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Abstract

We study the billiard map associated with both the finite and infinite horizon Lorentz gases
having smooth scatterers with strictly positive curvature. We introduce generalized function
spaces (Banach spaces of distributions) on which the transfer operator is quasi-compact. The
mixing properties of the billiard map then imply the existence of a spectral gap and related
statistical properties such as exponential decay of correlations and the central limit theorem.
Finer statistical properties of the map such as the identification of Ruelle resonances, large
deviation estimates and an almost-sure invariance principle follow immediately once the spectral
picture is established.

1 Introduction

Much attention has been given in recent years to developing a framework to study directly the
transfer operator associated with hyperbolic maps on an appropriate Banach space. The goal of
such a functional analytic approach is first to use the smoothing properties of the transfer operator
to prove its quasi-compactness and then to derive statistical information about the map from the
peripheral spectrum. For expositions of this subject, see [B1, HH, L1].

The link between the transfer operator and the statistical properties of the map traces back to
classical results regarding Markov chains [DF, IM, N]. In the context of deterministic systems, this
approach was first adapted to overcome the problem of discontinuities for expanding maps by using
the smoothing effect of the transfer operator on functions of bounded variation [LY, K, S, Bu, T1,
T2, BK]. Its extension to hyperbolic maps followed, using simultaneously the smoothing properties
of the transfer operator in unstable directions and the contraction present in the stable directions:
first to Anosov diffeomorphisms [R1, R2, R3, BKL, B2, BT, GL] and more recently to piecewise
hyperbolic maps [DL, BG1, BG2]. Two crucial assumptions in the treatment of the piecewise
hyperbolic case in two dimensions have been: (1) the map has a finite number of singularity curves
and (2) the map admits a smooth extension up to the closure of each of its domains of definition.
These assumptions and other technical difficulties have thus far prevented this approach from being
successfully carried out for dispersing billiards.

In this paper, we apply the functional analytic approach to the billiard map associated with both
a finite and infinite horizon Lorentz gas having smooth scatterers with strictly positive curvature.
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We introduce generalized function spaces (Banach spaces of distributions) on which the transfer
operator is quasi-compact. The mixing properties of the billiard map then imply the existence of
a spectral gap, the exponential decay of correlations and finer statistical properties such as Ruelle
resonances. Many limit theorems such as local large deviation estimates, a central limit theorem,
and an almost sure invariance principle for both invariant and non-invariant measures also follow
immediately once the spectral picture is established.

Although the exponential decay of correlations and many limit theorems are already known for
such classes of billiards [Y, Ch1, RY, MN2], the present approach provides a unified and greatly
simplified framework in which to achieve these results and completely bypasses previous methods
which relied on constructing countable Markov partitions [BSC1, BSC2], Markov extensions [Y,
Ch1, CY], or magnets for coupling arguments [Ch2], all of which require a deep understanding of
the regularity properties of the foliations. Indeed, we avoid entirely the need to work with the
holonomy map matching unstable curves along real stable manifolds, which is a major technical
difficulty present in each of the previous approaches.

In addition, the current functional analytic framework allows immediate extensions of well-
known limit theorems to non-invariant measures. For example, we prove in Theorem 2.6 that our
large deviation rate function is independent of the probability measure in our Banach space with
which we measure the asymptotic deviations (see Section 2.4). Although the limit theorems with
respect to invariant measures presented in Theorem 2.6 are already known for this class of billiards,
the extensions to non-invariant measures constitute new results, with the partial exception of [D],
which dealt with large deviations only. Finally, the spectral picture obtained via the method in this
paper has been shown to be robust under a wide variety of perturbations in a number of settings
[BY, KL] (see also the treatment of perturbations using norms similar to those in this paper in
[DL]), and it is expected that the present framework will allow the unified treatment of large classes
of perturbations in a way previously unattainable for billiards.

The paper is organized as follows. In Section 2, we define the Banach spaces on which we will
study the transfer operator and state our main results. The norms we define follow closely those
introduced in [DL], with the addition of an extra weighting factor to counteract the blow-up of the
Jacobian of the map near singularities. In order to control distortion, we introduce additional cuts
at the boundaries of homogeneity strips which implies that our expanded singularity sets comprise
a countably infinite number of curves in both the finite and infinite horizon cases. In Section 3, we
prove the necessary growth lemmas to control the cutting generated by the expanded singularity
sets and prove preliminary properties of our Banach spaces including embeddings and compactness.
Section 4 contains the required Lasota-Yorke inequalities and in Section 5 we characterize the
peripheral spectrum and prove some related statistical properties. Section 6 contains the proofs of
the limit theorems mentioned above.

2 Setting, Definitions and Results

2.1 Billiard maps associated with a Lorentz gas

We define here the class of maps to which our results apply and take the opportunity to establish
some notation. Let {Γi}di=1 be pairwise disjoint, simply connected convex regions in T2 having
C3 boundary curves ∂Γi with strictly positive curvature. We consider the billiard flow on the
table Q = T2 \ ∪i{interior Γi} induced by a particle traveling at unit speed and undergoing elastic
collisions at the boundaries. The phase space for the billiard flow is M = Q × S1/ ∼ with the
conventional identifications at the boundaries. Define M = ∪i∂Γi × [−π/2, π/2]. The billiard map
T : M → M is the Poincaré map corresponding to collisions with the scatterers. We will denote
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coordinates on M by (r, ϕ), where r ∈ ∪i∂Γi is parametrized by arclength and ϕ is the angle that
the unit tangent vector at r makes with the normal pointing into the domain Q. T preserves a
probability measure µ defined by dµ = c cosϕdr dϕ on M , where c is the normalizing constant.

For any x = (r, ϕ) ∈ M , we denote by τ(x) the time of the first (non-tangential) collision
of the trajectory starting at x under the billiard flow. The billiard map T is defined whenever
τ(x) < ∞ and is known to be uniformly hyperbolic, although its derivative DT becomes infinite
near singularities (see for example [CM, Chapter 4]). We say T has finite horizon if there is an
upper bound on the function τ . Otherwise, we say T has infinite horizon.

2.2 Transfer Operator

We define scales of spaces using a set of admissible curves Ws (defined in Section 3.1) on which we
define the action of the transfer operator L associated with T . Such curves are homogeneous stable
curves whose length is smaller than some fixed δ0. Define T−nWs to be the set of homogeneous
stable curves W such that Tn is smooth on W and T iW ∈ Ws for 0 ≤ i ≤ n. It follows from the
definition that T−nWs ⊂ Ws.

We denote (normalized) Lebesgue measure on M by m, i.e., dm = cdrdϕ. For W ∈ T−nWs, a
complex-valued test function ψ : M → C and 0 < p ≤ 1, define Hp

W (ψ) to be the Hölder constant of
ψ on W with exponent p measured in the Euclidean metric. Define Hp

n(ψ) = supW∈T−nWs H
p
W (ψ)

and let C̃p(T−nWs) = {ψ : M → C | |ψ|∞ + Hp
n(ψ) < ∞}, denote the set of complex-valued

functions which are Hölder continuous on elements of T−nWs. The set C̃p(T−nWs) equipped with
the norm |ψ|Cp(T−nWs) = |ψ|∞+Hp

n(ψ) is a Banach space. We define Cp(T−nWs) to be the closure

of C̃1(T−nWs) in C̃p(T−nWs). Similarly, we define C̃p(TnWu) and Cp(TnWu) for each n ≥ 0, the
set of functions which are Hölder continuous with exponent p on unstable curves in TnWu, defined
in Section 3.1.

It follows from (4.3) that if ψ ∈ C̃p(T−(n−1)Ws), then ψ ◦ T ∈ C̃p(T−nWs). Similarly, if
ξ ∈ C̃1(T−(n−1)Ws), then ξ ◦ T ∈ C̃1(T−nWs). These two facts together imply that if ψ ∈
Cp(T−(n−1)Ws), then ψ ◦ T ∈ Cp(T−nWs).

If h ∈ (Cp(T−nWs))′, is an element of the dual of Cp(T−nWs), then L : (Cp(T−nWs))′ →
(Cp(T−(n−1)Ws))′ acts on h by

Lh(ψ) = h(ψ ◦ T ) ∀ψ ∈ Cp(T−(n−1)Ws).

If h ∈ L1(M,m), then h is canonically identified with a signed measure absolutely continuous
with respect to Lebesgue, which we shall also call h, i.e.,

h(ψ) =

∫
M
ψhdm.

With the above identification, we write L1(M,m) ⊂ (Cp(T−nWs))′ for each n ∈ N. Then restricted
to L1(M,m), L acts according to the familiar expression

Lnh = h ◦ T−n |DTn(T−n)|−1

for any n ≥ 0 and any h ∈ L1(M,m), where |DTn| denotes |detDTn| to simplify notation.

2.3 Definition of the Norms

The norms we introduce below are defined via integration on the set of admissible stable curves
Ws referred to in Section 2.2. In Section 3.1 we define precisely the notion of a distance dWs(·, ·)
between such curves as well as a distance dq(·, ·) defined among functions supported on these curves.
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The motivation for these norms is the following: We expect the action of the transfer operator
to increase regularity in the unstable direction and to decrease regularity in the stable direction, so
we integrate along stable curves in order to average the action of the transfer operator in the stable
direction. The unstable norm ‖ · ‖u morally measures a Hölder constant in the unstable direction
by comparing the norms of an element of B on two stable curves lying close together. The weights
cosW assigned to the test functions are introduced to counteract the blowup of the Jacobian near
singularities; they also help us sum over homogeneity strips as in the proof of Lemma 3.9. The
weight α in ‖ · ‖s is important for the proof of compactness (see Lemma 3.10) as well as the
Lasota-Yorke estimate for ‖ · ‖u (see Section 4.3).

Given a curve W ∈ Ws, we denote by mW the unnormalized Lebesgue (arclength) measure
on W . We set |W | = mW (W ). We also denote the Euclidean metric on W by dW (·, ·). With
a slight abuse of notation, we define cosW to be the average value of cosϕ on W ∈ Ws, i.e.
cosW = |W |−1

∫
W cosϕdmW .

For 0 ≤ p ≤ 1, denote by C̃p(W ) the set of continuous complex-valued functions on W with
Hölder exponent p, measured in the Euclidean metric. We then denote by Cp(W ) the closure of
C̃1(W ) in the C̃p-norm1: |ψ|Cp(W ) = |ψ|C0(W ) +Hp

W (ψ), where Hp
W (ψ) is the Hölder constant of ψ

along W . Notice that with this definition, |ψ1ψ2|Cp(W ) ≤ |ψ1|Cp(W )|ψ2|Cp(W ). We define C̃p(M) and
Cp(M) similarly.

