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Overview of Course

Main Goal of Lectures: Introduce functional analytic framework
to study transfer operators associated to hyperbolic systems, and
use these tools to present recent progress regarding equilibrium
states and topological pressure for dispersing billiards.

Plan for Lectures

1. Gentle introduction to Banach spaces for hyperbolic systems
Smooth expanding maps, contracting maps, Baker’s map

2. Geometry of dispersing billiards
Hyperbolicity, singularities and complexity

3. Thermodynamic formalism for billiards
Geometric potentials and topological pressure, initial results

4. Thermodynamic formalism for billiards
Banach spaces and unique equilibrium states via spectral gap

5. Measure of maximal entropy
Topological entropy, motivation and exact exponential growth

6. Measure of maximal entropy
Banach spaces and unique equilibrium state via ‘bare hands’

Mark Demers Thermodynamic Formalism for Dispersing Billiards



Transfer Operator or Ruelle-Perron-Frobenius Operator

Transformation T : X 	. Transfer operator L associated to T
acts on a distribution µ by

Lµ(ψ) = µ(ψ ◦ T ), ψ a test function, say Cα.

If dµ = fdm is a measure abs. cont. w.r.t. m, then
∫

Lf ψ dm =

∫

f ψ ◦ T dm,

so that pointwise

Lf(x) =
∑

y∈T−1x

f(y)

JT (y)
,

where JT is the Jacobian of T with respect to m, represents the
density of the measure T∗µ, i.e. d(T∗µ) = Lf dm.

L = Linear operator which governs evolution of measures, acting
on some Banach space of functions, measures or distributions.
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Weighted or Generalized Transfer Operator

Generalize the transfer operator by including a potential function g,

Lgµ(ψ) = µ(eg ψ ◦ T ) .

This allows the transfer operator to be used to study a variety of
equilibrium states associated with some classes of potentials (often
Hölder continuous). For example, the measure of maximal entropy.

In this case, one constructs an invariant measure µ using the left
and right maximal eigenvectors of Lg:

Lgν = λν and L∗
gν̃ = λν̃, where L∗

g is the dual to Lg on a suitable
Banach space. Then

µ(ψ) = ν(ψν̃),

is an invariant measure for T (Parry construction).

Today: Discuss the case g = 0.
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Spectral Decomposition of L via Quasi-Compactness

Goal: Use spectral properties of L acting on an appropriate
Banach space to gain dynamical information about T .

Method: Prove L is quasi-compact on some Banach space B:

∃ρ < 1 s.t. the spectrum of L outside disk of radius ρ is
finite-dimensional.

Eigenspace corresponding to 1 =
invariant measures

Periodic behavior of L
corresponds to eigenvalues other
than 1 on the unit circle

1

ρ

If 1 is a simple eigenvalue and we can eliminate periodicity, we
can conclude that L has a spectral gap
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Consequences of the Spectral Gap

∫

f ψ ◦ T n dm = µf (ψ ◦ T n) = Lnµf (ψ) , where dµf = fdm.

The presence of a spectral gap allows us to establish exponential
decay of correlations and convergence to equilibrium, along with
many limit theorems:

Central Limit Theorem

Large deviation estimates

Almost-sure invariance principles

The functional analytic framework gives a unified (and often
simplified) approach for handling perturbations as well, either
through classical perturbation theory, or the weakened form due to
[Keller, Liverani ’99].

How can we apply this approach to specific systems?
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Quasi-Compactness via Dynamical Inequalities

Dynamical method to estimate the essential spectral radius
[Hennion ’93] following [Doeblin, Fortet ’37], [Ionescu-Tulcea,
Marinescu ’50], [Lasota, Yorke ’73].

Essential ingredients:

Two Banach spaces (B, ‖ · ‖) and (Bw, | · |w), with an
embedding B →֒ Bw such that |f |w ≤ ‖f‖ for f ∈ B

The unit ball of B is compactly embedded in Bw
(Lasota-Yorke/Doeblin-Fortet inequalities)
∃ C > 0 and ρ < 1 such that for all f ∈ B, n ≥ 0,

‖Lnf‖ ≤ Cρn‖f‖+ C|f |w

|Lnf |w ≤ C|f |w

Then L : B 	 has essential spectral radius ≤ ρ.

