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Periodic Lorentz Gas (Sinai Billiard) [Sinai '68]

@ Billiard table Q = T?\U;B;;
scatterers B;.

@ Boundaries of scatterers are
C? and have strictly positive
curvature.

@ Billiard flow is given by a
point particle moving at O
unit speed with elastic

collisions at the boundary

Finite horizon condition: there is an upper bound on the free
flight time between collisions. Otherwise Infinite horizon.

Mark Demers Thermodynamic Formalism for Dispersing Billiards



The Associated Billiard Map

@ r = position coordinate
oriented clockwise on
boundary of scatterer 0B;

9 ¢ = angle outgoing
trajectory makes with
normal to scatterer

— M
M

M = (Ui OBZ) X [—%, %], the ¥
natural “collision” cross-section
for the billiard flow.

T :(ryo) = (r,¢) is the first ~,

return map: the billiard map. r

@ a hyperbolic map with singularities
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Statistical Properties with respect to SRB Measure

T preserves a smooth invariant measure on M, pisgg = cos @ dr dy

With respect to this measure, many statistical properties have
been proved using a variety of techniques.

@ Lirg IS ergodic [Sinai '70] and Bernoulli [Gallavotti, Ornstein '74]

@ Countable Markov partitions and Markov ‘“sieves”
[Bunimovich, Sinai '80, '81], [Bunimovich, Chernov, Sinai '90, '91]
- Central Limit Theorem

@ Young Towers
- exponential decay of correlations, [Young '98]
- almost sure invariance principle [Melbourne, Nicol '05]
- local moderate and large deviations, [Melbourne, Nicol '08],

[Young, Rey-Bellet '08]

@ Coupling arguments via standard pairs [Chernov '06],
[Chernov, Dolgopyat '09]

@ Transfer operator techniques [D., Zhang '11, '13, '14]
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Goal of Lectures

Goal of present lectures: Describe recent work extending analysis
to other invariant measures, namely, equilibrium states associated
to geometric potentials, g, = —tlog J“T', t € [0, t,) for some

te > 1.

Goal for today: Recall some geometric facts about dispersing
billiards that we will use in subsequent lectures: hyperbolicity,
distortion, complexity, growth lemma.

Reference: N. Chernov and R. Markarian, Chaotic Billiards,
Mathematical Surveys and Monographs 127 (2006), 330 pp.
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Hyperbolicity away from Singularities

r
A dispersing wavefront before The wavefront projects to a
and after collision. curve with positive slope on B;.

Positive slope in M = unstable curve

Negative slope in M = stable curve
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Hyperbolicity: Stable and Unstable Cones

For both finite and infinite horizon, two global families of cones:

Tmin

1
C" = {(d?’, d@) : ICmin < Z_f < ]Cmax + }

dy 1
¥ = D= Kmin 2 5 2 —Kmax —
C {(dr, dp) : =K o K }

Tmin
Tmin > 0 is minimum time between consecutive collisions
Krin / max = min/max curvature of scatterers

Strict invariance:
DT(z)C* CC* and DT(x)"'C*CC*
Minimum expansion: A := 1 + 2K 1inTmin-
ACy >0 st. || DT"(x)v| > CoA"||v|| Vv el

and similarly for stable cone under DT~ (x).
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Invariant Families of Stable/Unstable Curves

@ Call a smooth curve W C M stable (or cone-stable) if the
tangent vector to W at each point belongs to C*.

@ Define

W = {stable curves with curvature bounded by Dy > 0
and length at most dp > 0 }

Since T is piecewise C? and uniformly hyperbolic away from
its singularities, we can choose Dy > 0 such that W?* is
invariant under T~1, up to subdivision of long curves.

@ Define W?% C W? real local stable manifolds

o Similarly, define a T-invariant set W* of (cone-) unstable
curves, and local unstable manifolds W*.
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Singularities

Tangential collisions create singularity curves for T'.
olet Sy = {p==%5}
0S8, =L,T7'S is the singularity set for T, n > 1.
oS, =Ui, T'Sy is the singularity set for T-", n > 1.

T™ is discontinuous at the set of decreasing curves S,, and T~ is
discontinuous at the set of increasing curves S_,,.

Important fact: S,, is uniformly transverse to C* and S_,, is
uniformly transverse to C%.

@ Continuation of
Singularities
Every curve in S, \ Sy is
part of a monotonic S 1
piecewise smooth curve
belonging to S,, which
terminates on Sy.

roln
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Linear Bound on Complexity

Want expansion due to hyperbolicity to beat cutting due to
singularities. In the finite horizon case, there is a linear bound due
to Bunimovich.

For x € M, let N(S,,z) denote the number of singularity curves
in S, that meet at z. Define N(S,,) = sup,cps N(Sp, x).