For α ≥ 0, define the following norms for test functions,

|ψ|W,α,p := |W |α · cosW · |ψ|Cp(W ).

Now fix 0 < p ≤ 1/3. Given a function h ∈ C1(M), define the weak norm of h by

|h|w := sup
W∈Ws

sup
ψ∈Cp(W )
|ψ|W,0,p≤1

∫
W
hψ dmW . (2.1)

Choose2 α, β, q > 0 such that α < 1/6, q < p and β ≤ min{α, p− q}. We define the strong stable
norm of h as

‖h‖s := sup
W∈Ws

sup
ψ∈Cq(W )
|ψ|W,α,q≤1

∫
W
hψ dmW , (2.2)

and the strong unstable norm as

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cp(Wi)
|ψi|Wi,0,p≤1
dq(ψ1,ψ2)≤ε

1

εβ

∣∣∣∣∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

∣∣∣∣ , (2.3)

where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws which is determined after
(3.2). We then define the strong norm of h by

‖h‖B = ‖h‖s + b‖h‖u,

where b is a small constant chosen in Section 2.4.
We define B to be the completion of C1(M) in the strong norm and Bw to be the completion of

C1(M) in the weak norm. In Section 4, we will actually apply these norms to functions of the form
Lh where h ∈ C1(M). The fact that Lh ∈ B when h ∈ C1(M) is established in Lemma 3.8.

1Note that for p < 1, while Cp(W ) may not contain all of C̃p(W ), it does contain Cp
′
(W ) for all p′ > p.

2The restrictions on the constants are placed according to the dynamical properties of T . For example, p ≤ 1/3
due to the distortion estimate (3.1) while α < 1/6 so that Lemma 3.4 can be applied with ς = 1 − α > 5/6. In the
finite horizon case, α < 1/2 suffices.
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2.4 Statement of Results

We assume throughout that T is the billiard map associated to a finite or infinite horizon Lorentz
gas as described in Section 2.1.

The first result gives a more concrete description of the above abstract spaces.

Lemma 2.1. For γ > 2β and each n ≥ 0, Cγ(M) ↪→ B ↪→ Bw ↪→ (Cp(T−nWs))′, each of the
embeddings is continuous and the first two are injective. Moreover, L is well defined as an operator
on both B and Bw.

Proof. The continuity of the embeddings follows from the fact that ‖h‖B ≤ C|h|Cγ(M) by (3.24)
in the proof of Lemma 3.7, that | · |w ≤ ‖ · ‖B by definition, and Lemma 3.9 which implies that
|h(ψ)| ≤ C|h|w|ψ|Cp(T−nWs) for all h ∈ Bw and any ψ ∈ Cp(T−nWs).

The injectivity of the first embedding is immediate while that of the second follows from the
fact that our test functions for ‖ · ‖s are in Cq(M) rather than C̃q(M). Finally, the fact that L is
well defined on B follows from Lemma 3.8. The proof that L is well defined on Bw is similar and
is omitted.

Remark 2.2. In fact, one could make the embedding Bw ↪→ (Cp(T−nWs))′ injective by using
test functions ψ in the weak norm satisfying |ψ|Cp(W )|W |a cosW ≤ 1, with the requirements that
p < a < α and β ≤ α − a. We do not do this since we do not need the injectivity of this
embedding for any of the results of our paper. Also the modification would complicate the Lasota-
Yorke inequalities slightly and would reduce our best estimate on the essential spectral radius to be
Λ−1/12 (see Remark 2.4).

The following inequalities are proven in Section 4.

Proposition 2.3. Let Λ > 1 be the minimum expansion from (2.8) and let δ1 > 0, θ1 < 1 be
constants defined by (3.3). There exists C > 0 such that for all h ∈ B and n ≥ 0,

|Lnh|w ≤ C|h|w , (2.4)

‖Lnh‖s ≤ C(θ
(1−α)n
1 + Λ−qn)‖h‖s + Cδ−α1 |h|w , (2.5)

‖Lnh‖u ≤ CnβΛ−βn‖h‖u + CCn1 ‖h‖s , (2.6)

where C1 > 0 is from Lemma 3.4

If we choose 1 > σ > max{Λ−β, θ1−α1 ,Λ−q}, then there exists N ≥ 0 such that

‖LNh‖B = ‖LNh‖s + b‖LNh‖u ≤
σN

2
‖h‖s + Cδ−α1 |h|w + bσN‖h‖u + bCCN1 ‖h‖s

≤ σN‖h‖B + Cδ1 |h|w,
(2.7)

provided b is chosen small enough with respect to N . The above represents the traditional Lasota-
Yorke inequality.

The final ingredient in the strategy to prove the quasi-compactness of the operator L is the
relative compactness of the unit ball of B in Bw. This is proven in Lemma 3.10. It thus follows by
standard arguments (see [B1, HH]) that the essential spectral radius of L on B is bounded by σ,
while the estimate for the spectral radius is one.

Remark 2.4. Since by (3.3) we choose θ1 ≤ Λ−1/2, and given the constraints among β, α and q,
our best estimate on the essential spectral radius is Λ−1/6.
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With these estimates on the spectral radius and essential spectral radius of L, we next prove
the spectral decomposition of the transfer operator in Section 5. Those results and the resulting
information about the statistical properties of T are summarized in the following theorem. We
denote by Π0 the projection onto the eigenspace of L corresponding to the eigenvalue 1.

Theorem 2.5. The peripheral spectrum of L on B consists of a simple eigenvalue at 1. The
unique (normalized) eigenvector corresponding to 1 is the smooth invariant measure dµ = ρ dm,
where ρ = c cosϕ and c is a normalizing constant. In addition:

1. For any probability measure ν ∈ B, we have limn→∞ ‖Lnν − µ‖B = 0 and this convergence
occurs at an exponential rate given by σ′ := the spectral radius of L −Π0 on B, σ′ < 1.

2. (T, µ) exhibits exponential decay of correlations for Hölder observables. More precisely, for
φ ∈ Cγ(M), γ > 2β, and ψ ∈ Cp(Ws), we have∣∣∣∣∫

M
φψ ◦ Tn dµ−

∫
φdµ

∫
ψ dµ

∣∣∣∣ ≤ C(σ′)n|φ|Cγ(M)|ψ|Cp(Ws).

3. More generally, the Fourier transform of the correlation function (sometimes called the power
spectrum) admits a meromorphic extension in the annulus {z ∈ C ; σ < |z| < σ−1} and the
poles (Ruelle resonances) correspond exactly to the eigenvalues of L, where σ is from (2.7).

Item (1) is proved in Section 5.1 while items (2) and (3) are proved in Section 5.2.

2.4.1 Limits theorems for billiards

Once the spectral picture described above has been established, a variety of limit theorems become
immediately accessible, testifying to the concise nature of the present approach. Such limit theorems
have been the subject of many recent studies and we refer the interested reader to the following
partial list [HH, MN1, CG, RY, G].

We state several limit theorems here and show how they follow from our functional analytic
framework in Section 6. Although these limit theorems with respect to invariant measures are
known for this class of billiards, their extension to non-invariant probability measures is a new
result, with the exception of [D]. Throughout this section, g denotes a real-valued function in
Cγ(M), where γ = max{p, 2β + ε} for some ε > 0, and Sng =

∑n−1
j=0 g ◦ T j .

Large deviation estimates. Large deviation estimates provide exponential bounds on the rate of
convergence of 1

nSng to µ(g). They typically take the form

lim
ε→0

lim
n→∞

1

n
logµ

(
x ∈M :

1

n
Sng(x) ∈ [t− ε, t+ ε]

)
= −I(t),

where I(t) ≥ 0 is called the rate function. More generally, one can ask about the above limit when
µ is replaced by a non-invariant measure, for example Lebesgue measure. In the present context,
we prove a large deviation estimate for all probability measures in B with the same rate function
I.

Central Limit Theorem. Assume µ(g) = 0 and let (g ◦ T j)j∈N be a sequence of random variables
on the probability space (M,ν), where ν is a (not necessarily invariant) probability measure on the
Boreal σ-algebra. We say that the triple (g, T, ν) satisfies a Central Limit Theorem if there exists
a constant ς2 ≥ 0 such that

Sng√
n

dist.−→ N (0, ς2),
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where N (0, ς2) denotes the normal distribution with mean 0 and variance ς2.

Almost-sure Invariance Principle. Assume again that µ(g) = 0 and as above distribute (g ◦ T j)j∈N
according to a probability measure ν. Suppose there exists ε > 0, a probability space Ω with a

sequence of random variables {Xn} satisfying Sng
dist.

= Xn and a Brownian motion W with variance
ς2 ≥ 0 such that

Xn = W (n) +O(n1/2−ε) as n→∞ almost-surely in Ω.

Then we say that the process (g ◦ T j)j∈N satisfies an almost-sure invariance principle.

Theorem 2.6. Let γ = max{p, 2β + ε}, for some ε > 0. If g ∈ Cγ(M), then

(a) g satisfies a large deviation estimate with uniform rate function I for all (not necessarily
invariant) probability measures ν ∈ B.

Assume that µ(g) = 0, let ν ∈ B be a probability measure and distribute (g ◦ T j)j∈N according to ν.
Then,

(b) (g, T, ν) satisfies the Central Limit Theorem;

(c) the process (g ◦ T j)j∈N satisfies an almost-sure invariance principle.

The proof of this theorem appears in Section 6.

2.5 Known Facts about the Lorentz gas

Before exploring the properties of the Banach spaces we have defined, we recall some of the impor-
tant properties of dispersing billiards that we shall need and refer the reader to [BSC1, BSC2, CM]
for details.

2.5.1 Hyperbolicity

Since we have assumed that the scatterers have strictly positive curvature K(x) at each x ∈ M ,
there exist constants Kmin,Kmax, τmin such that

0 < Kmin ≤ K(x) ≤ Kmax, τmin ≤ τ(x), ∀x ∈M.

This allows us to define global stable and unstable cones as follows. Let (dr, dϕ) be an element of
the tangent space. Then

Cu(x) := {(dr, dϕ) ∈ TxM : Kmin ≤
dϕ

dr
≤ Kmax +

1

τmin
} and

Cs(x) := {(dr, dϕ) ∈ TxM : −Kmax −
1

τmin
≤ dϕ

dr
≤ −Kmin}.

Note that the angle between Cu(x) and Cs(x) is uniformly bounded away from zero. The cones
also enjoy the following two properties.