(Note: The above inequalities imply that the spectral radius is
≤ 1, but for reasonable choices of B, it is actually 1.)
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Ex 1: Expanding maps of the interval

[Lasota, Yorke ’73]

T : [0, 1] 	, piecewise C2, ∃λ < 1 s.t. |T ′| ≥ λ−1 > 1
m denotes Lebesgue measure

Weak space, Bw = L1(m)

Strong space, B = BV with norm

‖f‖BV = sup
ψ∈C1,|ψ|∞≤1

∫

f ψ′ dm

Lf(x) =
∑

y∈T−1x

f(y)

|T ′(y)|
for f ∈ L1(m)

One Lasota-Yorke inequality is immediate: |Lnf |1 ≤ |f |1 since

∫

|Lf | dm ≤

∫

L|f | dm =

∫

|f | dm .
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Ex 1: Expanding maps of the interval

Estimate in the smooth case:

∫

Lf ψ′ dm =

∫

f ψ′ ◦ T dm =

∫

f

(

ψ ◦ T

T ′

)′

dm+

∫

f
ψ ◦ T

(T ′)2
T ′′ dm

≤ ‖f‖BV |ψ|∞λ+ |f |1|ψ|∞Cdist

Taking appropriate suprema,

‖Lf‖BV ≤ λ‖f‖BV + C|f |1

The case with discontinuities is handled similarly by splitting the
integral over intervals of differentiability for T .

So L acting on BV is quasi-compact. If T is mixing, then L has a
spectral gap.

Note: essential spectral radius bounded by λ = sup
x∈I

1

|T ′(x)|
< 1.
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Ex 2: A contracting map of the interval

[Liverani ’04]

T : [0, 1] 	, T ∈ C1, ∃λ < 1 s.t. |T ′| ≤ λ, ∃c ∈ I, T (c) = c

Expect convergence of measures to δc so usual function
spaces will not work

Consider spaces of distributions: Dual spaces to Hölder
continuous test functions

|ψ|Cα = |ψ|C0 +Hα(ψ) , Hα(ψ) = sup
x 6=y

|ψ(x)− ψ(y)|

|x− y|α

Let f ∈ C1(I) and let dµ = fdm. Choose α < 1 and define

|µ|w = sup
|ψ|

C1≤1
|µ(ψ)| and ‖µ‖ = sup

|ψ|Cα≤1
|µ(ψ)|

B is the completion of C1 in the ‖ · ‖-norm

Bw is the completion of C1 in the | · |w-norm

Unit ball of B compact in Bw since C1 compact in Cα
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Ex 2: A contracting map of the interval

For ψ ∈ Cα, let ψ =
∫

ψ ◦ T dm. Then

Lµ(ψ) = µ(ψ ◦ T − ψ) + µ(ψ) ≤ ‖µ‖|ψ ◦ T − ψ|Cα + |µ|w|ψ|C1

Estimate |ψ ◦ T − ψ|Cα by

|ψ ◦ T (x)− ψ(x)| = |ψ ◦ T (x)− ψ ◦ T (z)| ≤ |ψ|Cαλα

|ψ ◦ T (x)− ψ(x)− ψ ◦ T (y) + ψ(y)| ≤ |ψ|Cαλα|x− y|α

Also, |ψ|C1 ≤ |ψ|∞ = 1, so that

‖Lµ‖ ≤ λα‖µ‖+ |µ|w

A similar estimate shows that |Lµ|w ≤ |µ|w
• Note: We cannot choose α = 0 so B must be larger than

the space of measures
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Norms for Hyperbolic systems

Conclusions we can draw from these simple examples:

When T is expanding, L improves regularity of functions

When T is contracting, L improves regularity in certain spaces
of distributions

Moral: Hyperbolic systems have both contracting and expanding
directions so by choosing spaces of distributions that are regular in
the unstable direction and by averaging (integrating) along stable
curves, we are able to define norms in which L improves regularity.

By integrating against Hölder continuous functions on stable
curves, we are in spirit defining a notion that is dual to that of
standard pairs, developed by Dolgopyat and Chernov, which
considers the evolution of Hölder densities on unstable curves.
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Ex 3: Generalized Baker’s Map

M = [0, 1]2. Fix κ ∈ N, κ ≥ 2, and λ ∈ R such that 0 < λ ≤ 1/κ.

Define a generalized (κ, λ) Baker’s transformation Tκ,λ:

Subdivide M into κ vertical rectangles Ri of width 1/κ.
Tκ,λ affine on each Ri: expands by factor κ horizontally,
contracts by factor λ vertically
{Tκ,λ(Ri)}i have disjoint interiors.

Ri

M

λ

κ

T (M)

T (Ri)

The map T = Tκ,λ with κ = 4 and λ < 1/4.

If λ = 1/κ, then T is area preserving; otherwise, dissipative.

Ref: M Demers, A gentle introduction to anisotropic Banach

spaces, Chaos, Solitons and Fractals (2018)
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Transfer Operator

Ws/u := {vertical/horizontal line segments of length 1 in M}
Ws/u = local stable/unstable manifolds for T = Tκ,λ

For α ∈ [0, 1], define |ψ|Cα(Ws) = supW∈Ws |ψ|Cα(W ).

If ψ ∈ Cα(Ws), then ψ ◦ T ∈ Cα(Ws).

