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Periodic Lorentz Gas (Sinai Billiard) [Sinai ’68]

Billiard table Q = T2\∪iBi;
scatterers Bi.

Boundaries of scatterers are
C3 and have strictly positive
curvature.

Billiard flow is given by a
point particle moving at
unit speed with elastic
collisions at the boundary

Finite horizon condition: there is an upper bound on the free
flight time between collisions. Otherwise Infinite horizon.
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The Associated Billiard Map

r

ϕ

M =
(
∪i ∂Bi

)
× [−π

2 ,
π
2 ], the

natural “collision” cross-section
for the billiard flow.

T : (r, ϕ) → (r′, ϕ′) is the first
return map: the billiard map.

r = position coordinate
oriented clockwise on
boundary of scatterer ∂Bi

ϕ = angle outgoing
trajectory makes with
normal to scatterer

ϕ

M

r

a hyperbolic map with singularities
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Statistical Properties with respect to SRB Measure

T preserves a smooth invariant measure on M , µSRB = cosϕdr dϕ

With respect to this measure, many statistical properties have
been proved using a variety of techniques.

µSRB is ergodic [Sinai ’70] and Bernoulli [Gallavotti, Ornstein ’74]

Countable Markov partitions and Markov “sieves”
[Bunimovich, Sinai ’80, ’81], [Bunimovich, Chernov, Sinai ’90, ’91]

- Central Limit Theorem

Young Towers
- exponential decay of correlations, [Young ’98]
- almost sure invariance principle [Melbourne, Nicol ’05]
- local moderate and large deviations, [Melbourne, Nicol ’08],

[Young, Rey-Bellet ’08]

Coupling arguments via standard pairs [Chernov ’06],
[Chernov, Dolgopyat ’09]

Transfer operator techniques [D., Zhang ’11, ’13, ’14]
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Goal of Lectures

Goal of present lectures: Describe recent work extending analysis
to other invariant measures, namely, equilibrium states associated
to geometric potentials, gt = −t log JuT , t ∈ [0, t∗) for some
t∗ > 1.

Goal for today: Recall some geometric facts about dispersing
billiards that we will use in subsequent lectures: hyperbolicity,
distortion, complexity, growth lemma.

Reference: N. Chernov and R. Markarian, Chaotic Billiards,
Mathematical Surveys and Monographs 127 (2006), 330 pp.
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Hyperbolicity away from Singularities

Bi

A dispersing wavefront before
and after collision.

r

ϕ

The wavefront projects to a
curve with positive slope on Bi.

Positive slope in M =⇒ unstable curve

Negative slope in M =⇒ stable curve
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Hyperbolicity: Stable and Unstable Cones

For both finite and infinite horizon, two global families of cones:

Cu =

{
(dr, dϕ) : Kmin ≤ dϕ

dr
≤ Kmax +

1

τmin

}

Cs =

{
(dr, dϕ) : −Kmin ≥ dϕ

dr
≥ −Kmax −

1

τmin

}

τmin > 0 is minimum time between consecutive collisions

Kmin /max = min/max curvature of scatterers

Strict invariance:

DT (x)Cu ( Cu and DT (x)−1Cs ( Cs

Minimum expansion: Λ := 1 + 2Kminτmin.

∃C0 > 0 s.t. ‖DT n(x)v‖ ≥ C0Λ
n‖v‖ ∀v ∈ Cu

and similarly for stable cone under DT−n(x).
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Invariant Families of Stable/Unstable Curves

Call a smooth curve W ⊂ M stable (or cone-stable) if the
tangent vector to W at each point belongs to Cs.

Define

Ŵs = {stable curves with curvature bounded by D0 > 0

and length at most δ0 > 0 }

Since T is piecewise C2 and uniformly hyperbolic away from
its singularities, we can choose D0 > 0 such that Ŵs is
invariant under T−1, up to subdivision of long curves.

Define Ws ⊂ Ŵs real local stable manifolds

Similarly, define a T -invariant set Ŵu of (cone-) unstable
curves, and local unstable manifolds Wu.
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Singularities

Tangential collisions create singularity curves for T .

Let S0 = {ϕ = ±π
2}.

Sn =
⋃n

i=0 T
−iS0 is the singularity set for T n, n ≥ 1.

S−n =
⋃n

i=0 T
iS0 is the singularity set for T−n, n ≥ 1.

T n is discontinuous at the set of decreasing curves Sn and T−n is
discontinuous at the set of increasing curves S−n.

Important fact: Sn is uniformly transverse to Cu and S−n is
uniformly transverse to Cs.

Continuation of

Singularities

Every curve in Sn \ S0 is
part of a monotonic
piecewise smooth curve
belonging to Sn which
terminates on S0.

ϕ = π
2

ϕ = −π
2

S−1
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Linear Bound on Complexity

Want expansion due to hyperbolicity to beat cutting due to
singularities. In the finite horizon case, there is a linear bound due
to Bunimovich.

For x ∈ M , let N(Sn, x) denote the number of singularity curves
in Sn that meet at x. Define N(Sn) = supx∈M N(Sn, x).

Lemma (Bunimovich, Chernov, Sinai ’90)

Assume finite horizon. There exists K > 0 depending only on the

configuration of scatterers such that N(Sn) ≤ Kn for all n ≥ 1.

Idea of Proof. Let x, x′ ∈ M lie on a straight billiard trajectory
with one or more tangential collisions between.

x x′

B3

B1 B2B4

B5
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Linear Bound on Complexity

Let A, A′ be neighborhoods of x, x′ in M , partitioned into sectors
A1, . . . Ak ⊂ A and A′

1, . . . A
′
k ⊂ A such that T njAj = A′

j .