(i) Strict invariance. DTx(Cu(x)) ⊂ Cu(Tx) and DT−1x (Cs(x)) ⊂ Cs(T−1x) whenever DT and
DT−1 exist.
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(ii) Uniform expansion. Let Λ = 1 + 2Kminτmin. There exists ĉ > 0 such that

‖DTnx (v)‖ ≥ ĉΛn‖v‖, ∀v ∈ Cu(x), and ‖DT−nx (v)‖ ≥ ĉΛn‖v‖,∀v ∈ Cs(x), (2.8)

where ‖ · ‖ is the Euclidian norm. In addition, letting T−1(r, ϕ) = (r−1, ϕ−1), the expansion
factor for T−1 in the stable cone satisfies for any x = (r, ϕ),

C−1
τ(T−1x)

cosϕ−1
≤ ‖DT

−1
x v‖
‖v‖

≤ C τ(T−1x)

cosϕ−1
, ∀v ∈ Cs(x), v 6= 0, (2.9)

for some C > 1 independent of x.

Note that the expansion may not be larger than 1 at the first iteration. We can always define a
norm ‖ · ‖∗, uniformly equivalent to ‖ · ‖, as an adapted norm on the tangent bundle such that (see
[CM, Section 5.10])

‖DTnx (v)‖∗ ≥ Λn‖v‖∗,∀v ∈ Cu(x), and ‖DT−nx (v)‖∗ ≥ Λn‖v‖∗,∀v ∈ Cs(x). (2.10)

We say that a smooth curve W ⊂M is a stable curve if at every point x ∈W , the tangent line
TxW belongs to the stable cone Cs(x). We define unstable curves in the same way.

2.5.2 Singularities

The singularity curves of the billiard map T comprise two types of curves: discontinuity curves and
the boundaries of homogeneity strips.

We denote by S0 := {ϕ = ±π/2} the boundary of the collision space, which consists of all
grazing collisions. Then the map T lacks smoothness on the set S1 := S0 ∪ T−1S0. In general,
denote

S±n = ∪ni=0T
∓iS0.

For each n = 1, 2, 3, . . ., the map Tn : M \Sn →M \S−n is a C2 diffeomorphism on each connected
component. The time-reversibility of T implies that S−n and Sn are symmetric about ϕ = 0 in M .
Moreover the set Sn \ S0 is a union of compact smooth stable curves for n ≥ 1 and unstable curves
for n ≤ −1. The number of such curves is countable for billiards with infinite horizon and finite
otherwise.

Each smooth curve S ⊂ Sn \ S0 terminates on a smooth curve in Sn. Furthermore, every curve
S ⊂ Sn \ S0 is contained in one monotonically decreasing (or increasing for n < 0) continuous
curve which stretches all the way from ϕ = −π/2 to ϕ = π/2. This property is often referred to as
continuation of singularity lines.

Next we describe briefly S−1 for the infinite horizon case and refer to [BSC1, BSC2] for more
details. A point x ∈M is called an infinite-horizon point if the free path along its forward trajectory
is infinite, or there are infinitely many consecutive grazing collisions along the trajectory of x. There
are only finitely many infinite-horizon points in M , denoted by IH := {x1, · · · , x`}. By symmetry,
it suffices to consider only singular curves in the upper part of M , ϕ ≥ 0. In the vicinity of any
xi ∈ IH, the set S−1 contains a long increasing curve s′ having xi as an endpoint. In addition
S−1 also contains a sequence of short increasing curves {sn}, connecting s′ and S0, approaching xi
at the speed of order O(1/n) along S0 and of order O(1/

√
n) along s′. More precisely, for any n

large, let Dn be the cell that is bounded by sn, sn+1, s
′,S0. Then |sn| = O(1/

√
n), as it is almost

parallel to s′. There exists a constant C > 1 such that for any n ≥ 1 and any point x ∈ Dn, we
have C−1n ≤ τ(x) ≤ Cn.
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In order to control distortion along stable curves, we define homogeneity strips, Hk, following
[BSC1]. We fix k0 ∈ N, where k0 is chosen so that (3.2) holds, and define for k ≥ k0,

Hk = {(r, ϕ) : π/2− k−2 < ϕ < π/2− (k + 1)−2} and

H−k = {(r, ϕ) : −π/2 + (k + 1)−2 < ϕ < −π/2 + k−2}.

We also put
H0 = {(r, ϕ) : −π/2 + k−20 < ϕ < π/2− k−20 }.

Denote by

SH±k = {(r, ϕ) : |ϕ| = ±π/2∓ k−2} and S0,H = S0 ∪ (∪∞k≥k0S
H
±k).

In general, we set SH±n = ∪ni=0T
∓iS0,H and call this the expanded singularity set for T±n. We call

a stable or unstable curve homogeneous if it lies entirely in one of the homogeneity strips Hk.

3 Preliminary Estimates and Properties of the Banach Spaces

3.1 Family of Admissible Stable Curves

Due to our definition of the stable cones Cs(x), each stable curve W can be viewed as the graph of a
function ϕW (r) of the arc length parameter r. For each stable curve W , let IW denote the interval
on which ϕW is defined and set GW (r) = (r, ϕW (r)) to be its graph so that W = {GW (r) : r ∈ IW }.

We fix constants B > 0 and δ0 > 0, where δ0 is chosen small enough to satisfy the one-step

expansion (3.2). We call a homogeneous stable curve admissible if |W | ≤ δ0 and
∣∣∣d2ϕWdr2

∣∣∣ ≤ B. We

define Ws to be the set of admissible stable curves in M . It follows directly from the uniform
contraction of Cs(x) under the action of T−1 that if W ∈ Ws, then each (sufficiently short)
component of T−1W on which T is smooth is a homogeneous stable curve. It then follows from
[CM, Proposition 4.29] that each such smooth component is in Ws if B is chosen sufficiently large.

We define an analogous family of homogeneous unstable curves Wu which lie in the unstable
cone Cu.

Let W1,W2 ∈ Ws and identify them with the graphs GWi of their functions ϕWi , i = 1, 2. Let
Ii := IWi be the r-interval on which each curve is defined and denote by `(I14I2) the length of
the symmetric difference between I1 and I2. Let Hki be the homogeneity strip containing Wi. We
define the distance between W1 and W2 to be,

dWs(W1,W2) = η(k1, k2) + `(I14I2) + |ϕW1 − ϕW2 |C1(I1∩I2),

where η(k1, k2) = 0 if k1 = k2 and η(k1, k2) =∞ otherwise, i.e., we only compare curves which lie
in the same homogeneity strip.

Given two functions ψi ∈ Cq(Wi,C), we define the distance between ψ1, ψ2 as

dq(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |Cq(I1∩I2).

We recall one final fact regarding distortion bounds for stable curves (see [CM, Lemma 5.27]).
Suppose that W ∈ Ws and that T iW ∈ Ws for i = 0, 1, . . . , n (i.e., each T iW is a homogeneous
stable curve with uniformly bounded curvature). Then there exists Cd > 0, independent of n and
W , such that for any x, y ∈W ,

| ln JWTn(x)− ln JWT
n(y)| ≤ CddW (x, y)1/3, (3.1)

where JWT
n(x) = |det(DTnx |TxW )| denotes the Jacobian of Tn along W and dW (·, ·) is the ar-

clength distance on W .
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3.2 Growth Lemmas

In order to prove the characterization of our Banach spaces B and Bw given by Lemma 2.1 as well
as the estimates of Proposition 2.3, we need some understanding of the properties of T−nW for
W ∈ Ws. In this section we prove some growth lemmas that we shall need in Section 4.

One Step Expansion. Let W be a homogeneous stable curve. We partition the connected compo-
nents of T−1W into maximal pieces Vi such that each Vi is a homogeneous stable curve in some
Hk. We choose k0 large enough that the following estimate holds for both classes of billiards we
consider (see [CM, Lemma 5.56]):

lim sup
δ→0

sup
|W |<δ

∑
i

|TVi|∗
|Vi|∗

< 1, (3.2)

where |Vi|∗ is the length of Vi in the metric induced by the adapted norm ‖ · ‖∗. Now we choose δ0
sufficiently small that for any homogeneous stable curve W with |W | ≤ δ0, the sum in (3.2) is ≤ θ∗
for a fixed θ∗ < 1. In fact, by choosing δ0 sufficiently small and k0 sufficiently large, one can choose
θ∗ arbitrarily close to Λ−1 [CM, eq. (5.39)]. From this point forward, we will consider δ0 and k0 to
be fixed by these relations. Note that this also fixes the distortion constant Cd from (3.1). Next
we choose δ1 < δ0/2 sufficiently small that

θ1 := θ∗e
Cd|δ1|1/3 < Λ−1/2. (3.3)

To ensure that each component of T−1W is inWs, we subdivide any of the long pieces Vi whose
length is > δ0. This process is then iterated so that given W ∈ Ws, we construct the components
of T−nW , which we call the nth generation Gn(W ), inductively as follows. Let G0(W ) = {W} and
suppose we have defined Gn−1(W ) ⊂ Ws. First, for any W ′ ∈ Gn−1(W ), we partition T−1W ′ into
at most countably many pieces W ′i so that T is smooth on each W ′i and each W ′i is a homogeneous
stable curve. If any W ′i have length greater than δ0, we subdivide those pieces into pieces of length
between δ0/2 and δ0. We define Gn(W ) to be the collection of all pieces Wn

i ⊂ T−nW obtained in
this way. Note that each Wn

i is in Ws since we chose B sufficiently large in the definition of Ws.
At each iterate of T−1, typical short curves in Gn(W ) grow in size, but there exist a portion

of curves which are trapped in tiny Homogeneity strips and in the infinite horizon case, stay too
close to the infinite horizon points. Our first lemma shows that the proportion of curves (in a sense
made precise below) that never grow to a fixed length in Gn(W ) decays exponentially fast.

For W ∈ Ws, n ≥ 0, and 0 ≤ k ≤ n, let Gk(W ) = {W k
i }i denote the kth generation pieces in

T−kW . Let Bk = {i : |W k
i | < δ1} and Lk = {i : |W k

i | ≥ δ1} denote the index of the short and long
elements of Gk(W ), respectively. We consider {Gk}nk=0 as a tree with W as its root and Gk as the
kth level.