Now define L acting on (Cα(Ws))∗ by

Lf(ψ) = f(ψ ◦ T ), ∀ψ ∈ Cα(Ws), f ∈ (Cα(Ws))∗

If f ∈ C1(M), then associate f with the measure fdm, m =
Lebesgue measure. Then pointwise,

Lf(x) =
f ◦ T−1(x)

κλ

Note Lf = 0 on M \ T (M) and m is conformal, i.e. L∗m = m.
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Definition of Norms

Let f ∈ C1(Wu).

Define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈C1(W )
|ψ|

C1(W )≤1

∫

W
f ψ dmW

mw = arclength measure on W .

Let α ∈ (0, 1) and define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫

W
f ψ dmW

On each W ∈ Ws, these are simply the norms for the contracting
map.
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Definition of Norms

The strong norm should provide regularity in the unstable direction.

Write W ∈ Ws in coordinates:

W = {(s, t) ∈M : s = sW , t ∈ [0, 1]}

Then define d(W1,W2) = |sW1 − sW2 |,
and for test functions ψi ∈ C1(Wi), define

d0(ψ1, ψ2) = sup
t∈[0,1]

|ψ1(sW1 , t)− ψ2(sW2 , t)|

Choose β ∈ (0, 1) with β ≤ 1− α.

Define the strong unstable norm of f by

‖f‖u = sup
W1,W2∈Ws

sup
ψi∈C1(Wi)
|ψi|C1(Wi)

≤1

d0(ψ1,ψ2)=0

d(W1,W2)
−β

∣

∣

∣

∣

∫

W1

f ψ1 −

∫

W2

f ψ2

∣

∣

∣

∣
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Banach spaces B and Bw

The strong norm of f is ‖f‖B = ‖f‖s + ‖f‖u

Define the weak space Bw to be the completion of C1(Wu) in the
| · |w norm.

Define the strong space B to be the completion of C1(Wu) in the
‖ · ‖B norm.

Lemma (Embedding Lemma)

We have the following sequence of continuous embeddings,

C1(M) →֒ B →֒ Bw →֒ (C1(Ws))∗.

Moreover, the embedding B →֒ Bw is relatively compact.
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Proof of Relative Compactness

Fix ε > 0. Let C1
1 (W ) denote the unit ball of C1(W ).

Choose {ψi}
Nε

i=1 ⊂ C1([0, 1]) which forms an ε-cover of
C1
1 (W ) in the Cα(W ) norm for all W ∈ Ws.

Choose {Wj}
Jε
j=1 ⊂ Ws which forms an ε-cover of Ws in the

metric d(·, ·).

Take f ∈ C1(Wu), W ∈ Ws, ψ ∈ C1
1 (W ). Choose ψi s.t.

|ψ − ψi|Cα(W ) ≤ ε and Wj s.t. d(W,Wj) ≤ ε. Then,
∣

∣

∣

∣

∣

∫

W
fψ −

∫

Wj

fψi

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

W
f(ψ − ψi)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

W
f ψi −

∫

Wj

f ψi

∣

∣

∣

∣

∣

≤ ‖f‖s|ψ − ψi|Cα + d(W,Wj)
β‖f‖u ≤ εβ‖f‖B

Taking the supremum over W and ψ implies that

min
i,j

| |f |w − ℓi,j(f)| ≤ εβ‖f‖B , where ℓi,j(f) =

∫

Wj

f ψi . ✷
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Dynamical Inequalities

Proposition

For any n ≥ 0 and f ∈ B,

‖Lnf‖s ≤ λαn‖f‖s + |f |w, (1)

‖Lnf‖u ≤ κ−βn‖f‖u, (2)

|Lnf |w ≤ |f |w. (3)

Proof: By density of C1(Wu) in both B and Bw, it suffices to
prove the bounds for f ∈ C1(Wu).

(1) Let W ∈ Ws, ψ ∈ Cα(W ), |ψ|Cα(W ) ≤ 1.
We must estimate

∫

W
Lnf ψ dmW =

∫

T−nW
f ψ ◦ T−n(κλ)−nJsT n dmT−1W ,

where JsT n = λn is the stable Jacobian of T along T−nW .
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Proof of Strong Stable Norm Contraction

Note T−nW =
κn
⋃

i=1

Wi, Wi ∈ Ws.

Define ψi =
∫

Wi
ψ ◦ T n dmWi

.

∫

W
Lnf ψ dmW = κ−n

κn
∑

i=1

∫

Wi

f (ψ ◦ T n − ψi) +

∫

Wi

f ψi

As with the contracting map, |ψ ◦ T n − ψi|Cα(Wi) ≤ λαn, and

|ψi|C1(Wi) ≤ 1. Thus,

∫

W
Lnf ψ dmW ≤ λαn‖f‖s + |f |w ,

which proves (1).