Set T̂ |Aj := T nj

T̂

A A′

x x′

Assume N(Sn−1) ≤ K(n− 1).

Let N(Si|A′
j , x

′) denote the number of curves in Si passing
through x′ and lying in A′

j.

N(Sn, x) ≤ k+
∑

j N(Sn−nj |A′
j , x

′) ≤ k+
∑

j N(Sn−1|A′
j , x

′)

So N(Sn, x) ≤ k +K(n− 1) ≤ Kn if k ≤ K. ✷

The proof uses that the flow is continuous.
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Distortion Control and Extended Singularity Set

When T (x) is near S0, DT (x) becomes large:

‖DT (x)|Eu‖ ∼ 1

cosϕ(Tx)
∼ d(x,S1)

−1/2 , ‖DT (x)|Es‖ ∼ cosϕ(x)

Indeed, detDT (x) = cosϕ(x)
cosϕ(Tx) , which can be viewed as the

product of stable and unstable Jacobians.

To control distortion, partition M into homogeneity strips H±k,

Hk =

{
π

2
− 1

kq
< ϕ <

π

2
− 1

(k + 1)q

}

and similarly for H−k, |k| ≥ k0. Standard choice: q = 2
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Distortion Control and Extended Singularity Set

✻

✲

ϕ

r

π
2

−π
2

♣

♣

♣

♣

♣

♣

Hk

Define Ŵs
H = homogeneous elements of Ŵs

Distortion depends on the exponent q: If T iW ⊂ Ŵs
H,

i = 0, . . . , n, then

log
JWT n(x)

JWT n(y)
≤ Cdd(x, y)

1/(q+1) ∀x, y ∈ W

But the singularity set becomes countable:
SH
0 := S0 ∪ (∪|k|≥k0∂Hk), and SH

±n =
⋃n

i=0 T
∓iSH

0 .

Need a new complexity bound.
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One-step Expansion [Chernov ’06]

Define an adapted metric in the tangent space dx = (dr, dϕ) by,

‖dx‖∗ =
K(x) + |V|√

1 + V2
‖dx‖ ,

where V = dϕ/dr and K(x) is the curvature of the scatterer at x.

‖DT (x)−1dx‖∗ ≥ Λ‖dx‖∗ for all stable vectors dx,
where Λ = 1 + 2Kminτmin.

For V ∈ Ŵs
H, let {Vi}i = homogeneous connected comp. of T−1V .

Lemma (One-step expansion)

There exists θ < 1 such that for all V ∈ Ŵs
H,

lim sup
δ↓0

sup
|V |≤δ

∑

Vi

|JViT |∗ < θ ,

where | · |∗ denotes the sup norm in the adapted metric.
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Proof of One-step Expansion for Finite Horizon

B2

B1 B5B3

B4

A short stable curve can be cut by at most τmax/τmin

tangential collisions under T−1.
All but one of these collisions is nearly grazing.
Near the grazing collisions, Vk ⊂ Hk and,

∑

k≥k0

|JVk
T |∗ ≤ C

∑

k≥k0

k−q ≤ C ′k1−q
0 if q > 1

Fix ε > 0 and choose k0 large enough that kq−1
0

τmax

τmin
≤ ε.

Choose δ0 > 0 so that a stable curve of length δ0 must map
into homogeneity strips of index |k| ≥ k0 at the nearly
tangential collisions.
Then θ = Λ−1 + ε satisfies the lemma. ✷
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Growth Lemma

Consequence of one-step expansion is the following growth lemma.

For W ∈ Ŵs, partition T−1W into maximal connected
homogeneous components. Subdivide any curve longer than
δ0 into curves of length between δ0/2 and δ0. Call this
collection G1(W ).

Define inductively, Gn(W ) = {G1(Wi) : Wi ∈ Gn−1(W )}.
Let Ln(W ) denote those Wi ∈ Gn(W ) such that |Wi| ≥ δ0/3.

Let In(W ) denote those Wi ∈ Gn(W ) such that
T jWi ⊂ Vj ∈ Gn−j(W ) with |Vj | < δ0/3 for all
j = 0, . . . , n− 1. W is the most recent long ancestor of Wi.

Lemma

There exists C1 > 0 such that for all W ∈ Ŵs and all n ≥ 1,

∑

Wi∈Gn(W )

|JWiT
n|C0(Wi) ≤ C1 .
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Proof of Growth Lemma

Organize Wi ∈ Gn(W ) by most recent long ancestor.

If Wi ∈ Ln(W ), then Wi is its own most recent long ancestor.

Otherwise, Wi ∈ Ij(Vk) for some Vk ∈ Ln−j(W ), j ≥ 1.

Or W ∈ In(W ), whether W is long or short.
∑

Wi∈Gn(W )

|JWiT
n|C0 ≤

n∑

j=1

∑

Vk∈Gn−j(W )

|JVk
T n−j|C0

∑

Wi∈Ij(Vk)

|JWiT
j|C0

≤ C∗θ
n +

n−1∑

j=1

∑

Vk∈Gn−j(W )

|JVk
T n−j|C0C∗θ

j

≤ C∗θ
n +

n−1∑

j=1

∑

Vk∈Gn−j(W )

eCdδ
1/q
0

|T n−jVk|
|Vk|

C∗θ
j

≤ C∗θ
n +

n−1∑

j=1

C ′δ−1
0 |W |θj ≤ C∗θ

n + C ′′δ−1
0 |W |
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