At level n, we group the pieces as follows. Let Wn
i0
∈ Gn(W ) and let W k

j ∈ Lk denote the most

recent long “ancestor” of Wn
i0

, i.e. k = max{0 ≤ ` ≤ n : Tn−`(Wn
i0

) ⊂ W `
j and j ∈ L`}. If no such

ancestor exists, set k = 0 and W k
j = W . Note that if Wn

i0
is long, then W k

j = Wn
i0

. Let

In(W k
j ) = {i : W k

j ∈ Lk is the most recent long ancestor of Wn
i }.

When k = 0, the set In(W ) represents those curves Wn
i ∈ Gn(W ) such that T `Wn

i belongs to a
short curve in Gn−`(W ) for each 0 ≤ ` ≤ n− 1.

Lemma 3.1. Let W ∈ Ws and for n ≥ 0, let In(W ) be defined as above. There exists C > 0,
independent of W , such that for any n ≥ 0,∑

i∈In(W )

|TnWn
i |

|Wn
i |
≤ Cθn1 .
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Proof. We define a function

Zn(W ) =
∑

i∈In(W )

|TnWn
i |∗

|Wn
i |∗

. (3.4)

We will show that for any admissible curve W , the function Zn(W ) decays exponentially as n
goes to infinity. Then, since ‖ · ‖∗ is uniformly equivalent to ‖ · ‖, the lemma follows.

We prove by induction on n ∈ N that for any W ∈ Ws, the following formula holds:

Zn+1(W ) ≤ θn1 θ∗. (3.5)

Note that at each iterate between 1 and n, every piece Wn
i , i ∈ In(W ), is created by genuine

cuts due to singularities and homogeneity strips and not by any artificial subdivisions, since those
are only made when a piece has grown to length greater than δ0 and δ1 was chosen < δ0/2. Thus
we may apply the one-step expansion (3.2) to conclude,

Z1(W ) ≤ θ∗. (3.6)

Assume that (3.5) is proved for some n ≥ 1 and all W ∈ Ws. We apply it to each component
W 1
i ∈ G1(W ) such that i ∈ I1(W ). Then by assumption, Zn(W 1

i ) ≤ θn−11 θ∗, since W 1
i ∈ Ws.

We group the components of Wn+1
i ∈ Gn+1(W ) with i ∈ In+1(W ) according to elements with

index in I1(W ). More precisely, let Ank denote those indices of Wn+1
i such that TnWn+1

i ⊂ W 1
k ,

k ∈ I1(W ). It follows from (3.1) that for any W 1
k , the maximum distortion of T is bounded by

eCd|W
1
k |

1
3 . Thus

|Tn+1Wn+1
i |

|TnWn+1
i |

≤ eCd|W 1
k |

1
3 |TW 1

k |
|W 1

k |
.

Combining this and (3.6) with the inductive hypothesis, we get

Zn+1(W ) =
∑

k∈I1(W )

∑
i∈Ank

|Tn+1Wn+1
i |∗

|Wn+1
i |∗

≤
∑

k∈I1(W )

eCd|W
1
k |

1
3

∑
i∈Ank

|TnWn+1
i |∗

|Wn+1
i |∗

 |TW 1
k |∗

|W 1
k |∗

=
∑

k∈I1(W )

eCd|W
1
k |

1
3Zn(W 1

k ) ·
|TW 1

k |∗
|W 1

k |∗
≤ θn−11 θ∗e

Cdδ
1/3
1 · Z1(W ) ≤ θn1 θ∗.

Our next lemma allows us to iterate the control given by the one-step expansion (3.2) over
pieces in Gn(W ).

Lemma 3.2. There exists Cs > 0, depending only on θ1, such that for any W ∈ Ws and any
n ≥ 0, ∑

Wn
i ∈Gn(W )

|TnWn
i |

|Wn
i |
≤ Cs.

Proof. Fix W ∈ Ws and n > 0. For any 1 ≤ k ≤ n, since T k is smooth on each W k
j ∈ Gk(W ), the

bounded distortion (3.1) implies that if Tn−kWn
i ⊂W k

j , then

|TnWn
i |

|Tn−kWn
i |
≤ eCdδ

1/3
0
|T kW k

j |
|W k

j |
. (3.7)
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Now grouping Wn
i ∈ Gn(W ) by most recent long ancestor as described before the statement of

Lemma 3.1 and using (3.7), we have

∑
i

|TnWn
i |

|Wn
i |

=
n∑
k=0

∑
Wk
j ∈Gk(W )

∑
i∈In(Wk

j )

|TnWn
i |

|Wn
i |

≤
n−1∑
k=1

∑
Wk
j ∈Lk(W )

 ∑
i∈In(Wk

j )

|Tn−kWn
i |

|Wn
i |

 eCdδ
1/3
0
|T kW k

j |
|W k

j |
+

∑
i∈In(W )

|TnWn
i |

|Wn
i |

,

where we have split off the sum for k = 0. Note that In(W k
j ) and In−k(W k

j ) correspond to the

same set of short pieces in the (n− k)th generation of W k
j , so we can apply Lemma 3.1 to each of

these sums separately. Thus,

∑
i

|TnWn
i |

|Wn
i |
≤

n−1∑
k=1

∑
Wk
j ∈Lk(W )

Cθn−k1 eCdδ
1/3
0
|T kW k

j |
|W k

j |
+ Cθn1

≤ Cδ−11

n−1∑
k=1

∑
Wk
j ∈Lk(W )

θn−k1 |T kW k
j |+ Cθn1 ≤ Cδ−11 |W |

n−1∑
k=1

θn−k1 + Cθn1 ,

which is uniformly bounded in n.

The following lemma is a straight-forward consequence of Lemma 3.2.

Lemma 3.3. Let W ∈ Ws and 0 ≤ ς ≤ 1. Then for any n ≥ 0,∑
Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
· |T

nWn
i |

|Wn
i |
≤ C1−ς

s .

Proof. Multiplying by |W |/|W |, we write,

∑
i

|Wn
i |ς

|W |ς
· |T

nWn
i |

|Wn
i |

=
∑
i

|W |1−ς

|Wn
i |1−ς

· |T
nWn

i |
|W |

≤ C1−ς
s ,

by Jensen’s inequality since
∑

i |TnWn
i ||W |−1 = 1.

Our final result of this section concerns an extension of these results when the expansion on
each piece is weakened by an exponent < 1.

Lemma 3.4. Let ς > 5/6. There exists a constant C1 = C1(δ0, ς) > 0 such that for any W ∈ Ws

and n ≥ 0, ∑
Wn
i ∈Gn(W )

|TnWn
i |ς

|Wn
i |ς

≤ Cn1 .

In the case of the finite horizon Lorentz gas, it suffices to take ς > 1/2.

Proof. The proof relies on the following version of the one step expansion (3.2) for the exponent ς.
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Sublemma 3.5. Let ς > 5/6. Then there exists C = C(δ0, ς) > 0 such that for any W ∈ Ws,∑
i

|TVi|ς

|Vi|ς
< C. (3.8)

where the Vi’s are the maximal homogeneous components of T−1W . In the case of the finite horizon
Lorentz gas, it suffices to take ς > 1/2.

Before proving the sublemma, we use it to prove the following estimate by induction on n:∑
Wn
i ∈Gn(W )

|TnWn
i |ς

|Wn
i |ς

≤ δ−n0 Cnc2n.

where c = eςCd and C = C(δ0, ς) > 0 is from (3.8).
For n = 1: Recall that the W 1

i ∈ G1(W ) are obtained by subdividing the maximal homogeneous
components Vj of T−1W of length > δ0. Since T is smooth with bounded distortion on each Vj
and the number of W 1

i in each Vj is at most 1/δ0, we have by Sublemma 3.5,∑
i

|TW 1
i |ς

|W 1
i |ς
≤
∑
j

eςCdδ−10

|TVj |ς

|Vj |ς
≤ δ−10 Cc.

Assume at the n-th iteration, for all W ∈ Ws, we have∑
Wn
i ∈Gn(W )

|TnWn
i |ς

|Wn
i |ς

≤ δ−n0 Cnc2n. (3.9)

We group the elements Wn+1
i ∈ Gn+1(W ) according to their ancestors (long or short) W 1

k ∈ G1(W ).
More precisely, define Ak = {i : TnWn+1

i ⊂W 1
k }. Then Gn+1(W ) = ∪k≥1Gn(W 1

k ) := ∪k≥1{Wn+1
i :

i ∈ Ak}. Applying (3.9) to each family Gn(W 1
k ), we obtain∑

Wn+1
i ∈Gn+1(W )

|Tn+1Wn+1
i |ς

|Wn+1
i |ς

=
∑

W 1
k∈G1(W )

∑
i∈Ak

|Tn+1Wn+1
i |ς

|Wn+1
i |ς

≤
∑

W 1
k∈G1(W )

∑
i∈Ak

eςCd
|TnWn+1

i |ς

|Wn+1
i |ς

·
|TW 1

k |ς

|W 1
k |ς

≤ δ−n0 Cnc2n+1
∑

W 1
k∈G1(W )

|TW 1
k |ς

|W 1
k |ς
≤ δ−(n+1)

0 Cn+1c2(n+1).

Proof of Sublemma 3.5. We first prove (3.8) in the finite horizon case and then indicate the neces-
sary modifications in the infinite horizon case.

Notice that a stable curve of length ≤ δ0 can be cut by at most N ≤ τmax/τmin singularity
curves in S−1 (see [CM, §5.10]). For each s ∈ S−1 intersecting W , W is cut further by images of
the boundaries of homogeneity strips SHk , k ≥ k0. For one such s, we relabel the components Vi
of T−1W on which T is smooth by Vk, k corresponding to the homogeneity strip Hk containing
Vk. By (2.9), there exists c1 > 0 such that on TVk, the expansion under T−1 is ≥ c1k

2. So for all
ς > 1/2, ∑

k≥k0

|TVk|ς

|Vk|ς
≤ c−ς1

∑
k≥k0

1

k2ς
≤ c−ς1

k2ς−10

. (3.10)
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An upper bound for (3.8) in this case is given by N times the bound in (3.10).
It may happen that W does not intersect any s ∈ S−1, but may intersect one or more preimages

of the SHk . In this case, the uniform expansion in H0 combined with the sum in (3.10) provides an
upper bound for (3.8).