Lemma (Bunimovich, Chernov, Sinai '90)

Assume finite horizon. There exists K > 0 depending only on the

configuration of scatterers such that N(S,) < Kn for all n > 1.

Idea of Proof. Let x,2’ € M lie on a straight billiard trajectory
with one or more tangential collisions between.

Bl B4 32
T z’
Bs Bs
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Linear Bound on Complexity

Let A, A’ be neighborhoods of z,z’ in M, partitioned into sectors
Ay,... A C Aand A],. ..A;€ C A such that T A; = A;-.

Set f‘Aj =T

@ Assume N(S,-1) < K(n —1).

o Let N(SZ"A;,J?/) denote the number of curves in S; passing
through 2’ and lying in A’

O N(Sn, @) < k+37; N(Sp—n;| A}, 2") < k4325 N(Sp—1|4],2)

0So N(Sp,z) <k+K(n—1)<Knifk<K. O

The proof uses that the flow is continuous.
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Distortion Control and Extended Singularity Set

When T'(x) is near Sy, DT'(z) becomes large:

1
DT all v —— o d —-1/2
IDT @)l ~ oy ~ 8077

|1DT ()] ks| ~ cos p(x)

Indeed, det DT'(x) = cos p(z)

cosp(T2)" which can be viewed as the
product of stable and unstable Jacobians.

To control distortion, partition M into homogeneity strips H.y,

FE 2 TR ST 2T (Rt

and similarly for H_g, |k| > ko. Standard choice: ¢ = 2
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Distortion Control and Extended Singularity Set

s
2

Hy,

vl
Y

@ Define Wfﬂ = homogeneous elements of W

@ Distortion depends on the exponent ¢: If T°W C W\fﬂ
1=0,...,n, then

JwT"(x)

log 22— < Cyd(z, )@Y Wz ye W
gJWT’”(y) < Cad(z,y) Y

@ But the singularity set becomes countable:
S(]I)-]I =85 U (U|k‘\2k‘oaHk)v and Siﬂn = U?:O T:':iS(H)-H‘
@ Need a new complexity bound.
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One-step Expansion [Chernov '06]

Define an adapted metric in the tangent space dz = (dr,dy) by,
P

Vi el
where V = dy/dr and K(x) is the curvature of the scatterer at x.

o ||DT(z)"tdx||. > A||dz|« for all stable vectors dx,
where A = 1 + 2K i Tiin-

[zl =

For V e Wﬁl let {V;}; = homogeneous connected comp. of T~V
Lemma (One-step expansion)

There exists § < 1 such that for all V € VAVI‘E]I

lim sup sup Z |Jv. T <0,
810 |VI<s S

where | - |, denotes the sup norm in the adapted metric.
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Proof of One-step Expansion for Finite Horizon

N
/3_2\ B,

@ A short stable curve can be cut by at most Tiax/Tmin
tangential collisions under 7~

@ All but one of these collisions is nearly grazing.

@ Near the grazing collisions, Vi, C H}, and,

SN TL<CY k1< Chy? ifg>1
k>ko k>ko

@ Fix £ > 0 and choose kq large enough that k{~ 1:“‘3" <e.

@ Choose dg > 0 so that a stable curve of length g must map
into homogeneity strips of index |k| > k¢ at the nearly
tangential collisions.

@ Then § = A~! 4 ¢ satisfies the lemma. a
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Consequence of one-step expansion is the following growth lemma.

o For W € 17\}\3, partition 71TV into maximal connected
homogeneous components. Subdivide any curve longer than
dp into curves of length between dy/2 and dy. Call this
collection G;(W).

@ Define inductively, G, (W) = {Gi(W;) : W; € G,—1(W)}.

o Let L, (W) denote those W; € G, (W) such that |W;| > do/3.

@ Let Z,,(W) denote those W; € G,,(W) such that
TjWZ' C VJ € Qn_j(W) with |V]| < 50/3 for all
7 =0,...,n—1. W is the most recent long ancestor of IV;.

Lemma

There exists C1 > 0 such that for all W &€ W* and all n > 1,

Z |Jw, T"|cow,y < C1-
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Proof of Growth Lemma

Organize W; € G,,(W) by most recent long ancestor.
o If W; € L,(W), then W is its own most recent long ancestor.
@ Otherwise, W; € Z;(V},) for some Vj, € L,,_;(W), j > 1.
0 Or W € Z,,(W), whether W is long or short.

Z [Jw, T"|co < Z Z |JVan_j‘CO Z ‘JWiTj|CO

Wi€Gn (W) =1 Vie€Gn_;(W) Wi€Z;(Vk)

n—1
SCO+H> Y I e Cut?
J=1 V4 €Gpn_j(W)

n—j )
< C.O0"+ Z Z eCd‘s(l)/qMC*W

] 1Vkegn j |Vk‘
n—1 '

< O™+ OIS W < L™+ CTop |
j=1
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