The weak norm estimate (3) is similar, without subtracting ψi.
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Proof of Strong Unstable Norm Contraction

(2) W 1, W 2 ∈W s, |ψj |C1(W j) ≤ 1 s.t. d0(ψ1, ψ2) = 0.

There is a 1-1 correspondence between elements of
T−nW 1 = ∪iW

1
i and T−nW 2 = ∪iW

2
i : For each i, W

1
i ,W

2
i lie in

a vertical rectangle on which T n is smooth.

Also, since T preserves horizontal lines, d0(ψ1 ◦ T
n, ψ2 ◦ T

n) = 0
on each pair W 1

i ,W
2
i .

∫

W 1

Lnf ψ1 −

∫

W 2

Lnf ψ2 = κ−n
∑

i

∫

W 1
i

f ψ1 ◦ T
n −

∫

W 2
i

f ψ2 ◦ T
n

≤ κ−n
∑

i

d(W 1
i ,W

2
i )
β‖f‖u ≤ κ−βnd(W 1,W 2)β‖f‖u

Dividing through by d(W 1,W 2)β and taking the appropriate
suprema proves (2): ‖Lnf‖u ≤ κ−βn‖f‖u. ✷
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Quasi-Compactness and a Spectral Gap

Theorem

L is quasi-compact as an operator of B with spectral radius 1 and

essential spectral radius at most max{λα, κ−β} < 1.
Moreover, L has a spectral gap on B.

The upper bounds on the essential spectral radius and the spectral
radius follow from the dynamical inequality:

‖Lnf‖B = ‖Lnf‖s + ‖Lnf‖u ≤ max{λαn, κ−βn}‖f‖B + |f |w .

The fact that L∗m = m implies that the spectral radius is 1, (since
1 is in the spectrum of L∗ and so also of L) so that L is
quasi-compact. Also, the peripheral spectrum contains no Jordan
blocks since ‖Ln‖B is uniformly bounded.
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Peripheral Spectrum: Sketch of Proof

From quasi-compactness and the absence of Jordan blocks,

L =

N
∑

j=0

e2πθjΠj +R, ‖R‖B < 1, ΠjΠk = RΠj = ΠjR = 0

Since there are no Jordan blocks, Πj = lim
n→∞

1

n

n−1
∑

k=0

e−2πθjkLk.

Set θ0 = 0 and µ0 = Π01. Let Vj = Πj(B).

a) Elements of V = ⊕jVj are measures abs. cont. wrt µ0
- Since Πj(C

1) = Vj , for each µ ∈ Vj , ∃f ∈ C1(M) s.t.

|µ(ψ)| = |Πjf(ψ)| ≤ lim
n

n−1
∑

k=0

|f(ψ ◦ T k)| ≤ |f |∞|ψ|∞ ,

and also µ(ψ) ≤ |f |∞µ0(ψ) if ψ ≥ 0.
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Peripheral Spectrum: Sketch of Proof

b) ∃ finite # qk ∈ N st ∪Nj=0{θj} = ∪k{
p
qk

: 0 ≤ p < qk, p ∈ N}

- Let µ ∈ Vj . By (a) ∃fµ ∈ L∞(µ0) s.t. dµ = fµdµ0. Then,

e2πθjµ(ψ) = µ(ψ ◦ T ) =

∫

ψ ◦ T fµdµ0 =

∫

ψ fµ ◦ T−1dµ0

so fµ ◦ T−1 = e2πθjfµ. For k > 1, µk = (fµ)
kµ0 satisfies

Lµk = e2πθjkµk, i.e. kθj is in the peripheral spectrum of L.

c) M has a single ergodic component of pos. µ0 measure.

- Use the fact that Ws and Wu fully cross M and the definition
of µ0 = Π01 as a limit.

(c) implies 1 is a simple eigenvalue of L.

If µ ∈ Vj , then θj = p/q by (b) so that Lqµ = µ. But if T = Tκ,λ,
then T q = Tκq,λq is another generalized Baker’s map, so that 1 is a
simple eigenvalue of Lq as well. Thus µ = µ0 and θj = 0, i.e. 1 is
the only eigenvalue of modulus 1 and it is simple. ✷
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Applications to Hyperbolic Maps

Real-analytic hyperbolic diffeomorphisms [Rugh ’94], [Fried ’95]

Anosov and Axiom A diffeomorphisms [Blank, Keller, Liverani

’01], [Baladi ’05], [Gouëzel, Liverani ’06, ’08], [Baladi, Tsujii ’07],

[Faure, Roy, Sjöstrand ’08]

Piecewise hyperbolic maps [D., Liverani ’08], [Baladi, Gouëzel

’09, ’10]

Planar billiard maps

Dispersing billiards and perturbations [D., Zhang ’11,’13, ’14]
Measure of maximal entropy [Baladi, D., ’20]
Geometric potentials [Baladi, D., preprint ’20]
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