In the infinite horizon case, in addition to the scenarios above, it may be that a stable curve
W intersects a countable number of singularity curves. In the notation of Section 2.5.2, assume
that W intersects at least two adjacent singular curves sn and sn+1 in a neighborhood of one of
the infinite horizon points and denote the least index of the intersected sn ∈ S−1 to be n1. Since
|W | < δ0 and the distance between the sn along a stable curve is of order O(n−2),

n1 = O(|W |−1/2). (3.11)

According to [CM, Remark 5.59], there exists c > 0, such that for any singular curve sn belonging
to S−1, there is a sequence {sn,k ⊂ TSHk : |k| ≥ cn1/4} that accumulates on sn as k goes to ∞
(or −∞). We call the set bounded by sn,k, sn,k+1, s

′ and S0, a Dn,k-cell and note that by (2.9) the
expansion along stable curves under T−1 is O(nk2) in each Dn,k. Note that Dn,k ⊂ Dn where Dn

was defined in Section 2.5.2. We relabel the components of T−1W as {Wn,k} corresponding to the
cell Dn,k in which TWn,k lies. Then for any ς > 5/6, we have

∑
i

|TVi|ς

|Vi|ς
≤
∑
n≥n1

∑
|k|≥cn1/4

|TWn,k|ς

|Wn,k|ς

≤
∑
n≥n1

∑
k≥cn1/4

c1
(nk2)ς

≤ Cn−
3
2
ς+ 5

4
1 ≤ C|W |

3
4
ς− 5

8 ≤ C|δ0|
3
4
ς− 5

8 ,

where we have used the relation (3.11) between n1 and |W |.
This estimate together with the considerations in the finite horizon case proves (3.8) in the

infinite horizon case.

3.3 Properties of the Banach spaces

We begin by verifying that our Banach spaces contain an interesting class of measures. We first
record the following simple observation.

Lemma 3.6. There exists a constant C0 > 1 such that for any homogeneous stable curve W and
any x ∈W ,

C−10 ≤ cosϕ(x)

cosW
≤ C0,

where ϕ(x) is the angle at x and cosW is as defined in Section 2.3. Similar bounds hold for
cosW/ cosW ′ whenever W and W ′ lie in the same homogeneity strip.

Proof. The proof is straightforward and uses the fact that cos(π/2 − 1/(k + 1)2) ≤ cosϕ(x) ≤
cos(π/2− 1/k2) for x ∈ Hk.

Our first main lemma shows that B contains functions with discontinuities that are transverse
to the stable cone. The approximation argument rests on the fact that the contribution to the
norm of a given function from homogeneity strips with high index is small.

Lemma 3.7. Let P be a (mod 0) countable partition of M into open, simply connected sets such
that (1) there is a constant K > 0 such that for each P ∈ P, ∂P comprises at most K smooth
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curves, each of which is transverse to Cs(x), with a minimum angle uniform for all P ∈ P; (2)
each strip Hk intersects at most finitely many P ∈ P.

Let γ > 2β. Suppose h is a function on M such that supP∈P |h|Cγ(P ) < ∞. Then h ∈ B. In
particular, Cγ(M) ⊂ B for each γ > 2β and Lebesgue measure is in B.

Proof. Since B is defined as the completion of C1(M), we must show that h as above can be
approximated by functions in C1(M) in the ‖ · ‖B norm.

For P ∈ P we define Pk to be a single simply connected component of P ∩ Hk. The labeling
may not be unique, but there are only finitely many elements of P labelled Pk for each k ≥ k0 by
assumption (2) on P.

Let h be as in the statement of the lemma. Since ‖h‖B = supk ‖h|Hk‖B by definition of Ws, we
may fix k and approximate h one Hk at a time. We fix Pk and for simplicity first consider h ≡ 0
off of Pk.

Choose η > 0 such that P̃k := Bη/k3(Pk), the η/k3 neighborhood of Pk, satisfies P̃k ⊂ Hk−1 ∪
Hk ∪Hk+1 (for H0, we use k = k0). Choose a smooth foliation of stable curves on P̃k and extend h
to the smaller neighborhood Bη/(2k3)(Pk) by extending h as a constant function along each stable

curve in the foliation. Denote this extended function by h̃k and set it equal to 0 elsewhere.
Let ρη(x, y) be a nonnegative C∞ bump function such (1)

∫
P̃k
ρη(x, y)dm(y) = 1 for each x ∈ P̃k,

and (2) ρη(x, y) = 0 whenever d(x, y) > η/(2k3). Define

fη(x) =

∫
P̃k

h̃k(y)ρη(x, y) dm(y), for x ∈M .

Note that fη ∈ C∞(M) and that fη(x) ≡ 0 for x /∈ P̃k. We may also arrange it so that |fη|Cγ(Pk) ≤
|h|Cγ(Pk), while |fη|Cγ(M) ≤ C|h|Cγ(Pk)k

3γ/ηγ for some C > 0 independent of k and η.
Now let W ∈ Ws, W ⊂ Hk, and take ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1. Notice that |ψ|∞ ≤

|W |−α(cosW )−1. Thus,∫
W

(h− fη)ψ dmW =

∫
W∩Pk

(h− fη)ψ dmW +

∫
W\Pk

(h− fη)ψ dmW

≤ |h− fη|C0(W∩Pk)|W |
1−α(cosW )−1 + |fη|∞|(suppfη) ∩ (W \ Pk)||W |−α(cosW )−1.

(3.12)

For the first term above, we estimate the difference in functions for x ∈W ∩ Pk by,

|h(x)− fη(x)| ≤
∫
P̃k

|h(x)− h̃k(y)|ρη(x, y) dm(y)

and notice that we only need consider y such that d(x, y) ≤ η/(2k3) by definition of ρη, i.e. y such
that h̃k(y) = h(z) for some z ∈ Pk by definition of h̃k. Also, since ∂Pk is transverse to Cs(x) and h
was extended along stable curves, we have d(y, z) ≤ Cη/(2k3). Thus d(x, z) ≤ Cη/k3 and so

|h(x)− fη(x)| ≤ C|h|Cγ(Pk)η
γk−3γ .

Now consider the expression |W |1−α(cosW )−1. Since W is a homogeneous curve, it lies either in
H0 or in a homogeneity strip indexed by k ≥ k0. In the former case, cosW ≥ 1/k20 so that the
above expression is bounded. In the latter case, cosW ≥ 1/k2 and |W | ≤ Ck−3 since the stable
cone is uniformly transverse to the boundaries of the homogeneity strips. Thus

|W |1−α(cosW )−1 ≤ Ck3(α−1)k2 < Ck−1/2, (3.13)
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since α < 1/6. Putting these estimates together, we obtain for the first term of (3.12),

|h− fη|C0(W∩Pk)|W |
1−α(cosW )−1 ≤ C|h|Cγ(P )η

γk−1/2.

For the second term of (3.12), we consider two cases.

Case 1: |W | < η/k3. Then |(suppfη) ∩ (W \ Pk)| < |W | so that using (3.13),

|fη|∞|(suppfη) ∩ (W \ Pk)||W |−α(cosW )−1 ≤ C|h|∞η1−αk−1/2.

Case 2: |W | > η/k3. Then since |(suppfη) ∩ (W \ Pk)| < η/(2k3), we have

|fη|∞|(suppfη) ∩ (W \ Pk)||W |−α(cosW )−1 ≤ C|h|∞η(2k3)−1(η/k3)−αk2 ≤ C|h|∞η1−αk−1/2.

Putting together these estimates and taking the suprema over W ⊂ Hk and ψ ∈ Cq(W ), we have
by (3.12),

‖(h− fPkη )|Hk‖s ≤ C|h|Cγ(P )(η
γ + η1−α)k−1/2.

Notice that if we were not concerned with approximation, (3.12) and (3.13) would imply,

‖h|Hk‖s ≤ C|h|∞k
−1/2 for all bounded functions h. (3.14)

Since fη is supported on Hk−1 ∪ Hk ∪ Hk+1, we must estimate the norm of h − fη on Hk±1 as
well. Recalling that h ≡ 0 on M \ Pk and fη ≡ 0 on M \ P̃k, for W ⊂ Hk±1 and |ψ|W,α,q ≤ 1 we
estimate, ∫

W
(h− fη)ψ dmW ≤ |fη|∞|W ∩ P̃k||W |−α(cosW )−1 ≤ C|h|∞η1−αk−1/2,

again using (3.13) and cases 1 and 2 above since |W ∩ P̃k| ≤ Cη/k3. Putting this together with our
estimate on Hk, we have ‖h− fη‖s ≤ C|h|Cγ(P )(η

γ + η1−α)k−1/2.
To estimate ‖(h− fη)|Hk‖u, fix 0 < ε ≤ ε0, where ε0 is from (2.3), and let W1,W2 ⊂ Hk be two

admissible stable curves such that dWs(W1,W2) ≤ ε. In the notation of Section 3.1, we identify
Wi with the graph GWi of its defining function ϕWi(r), r ∈ Ii. Let ψ1, ψ2 be two test functions
satisfying |ψi|Wi,0,p ≤ 1, i = 1, 2, and |ψ1 ◦GW1 −ψ2 ◦GW2 |Cq(I1∩I2) ≤ ε. Without loss of generality,
assume γ = 2β + δ ≤ 1/2, for some δ > 0. This is always possible since β < 1/6 by definition of
the norms.

First assume that ε ≥ η2k−
1
2β . Then by the estimate on the stable norm, we have

ε−β
∣∣∣∣∫
W1

(h− fη)ψ1 dmW −
∫
W2

(h− fη)ψ2 dmW

∣∣∣∣ ≤ Cε−β|h|Cγ (P )ηγk−1/2 ≤ Cηδ|h|Cγ(P ).

It remains to estimate the case ε < η2k
− 1

2β . For this estimate, we split up the terms involving
h and fη,∫

W1

(h− fη)ψ1 dmW −
∫
W2

(h− fη)ψ2 dmW =

∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

+

∫
W2

fηψ2 dmW −
∫
W1

fηψ1 dmW .

(3.15)

We first estimate the difference involving h.
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We match W1 and W2 using a foliation of vertical line segments of length at most ε wherever
possible. This partitions W1 in the following way: curves U i1 ⊂ W1 for which the vertical segment
connecting U i1 to W2 lies entirely in Pk; curves V j

1 ⊂W1 which either are not matched to W2 (near
the endpoints of W1) or for which the vertical segment connecting V i

1 to W2 does not lie entirely in
Pk. This induces a corresponding partition on W2 into curves U i2 and V j

2 . We call U ik the matched

pieces and V j
k the unmatched pieces and note that by assumption on P, there can be no more than

K matched pieces and K + 2 unmatched pieces.
We split up the integrals on W1 and W2 on matched and unmatched pieces,∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW =
∑
i

∫
U i1

hψ1 dmW −
∫
U i2

hψ2 dmW +
∑
j,k

∫
V jk

hψk dmW . (3.16)

We estimate the integrals on the unmatched pieces first. Since h ≡ 0 off of Pk and ∂Pk and
the vertical lines are both uniformly transverse to the stable cone (see property (1) of P in the
statement of the lemma), we have |supp(h)∩V j

k | ≤ Cε for each V k
j . Then using (3.14), we estimate∫

V jk

hψi dmW ≤ ‖h|Hk‖s |supp(h) ∩ V j
k |
α cosV j

k |ψk|Cq(Wk) ≤ C|h|∞ε
αk−1/2, (3.17)

where in the last inequality, |ψk|Cq(Wk) ≤ (cosWk)
−1 and we have used Lemma 3.6 to bound

cosV j
k / cosWk.

