH
n−1 ∪ T

−nS0)

M \ Sn
Define for t > 0,

Qn(t) :=
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsT n(x)|t, M ′ =M \ (∪n∈ZSn)

P∗(t) := lim
n→∞

1

n
logQn(t)

The limit exists since the sequence logQn(t) is subadditive:
Qn+k(t) ≤ Qn(t)Qk(t). It follows, Qn(t) ≥ enP∗(t).
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Properties of P∗(t) and Variational Inequality

Theorem

For a finite horizon Sinai billiard:

a) P∗(t) is a convex, continuous, decreasing function for t > 0;

b) P∗(t) satisfies a variational inequality,

P∗(t) ≥ P (t) = sup
{
hµ(T )−t

∫
log JuT dµ : µ T -inv. prob.

}

Proof. (a) follows from Qn(αt+ (1− α)s) ≤ Qn(t)
αQn(s)

1−α.
(b) relies on the continuation of singularities property. This implies
that setting P = M1

0, then the elements of Pn
−n =

∨n
i=−n T

−iP
are simply connected. This plus the uniform hyperbolicity of T
implies P is a generating partition. Then using that∫
M log JsT dµ = −

∫
M log JuT dµ for an invariant measure µ, a

standard estimate (e.g. [Walters ’82]) implies
hµ(T )− t

∫
M log JuT dµ ≤ P∗(t). ✷
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Definition of t∗ > 1

Want to prove that P∗(t) = P (t) for t ∈ (0, t∗) for some t∗ > 1.

To do this, need to prove exact exponential growth of Qn(t):

∃C2 > 0 s.t. enP∗(t) ≤ Qn(t) ≤ C2e
nP∗(t) ,

and uniform growth along stable curves,

∃c0 > 0 s.t.∀W ∈ Ŵs, |W | ≥ δ1,
∑

Wi∈Gn(W )

|JWi
T n|tC0(Wi)

≥ c0Qn(t) .

t
t∗1

P (t)

−t log Λ

t∗ := sup{t > 0 : −t log Λ < P (t)}
Pressure Gap: Λ−t < eP (t) for t < t∗

Two cases: t ∈ (0, 1] and t ∈ (1, t∗).

Fix t0 > 0 and prove above estimates
for t ∈ [t0, 1].

Fix t1 < t∗ and prove above estimates
for t ∈ [1, t1].
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Restricting to t ∈ [t0, t1]

Fixing t0 > 0 and t1 < t∗, we can choose θ < 1 such that the
intersection point between t log θ and P (t) is to the right of t1.

t
t∗1t0 t1

P (t)

−t log Λ
t log θ

Then we can choose q, k0 and δ0 so that the one-step expansion
holds for the chosen θ uniformly for all t ∈ [t0, t1].

Note: For t < t1, θ
t < eP (t) ≤ eP∗(t).
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Growth Lemmas for t ∈ [t0, 1]

For δ1 < δ0, let G
δ1
n (W ) denote the analogous collection as

Gn(W ), but with respect to the length scale δ1 rather than δ0.

Lemma (’Long’ elements of Gn(W ) carry most weight)

∀ε > 0 ∃δ1, n1 > 0 s.t ∀W ∈ Ŵs with |W | ≥ δ1/3 and all n ≥ n1,

∑

Wi∈G
δ1
n (Wi)

|Wi|<δ1/3

|JWi
T n|tC0(Wi)

≤ ε
∑

Wi∈G
δ1
n (W )

|JWi
T n|tC0(Wi)

Proof uses one-step expansion and grouping according to most
recent long ancestor, together with the following lower bound:
∑

Wi∈G
δ1
k

(V )

|JWi
T k|tC0(Wi)

=
∑

Wi∈G
δ1
k

(V )

|JWi
T k|C0(Wi)|JWi

T k|t−1
C0(Wi)

≥ C1Λ
k(1−t)

∑

Wi∈G
δ1
k

(V )

|T kWi|

|Wi|
≥ C1Λ

k(1−t)|V |δ−1
1 .
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Prevalence of ‘long’ partition elements

Define An(δ) = {A ∈ Mn,H
0 : diamu(T nA) ≥ δ/3}.

Lemma (‘Long’ elements of M0,H
−n carry most weight)

There exist δ2 > 0 and c0 > 0 such that

∑

A∈An(δ2)

sup
x∈A

|JsT n(x)|t ≥ c0Qn(t) , ∀n ∈ N , ∀t ∈ [t0, 1] .