Next we estimate the difference on matched pieces in (3.16). To do this, we change variables to
the r intervals Ii common to U i1 and U i2.∫

Ii

(hψ1) ◦GU i1 JGU i1 − (hψ2) ◦GU i2 JGU i2 dr ≤ `(Ii)|(hψ1) ◦GU i1 JGU i1 − (hψ2) ◦GU i2 JGU i2 |∞

where JGU ik
denotes the Jacobian of GU ik

. Notice that

JGU ik
(r) =

√
1 +

(dϕU ik
dr

)2
≤
√

1 +
(
Kmax + τ−1min

)2
:= Cg. (3.18)

We split the difference on matched pieces into the sum of three terms. The first term is,

A := |h ◦GU i1 − h ◦GU i2 |∞|ψ1 ◦GU i1JGU i1 |∞ ≤ H
γ(h) sup

r∈Ii
d(GU i1

(r), GU i2
(r))γ

Cg
cosW1

,

where Hγ(h) denotes the Hölder constant of h with exponent γ on Pk. Now d(GU i1
(r), GU i2

(r)) =

|ϕU i1(r)− ϕU i2(r)| ≤ ε by definition of dWs(·, ·). Thus,

A ≤ CgHγ(h)εγ/ cosW1. (3.19)

The second term of the difference is,

B := |ψ1 ◦GU i1 − ψ2 ◦GU i2 |∞|h ◦GU i2JGU i1 |∞ ≤ ε|h|∞Cg, (3.20)

by assumption on ψ1 and ψ2. Finally, the last difference we must estimate is,

E := |h ◦GU i2ψ2 ◦GU i2 |∞|JGU i1 − JGU i2 |∞ ≤ |h|∞|ψ2|∞|ϕ′U i1 − ϕ
′
U i2
|∞ ≤ |h|∞ε/ cosW2, (3.21)
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again by definition of dWs(·, ·), where ϕ′
U ik

=
dϕ

Ui
k

dr .

Putting together the estimates for A, B and E, as well as (3.17), into (3.16), we have

ε−β
∣∣∣∣∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

∣∣∣∣ ≤ C|h|Cγ(Pk)|W1|
( εγ−β

cosW1
+

ε1−β

cosW2

)
+ C|h|∞εα−βk−1/2.

(3.22)

Notice that the estimate (3.22) holds without the assumption ε < η2k
− 1

2β which is what makes
(3.24) below possible.

A similar estimate holds for fη, although now we use the assumption ε < η2k
− 1

2β . Indeed the
estimate is simpler since fη is Hölder continuous on all of M with Hγ(fη) ≤ C|h|Cγ(Pk)k

3γ/ηγ . Thus
we may partition W1 and W2 into one matched piece and at most two unmatched pieces near their
endpoints. The unmatched pieces have length at most Cε so that an estimate similar to (3.17)
holds for fη. Then since fη is Hölder continuous everywhere, estimates A, B and E hold on the
single matched piece and so,

ε−β
∣∣∣∣∫
W1

fηψ1 dmW −
∫
W2

fηψ2 dmW

∣∣∣∣ ≤ C|W1|
(Hγ(h)εγ−βk3γ

ηγ cosW1
+
|h|∞ε1−β

cosW2

)
+C|h|∞εα−β. (3.23)

Since |W1|/ cosW1 is bounded by C/k by (3.13) and cosW1/ cosW2 ≤ C0 by Lemma 3.6 because
W1 and W2 lie in the same homogeneity strip, it is clear that the only term that can cause a problem
is the first one in (3.23). We estimate,

|W1|
cosW1

εγ−βk3γ

ηγ
≤ C 1

k

η2(β+δ)k3γ

ηγk(γ−β)/(2β)
≤ Cηδk(6γβ−β−γ)/(2β).

Notice that the exponent of k is negative since 6βγ < γ < γ + β for any γ > 0 and β < 1/6.
We have shown that ‖(h− fη)|Hk‖u ≤ C|h|Cγ(Pk)η

δ′ , where δ′ = min{δ, 2(α − β)}. Since h ≡ 0
outside Pk, we have ‖(h − fη)|Hk±1

‖u = ‖fη|Hk±1
‖u and this expression is similarly bounded by

(3.23) since the bound on Hγ(fη) used there holds on all of M .
This together with the estimate on the strong stable norm implies that ‖h−fη‖B ≤ C|h|Cγ(Pk)η

δ′ .
Notice that if we are not concerned with approximation, then (3.13), (3.14) and (3.22) together
imply that

‖h|Hk‖B ≤ C sup
P∈P
|h|Cγ(P )k

−1/2. (3.24)

In making this approximation argument, we have assumed that h ≡ 0 outside Pk. More general
h can be expressed as h =

∑
k

∑
Pk
h1Pk where h1Pk ≡ 0 outside of Pk and so can be approximated

by a C1 function fPkη as above. Due to (3.24), given ε > 0, we first choose K ′ε so that ‖h|Hk‖B < ε
for all k > K ′ε. By property (2) of P in the statement of the lemma, there exists a constant Nε

such that each strip Hk for k0 ≤ k ≤ K ′ε intersects at most Nε elements P ∈ P. We thus form the
finite sum

∑
k0≤k≤K′ε

∑
Pk
fPkη and approximate h by 0 on ∪k>K′εHk. Note that there are at most

Nε elements Pk for each k ≤ K ′ε. Thus,∥∥∥(h− ∑
k0≤k≤K′ε

∑
Pk

fPkη
)∥∥∥
B
≤ ε+ sup

k0≤k≤K′ε

∥∥∥∑
Pk

(
h1Pk − f

Pk
η

)∥∥∥
B
≤ ε+ CNεη

δ′ sup
P∈P
|h|Cγ(P ),

and finally we choose η sufficiently small so that ηδ
′
Nε < ε.

Our next lemma shows that L is well-defined as an operator from B to B. Its proof uses the
fact that ‖Lh‖B < ∞ from Section 4. This is the only point in this section where we use results
from Section 4.
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Lemma 3.8. If h ∈ C1(M), then Lh ∈ B.

Proof. Let h ∈ C1(M). As in the proof of Lemma 3.7, we must approximate Lh by C1 functions
in the norm ‖ · ‖B. Note that Lh has a countable number of smooth discontinuity curves given by
T (S0,H) (we include the images of boundaries of the homogeneity strips). These curves define a
countable partition P of M into open simply connected sets which does not satisfy the assumption
(2) of Lemma 3.7 since each Hk can intersect countably many P ∈ P. In addition, the C1 norm of
Lh blows up near the curves TS0.

For j ≥ k0 let P j denote an element of P such that T−1P j ⊆ Hj . Again, the labeling is not
unique, but for each j, the number of elements in P which are assigned the label j is finite (even
in the infinite horizon case). Let P J = ∪j>JP j . We claim that ‖Lh|PJ‖B is arbitrarily small for J
sufficiently large. On the finite set of P j with j ≤ J , the C1 norm of Lh is finite and the modified
partition P∗ = {P j}j≤J ∪ {P J} satisfies the requirements of Lemma 3.7. So we may approximate
Lh as in Lemma 3.7 on M \P J and approximate Lh by 0 on P J . Thus the lemma follows once we
establish our claim.

Indeed, the claim is trivial using the estimates of Section 4. For example, we must estimate
‖Lh|PJ‖s = ‖1PJLh‖s. Taking W ∈ Ws and ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1, we write∫

W
1PJLhψ dmW =

∫
T−1(W∩PJ )

h|DT |−1JT−1WT ψ ◦ T dmW ,

and the homogeneous stable components of T−1(W ∩ P J) correspond precisely to the tail of the
series considered in (4.2) and following and so can be made arbitrarily small by choosing J large
(notice that we do not need contraction here so that we may use the simpler estimate similar to
Section 4.1 applied to the strong stable norm rather than the estimate of Section 4.2).

Similarly, in estimating ‖Lh‖u, one can see that the contribution from P J corresponds to the
tail of the series from the estimates of Section 4.3, and so this too can be made arbitrarily small
by choosing J large.

The next lemma allows us to establish a connection between our Banach spaces and the space
of distributions introduced in Section 2.2. Recall that Hp

n(ψ) = supW∈T−nWs H
p
W (ψ).

Lemma 3.9. For each h ∈ C1(M), n ≥ 0, and ψ ∈ Cp(T−nWs) we have

|h(ψ)| =
∣∣∣∣∫
M
hψ dm

∣∣∣∣ ≤ C|h|w(|ψ|∞ +Hp
n(ψ)).

Proof. On each M` = ∂Γ` × [−π/2, π/2], we partition the set H0 ∩M` into finitely many boxes Bj
whose boundary curves are straight line segments in Ws and Wu as well as the horizontal lines
±π/2∓ 1/k20. We construct the boxes so that each Bj has diameter ≤ δ0 and is foliated by curves
W ∈ Ws. On each Bj , we choose a smooth foliation {Wξ}ξ∈Ej ⊂ Ws of parallel straight line
segments, each of whose elements completely crosses Bj in the approximate stable direction (this
is always possible if we originally choose the stable and unstable boundaries of Bj to be parallel).

We decompose Lebesgue measure on Bj into dm = λ(dξ)dmWξ
, where mWξ

is the conditional
measure of m on Wξ and λ is the transverse measure on Ej . We normalize the measures so
that mξ(Wξ) = |Wξ| and note that the conditional measure mWξ

is the arclength measure on Wξ

since the foliation is comprised of straight line segments. Note also that λ(Ej) ≤ Cδ0 due to the
transversality of curves in Ws and Wu.

Next we foliate each homogeneity strip Hk ∩M`, k ≥ k0, using a smooth family of parallel line
segments {Wξ}ξ∈Ek ⊂ Ws whose elements all have endpoints lying in the two boundary curves
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of Hk. We again decompose m on Hk into dm = λ(dξ)dmWξ
, ξ ∈ Ek, and mξ(Wξ) = |Wξ| is

normalized as above. By construction, λ(Ek) = O(1).
Now given h ∈ C1(M) and ψ ∈ Cp(T−nWs), note that since M = T−nM (mod 0),

∫
M hψ dm =∫

M L
nhψ ◦ T−n dm. We estimate the second integral one ` at a time,∫

M`

Lnhψ ◦ T−n dm =
∑
j

∫
Bj

Lnhψ ◦ T−n dm+
∑
|k|≥k0

∫
Hk∩M`

Lnhψ ◦ T−n dm

=
∑
j

∫
Ej

∫
Wξ

Lnhψ ◦ T−n dmWξ
dλ(ξ) +

∑
|k|≥k0

∫
Ek

∫
Wξ

Lnhψ ◦ T−n dmWξ
dλ(ξ).

We change variables and estimate the integrals on one Wξ at a time. Letting Wn
ξ,i denote the

components of Gn(Wξ) defined in Section 3.2, we define JWn
ξ,i
Tn to be the stable Jacobian of Tn

along the curve Wn
ξ,i, and write∫

Wξ

Lnhψ ◦ T−n dmW =
∑
i

∫
Wn
ξ,i

hψ|DTn|−1JWn
ξ,i
Tn dmW

≤
∑
i

|h|w cos(Wn
ξ,i)|ψ|Cp(Wn

ξ,i)
||DTn|−1JWn

ξ,i
Tn|Cp(Wn

ξ,i)
.

From the distortion bounds (A.1) we have ||DTn|−1JWn
ξ,i
Tn|Cp(Wn

ξ,i)
≤ C2

d ||DTn|−1JWn
ξ,i
Tn|C0(Wn

ξ,i)
.

Since by [CM, (2.29)], the Jacobian |DTn|−1(x) = cos(Tnx)/ cosx for x ∈ Wn
ξ,i, we have by

Lemma 3.6,
cos(Wn

ξ,i) ||DTn|−1|C0(Wn
ξ,i)
≤ C2

0 cosWξ.

Also by (3.1), |JWn
ξ,i
Tn|C0(Wn

ξ,i)
≤ eCdδ

1/3
0
|TnWn

ξ,i|
|Wn

ξ,i|
. Putting these estimates together yields,

∫
Wξ

Lnhψ ◦ T−n dmW ≤ C|h|w(|ψ|∞ +Hp
n(ψ)) cosWξ

∑
i

|TnWn
ξ,i|

|Wn
ξ,i|

,

where the sum is ≤ Cs by Lemma 3.2. Thus∣∣∣∣∫
M`

Lnhψ ◦ T−n dm
∣∣∣∣ ≤ C|h|w(|ψ|∞ +Hp

n(ψ))
(∑

j

∫
Ej

cosWξ dλ(ξ) +
∑
|k|≥k0

∫
Ek

cosWξ dλ(ξ)
)

≤ C|h|w(|ψ|∞ +Hp
n(ψ))

(∑
j

λ(Ej) +
∑
|k|≥k0

k−2λ(Ek)
)
,

where in the last line we have used the fact that cosW ≤ Ck−2 for W ⊂ Hk. Both sums are finite
since there are only finitely many Ej and λ(Ek) is of order 1 for each k. Since there are only finitely
many M`, we may sum over ` and the lemma is proved.

We conclude this section by proving the following important fact.

Lemma 3.10. The unit ball of B is compactly embedded in Bw.

Proof. First notice that on a fixed W ∈ Ws, | · |W,0,p is equivalent to | · |Cp(W ) and | · |W,α,q is
equivalent to | · |Cq(W ) so that p > q implies that the unit ball of | · |W,0,p is compactly embedded
in | · |W,α,q. Since ‖ · ‖s is the dual of | · |W,α,q and | · |w is the dual of | · |W,0,p on each stable curve
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W ∈ Ws, the unit ball of ‖ · ‖s is compactly embedded in | · |w on W . It remains to compare the
weak norm on different stable curves.

We argue one component M` = Γ`× [−π/2, π/2] at a time. Let 0 < ε ≤ ε0 be fixed. Let kε ∈ N
be the first integer k such that 1/k2 < ε. We split M` into two parts, A = {−π/2 + 1/k2ε ≤ ϕ ≤
π/2 − 1/k2ε} and B = M` \ A. Since curves in Ws are graphs of functions ϕW whose slopes are
greater than Kmin > 0 and have uniformly bounded second derivative, there exists C = C(Q) > 0
such that any admissible curve W ⊂ B must have length no longer than Cε.

Let h ∈ C1(M) with ‖h‖B ≤ 1. First we estimate the weak norm of h on curves W in B. If
W ⊂ Hk for |k| ≥ kε, and |ψ|W,0,p ≤ 1, then∫

W
hψ dmW ≤ ‖h‖s|W |α cosW |ψ|Cq(W ) ≤ C‖h‖sεα.

Now for W ⊂ A, notice that there exists a constant Kε > 1 such that 1/ cosW ≤ Kε. On a
fixed interval I, the set of functions {ϕW }W∈Ws defined on I and lying in one homogeneity strip is
compact in the C1-norm. Since A contains only finitely many homogeneity strips, we may choose
finitely many stable curves Wi ∈ Ws such that {Wi}Nεi=1 forms an ε-covering ofWs|A in the distance
dWs .

Let |Γ`| denote the arclength of Γ` and define S1` to be the circle of length |Γ`|. Since any ball of
finite radius in the Cp-norm is compactly embedded in Cq, we may choose finitely many functions
ψj ∈ Cp(S1` ) such that {ψj}Lεj=1 forms an ε-covering in the Cq(S1` )-norm of the ball of radius CgKε

in Cp(S1` ), where Cg is from (3.18).
Now let W = GW (IW ) ∈ Ws|A, and ψ ∈ Cp(W ) with |ψ|W,0,p ≤ 1. We view IW as a subset of

S1` . Let ψ = ψ ◦GW be the push down of ψ to IW . Note that |ψ|Cp(IW ) ≤ Cg/ cosW ≤ CgKε.

Choose Wi = GWi(IWi) such that dWs(W,Wi) ≤ ε and choose ψj ∈ Cp(S1L) such that |ψ −
ψj |Cq(IW ) ≤ ε. Define ψj = ψj ◦ G−1Wi

to be the lift of ψj to Wi. Note that |ψj |Wi,0,p ≤
cosWi(2Cg/ cosW ) ≤ 2CgC0 by Lemma 3.6 since Wi and W lie in the same homogeneity strip.
Then normalizing ψ and ψj by 2C0Cg, we estimate∣∣∣∣∫

W
hψ dmW −

∫
Wi

hψj dmW

∣∣∣∣ ≤ εβ‖h‖u2C0Cg.

We have proved that for each 0 < ε ≤ ε0, there exist finitely many bounded linear functionals `i,j ,
`i,j(h) =

∫
Wi
hψjdmW , such that

|h|w ≤ max
i≤Nε,j≤Lε

`i,j(h) + εβC‖h‖u + εαC‖h‖s ≤ max
i≤Nε,j≤Lε

`i,j(h) + εβCb−1‖h‖B,

which implies the required compactness.

4 Lasota-Yorke Estimates

It suffices to prove Proposition 2.3 for h ∈ C1(M) since then by density of C1(M) in B, L is
continuous on B. To see this, assume Proposition 2.3 has been proved for h ∈ C1(M) and identify
h ∈ B with a Cauchy sequence {gn}n≥0 ⊂ C1(M). Since L is bounded when applied to functions
in C1(M), by the assumption that Proposition 2.3 holds for C1 functions, it follows that {Lgn} is a
Cauchy sequence in B. By Lemma 3.9, we identify its limit with Lh and so ‖Lh‖B = limn ‖Lgn‖B ≤
limnC‖gn‖B = C‖h‖B. Thus L is bounded and therefore continuous on B. A similar argument
holds for Bw.

We use the distortion bounds of Appendix A throughout this section.
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4.1 Estimating the Weak Norm

Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cp(W ) such that |ψ|W,0,p ≤ 1. For n ≥ 0, we write,∫
W
Lnhψ dmW =

∑
Wn
i ∈Gn(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
ψ ◦ TndmW , (4.1)

where JWn
i
Tn denotes the Jacobian of Tn along Wn

i .
Using the definition of the weak norm on each Wn

i , we estimate (4.1) by∫
W
Lnhψ dmW ≤

∑
Wn
i ∈Gn

|h|w||DTn|−1JWn
i
Tn|Cp(Wn

i )|ψ ◦ Tn|Cp(Wn
i ) cosWn

i . (4.2)

The disortion bounds given by equation (A.1) imply that

||DTn|−1JWn
i
Tn|Cp(Wn

i ) ≤ C2
d ||DTn|−1JWn

i
Tn|C0(Wn

i ).

For x, y ∈Wn
i , we record for future use,

|ψ(Tnx)− ψ(Tny)|
dW (Tnx, Tny)p

· dW (Tnx, Tny)p

dW (x, y)p
≤ C|ψ|Cp(W )|JWn

i
Tn|pC0(Wn

i )
,≤ CΛ−pn|ψ|Cp(W ) (4.3)

by (2.8) so that |ψ ◦ Tn|Cp(Wn
i ) ≤ C|ψ|Cp(W ) ≤ C/ cosW . Using these estimates in equation (4.2),

we obtain ∫
W
Lnhψ dmW ≤ C|h|w

∑
Wn
i ∈Gn

cosWn
i

cosW
||DTn|−1JWn

i
Tn|C0(Wn

i ).

Since |DTn(x)| = cosϕ(x)/ cosϕ(Tnx) for x ∈Wn
i , by Lemma 3.6, we have

| |DTn|−1|C0(Wn
i )

cosWn
i

cosW
≤ C2

0 . (4.4)

Notice also that by the bounded distortion estimate (3.1), |JWn
i
Tn|C0(Wn

i ) ≤ eCdδ
1/3
0 |TnWn

i ||Wn
i |−1.

Gathering these estimates together, we obtain∫
W
Lnhψ dmW ≤ C|h|w

∑
Wn
i ∈Gn

|TnWn
i |

|Wn
i |
≤ CCs|h|w,

where in the last inequality we have used Lemma 3.2. Taking the supremum over all W ∈ Ws and
ψ ∈ Cp(W ) with |ψ|W,0,p ≤ 1 yields (2.4).