Uses version of one-step expansion for elements of M0,H
−n , as well

as the following distortion bound:

∃C > 0 s.t. for all n ≥ 1, if W1,W2 ∈ Ŵs
H
are such that

W1,W2 ⊂ A ∈ Mn,H
0 , and all x ∈W1, y ∈W2,

∣∣∣∣log
JW1

T n(x)

JW2
T n(y)

∣∣∣∣ ≤ C .

Uses that the stable cones are globally defined, even though Es is
only measurable.
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Uniform Growth for W ∈ Ŵs and Supermultiplicativity

Proposition

a) There exists c1 > 0 s.t. for any W ∈ Ŵs with |W | ≥ δ1/3,

∑

Wi∈Gn(W )

|JWi
T n|tC0(Wi)

≥ c1Qn(t) , ∀n ≥ 1 , ∀t ∈ [t0, 1] .

b) There exists c2 > 0 s.t. for all k, n ≥ 1,

Qn+k(t) ≥ c2Qn(t)Qk(t) .

(b) follows from (a) and first growth lemma, since
∑

Wi∈G
δ1
n+k

(W )

|JWi
T n+k|tC0 ≥ C

∑

Vj∈L
δ1
n (W )

|JVj
T n|tC0

∑

Wi∈G
δ1
k

(Vj)

|JWi
T k|tC0

Immediate corollary of (b) is exact exponential growth of Qn(t):

enP∗(t) ≤ Qn(t) ≤ 2c−1
2 enP∗(t) ∀n ≥ 1 , ∀t ∈ [t0, 1] .
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Justification for (a) Lower Bound on Growth

M \ S
−n

Ri∗

W

‘Cover’ M with k(δ2) Cantor rectangles Ri s.t. any stable/
unstable curve of length δ2/3 properly crosses at least one Ri

Ai
n := {A ∈ An(δ2) ⊂ Mn,H

0 : T nA properly crosses Ri}
∃i∗ s.t.

∑
A∈Ai∗

n
supA |JsT n|t ≥ c0

k Qn(t)

Take W ∈ Ŵs with |W | ≥ δ1/3 ≥ δ2/3. Crosses one Rj .
Use mixing of SRB measure to ensure that V ⊂ T−NW
crosses Ri∗ , N depends only on δ2.
Then

∑
Wi∈Gn(V ) |JWi

T n|tC0 will be comparable to∑
A∈Ai∗

n
supA |JsT n|t using our generalized distortion bound.
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Growth Lemmas for t > 1

The main issue for t > 1 is getting a lower bound on the sum over
Gn(t). We do this by interpolation.

Holder inequality: t > 1, choose s < 1, α ∈ (0, 1) s.t.
1 = αt+ (1− α)s.

∑

i

ai =
∑

i

a
αt+(1−α)s
i ≤

(∑

i

ati

)α(∑

i

asi

)1−α

This implies,

∑

Wi∈Gn(W )

|JWi
T n|tC0 ≥

(
∑

i |JWi
T n|C0)1/α

(
∑

i |JWi
T n|s

C0)(1−α)/α
≥ CenP∗(s)(α−1)/α

α = 1−s
t−s =⇒ α−1

α = 1−t
1−s . So we can make the lower bound

arbitrarily close to e−n(t−1)χ where χ = lims→1−
P∗(s)
1−s .
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Interpolating from t = 1 to t = t1

t
t∗1t0 t1

s1

P∗(t)

t log θ

Set s1 = intersection point
of sub-tangent to P∗(t) at
t = 1 with line t log θ.

Our interpolation gives a lower bound up to s1:∑
Wi∈Gn(W ) |JWi

T n|tC0 ≥ C ′e−n(t−1)χ for all t ∈ [1, s1]

Use this to prove growth lemmas since θt < eχ(t−1) if t < s1.
Next interpolate from s1 to s2, where s2 is the intersection
point of the subtangent to P∗(t) at t = s1 with the line
t log θ. Continuing inductively, this process accumulates on t∗
and passes t1 in finitely many steps. So we establish the
growth lemmas and exact exponential growth of Qn(t) with
constants depending only on t0 and t1.

Mark Demers Thermodynamic Formalism for Dispersing Billiards