4.2 Estimating the Strong Stable Norm

Let W ∈ Ws and let Wn
i denote the elements of Gn(W ) as defined in Section 3.2. For ψ ∈ Cq(W ),

|ψ|W,α,q ≤ 1, define ψi = |Wn
i |−1

∫
Wn
i
ψ ◦ Tn dmW . Using equation (4.1), we write∫

W
Lnhψ dmW =

∑
i

∫
Wn
i

h
JWn

i
Tn

|DTn|
(ψ ◦ Tn − ψi) dmW + ψi

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW . (4.5)

To estimate the first term of (4.5), we first estimate |ψ ◦ Tn−ψi|Cq(Wn
i ). If Hq

W (ψ) denotes the
Hölder constant of ψ along W , then equation (4.3) implies

|ψ(Tnx)− ψ(Tny)|
dW (x, y)q

≤ CΛ−nqHq
W (ψ), (4.6)
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for any x, y ∈ Wn
i . Since ψi is constant on Wn

i , we have Hq
Wn
i

(ψ ◦ Tn − ψi) ≤ CΛ−qnHq
W (ψ). To

estimate the C0 norm, note that ψi = ψ ◦ Tn(yi) for some yi ∈Wn
i . Thus for each x ∈Wn

i ,

|ψ ◦ Tn(x)− ψi| = |ψ ◦ Tn(x)− ψ ◦ Tn(yi)| ≤ Hq
Wn
i

(ψ ◦ Tn)|Wn
i |q ≤ CH

q
W (ψ)Λ−nq.

This estimate together with (4.6) and the fact that |ϕ|W,α,q ≤ 1, implies

|ψ ◦ Tn − ψi|Cq(Wn
i ) ≤ CΛ−nq|ψ|Cq(W ) ≤ CΛ−qn|W |−α(cosW )−1. (4.7)

We apply (4.7), the distortion estimate (A.1) and the definition of the strong stable norm to
the first term on the right hand side of (4.5),∑

i

∫
Wn
i

h
JWn

i
Tn

|DTn|
(ψ ◦ Tn − ψi) dmW ≤ C

∑
i

‖h‖s
|Wn

i |α

|W |α
cosWn

i

cosW

∣∣∣∣JWn
i
Tn

|DTn|

∣∣∣∣
C0(Wn

i )

Λ−qn

≤ CeCdδ
1/3
0 C2

0Λ−qn‖h‖s
∑
i

|Wn
i |α

|W |α
|TnWn

i |
|Wn

i |
≤ C ′Λ−qn‖h‖s,

(4.8)

where in the second line we have used (4.4) and Lemma 3.3 with ς = α.
For the second term on the right hand side of (4.5), we use the fact that |ψi| ≤ |W |−α(cosW )−1

since |ψ|W,α,q ≤ 1. Recall the notation introduced before the statement of Lemma 3.1. Grouping
the pieces Wn

i ∈ Gn(W ) according to most recent long ancestors, we have

∑
i

1

|W |α cosW

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW =

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

1

|W |α cosW

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW

+
∑

i∈In(W )

1

|W |α cosW

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW ,

where we have split up the terms involving k = 0 and k ≥ 1. We estimate the terms with k ≥ 1 by
the weak norm and the terms with k = 0 by the strong stable norm,

∑
i

1

|W |α cosW

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW ≤ C

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

cosWn
i

|W |α cosW
|h|w

∣∣∣∣JWn
i
Tn

|DTn|

∣∣∣∣
C0(Wn

i )

+ C
∑

i∈In(W )

|Wn
i |α cosWn

i

|W |α cosW
‖h‖s||DTn|−1JWn

i
Tn|C0(Wn

i ).

As usual, by (4.4), the ratio of cosines times |DTn|−1 is uniformly bounded.
In the first sum above corresponding to k ≥ 1, we write

|JWn
i
Tn|C0(Wn

i ) ≤ |JWn
i
Tn−k|C0(Wn

i )|JWk
j
T k|C0(Wk

j )
.

Thus using Lemma 3.1 from time k to time n,

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

|W |−α|JWn
i
Tn|C0(Wn

i ) ≤ eCd
n∑
k=1

∑
j∈Lk

|JWk
j
T k|C0(Wk

j )
|W |−α

∑
i∈In(Wk

j )

|Tn−kWn
i |

|Wn
i |

≤ C/δα1
n∑
k=1

∑
j∈Lk

|T kW k
j |

|W k
j |
|W k

j |α

|W |α
θn−k1 ,
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since |W k
j | ≥ δ1. The last two sums are bounded independently of n and W by Lemma 3.3 with

ς = α.
Finally, for the sum corresponding to k = 0, we write

∑
i∈In(W )

|Wn
i |α

|W |α
|JWn

i
Tn|C0(Wn

i ) ≤ C

 ∑
i∈In(W )

|TnWn
i |

|Wn
i |

1−α

≤ Cθn(1−α)1 ,

using Lemma 3.1 and Jensen’s inequality as in the proof of Lemma 3.3.
Gathering these estimates together, we have∑

i

1

|W |α cosW

∣∣∣∣∣
∫
Wn
i

h|DTn|−1JWn
i
Tn dmW

∣∣∣∣∣ ≤ Cδ−α1 |h|w + C‖h‖sθn(1−α)1 . (4.9)

Putting together (4.8) and (4.9) proves (2.5),

‖Lnh‖s ≤ C
(

Λ−qn + θ
n(1−α)
1

)
‖h‖s + Cδ−α1 |h|w.

4.3 Estimating the Strong Unstable Norm

Fix ε ≤ ε0 and consider two curves W 1,W 2 ∈ Ws with dWs(W 1,W 2) ≤ ε. For n ≥ 1, we describe
how to partition T−nW ` into “matched” pieces U `j and “unmatched” pieces V `

i , ` = 1, 2.

Let ω be a connected component of W 1 \ SH−n. To each point x ∈ T−nω, we associate a vertical
line segment γx of length at most CΛ−nε such that its image Tnγx, if not cut by a singularity or
the boundary of a homogeneity strip, will have length Cε. By [CM, §4.4], all the tangent vectors
to T iγx lie in the unstable cone Cu(T ix) for each i ≥ 1 so that they remain uniformly transverse
to the stable cone and enjoy the minimum expansion given by (2.8).

Doing this for each connected component of W 1 \ SH−n, we subdivide W 1 \ SH−n into a countable
collection of subintervals of points for which Tnγx intersects W 2 \ SH−n and subintervals for which
this is not the case. This in turn induces a corresponding partition on W 2 \ SH−n.

We denote by V `
i the pieces in T−nW ` which are not matched up by this process and note that

the images TnV `
i occur either at the endpoints of W ` or because the vertical segment γx has been

cut by a singularity. In both cases, the length of the curves TnV `
i can be at most Cε due to the

uniform transversality of SH−n with the stable cone and of Cs(x) with Cu(x).
In the remaining pieces the foliation {Tnγx}x∈T−nW 1 provides a one to one correspondence

between points in W 1 and W 2. We further subdivide these pieces in such a way that the lengths of
their images under T−i are less than δ0 for each 0 ≤ i ≤ n and the pieces are pairwise matched by
the foliation {γx}. We call these matched pieces U `j . Possibly changing the constant δ0/2 to δ0/C
for some uniform constant C > 1 (depending only on the distortion constant and the angle between

stable and unstable cones) in the definition of Gn(W `), we may arrange it so that U `j ⊂ W `,n
i for

some W `,n
i ∈ Gn(W `) and V `

k ⊂ W `,n
i′ for some W `,n

i′ ∈ Gn(W `) for all j, k ≥ 1 and ` = 1, 2. There

is at most one U `j and two V `
j per W `,n

i ∈ Gn(W `).

In this way we write W ` = (∪jTnU `j )∪(∪iTnV `
i ). Note that the images TnV `

i of the unmatched

pieces must be short while the images of the matched pieces U `j may be long or short.

Recalling the notation of Section 3.1, we have arranged a pairing of the pieces U `j with the
following property:

If U1
j = GU1

j
(Ij) = {(r, ϕU1

j
(r)) : r ∈ Ij},

then U2
j = GU2

j
(Ij) = {(r, ϕU2

j
(r)) : r ∈ Ij},

(4.10)
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so that the point x = (r, ϕU1
j
(r)) is associated with the point x̄ = (r, ϕU2

j
(r)) by the vertical segment

γx ⊂ {(r, s)}s∈[−π/2,π/2], for each r ∈ Ij .

Remark 4.1. The fact that we have matched stable curves using vertical line segments is not
essential to our argument: we could have matched them using any smooth foliation of curves in
the unstable cones. However, a remarkable feature of the present approach is that we do not match
stable curves along real unstable manifolds, as is commonly done in coupling arguments, and thus
we avoid the technical difficulties associated with the corresponding holonomy map.

Given ψ` on W ` with |ψ`|W `,0,p ≤ 1 and dq(ψ1, ψ2) ≤ ε, with the above construction we must
estimate∣∣∣∣∫

W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣ ≤ ∑
`,i

∣∣∣∣∣
∫
V `i

h|DTn|−1JV `i T
nψ` ◦ Tn dmW

∣∣∣∣∣
+
∑
j

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tnψ1 ◦ Tn dmW −

∫
U2
j

h|DTn|−1JU2
j
Tnψ2 ◦ Tn dmW

∣∣∣∣∣ .
(4.11)

We do the estimate over the unmatched pieces V `
i first using the strong stable norm. Note that

by (4.3), |ψ` ◦Tn|Cq(T−nV `i ) ≤ C|ψ`|Cp(W `) ≤ C(cosW `)−1. We estimate as in Section 4.2, using the

fact that |TnV `
i | ≤ Cε,

∑
`,i

∣∣∣∣∣
∫
V `i

h|DTn|−1JV `i T
nψ` ◦ Tn dmW

∣∣∣∣∣ ≤ C∑
`,i

‖h‖s|V `
i |α||DTn|−1JV `i T

n|Cq
cosV `

i

cosW `

≤ C‖h‖s
∑
`,i

|V `
i |α
|TnV `

i |
|V `
i |
≤ Cεα‖h‖s

∑
`,i

|TnV `
i |1−α

|V `
i |1−α

≤ Cεα‖h‖sCn1 ,
(4.12)

where we have applied Lemma 3.4 with ς = 1−α > 5/6 since there are at most two V `
i corresponding

to each element W `,n
i ∈ G`n(W ) as defined in Section 3.2 and by bounded distortion,

|TnV `i |
|V `i |

≤

eCd
|TnW `,n

i |
|W `,n

i |
.

Next, we must estimate

∑
j

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn dmW −

∫
U2
j

h|DTn|−1JU2
j
Tn ψ2 ◦ Tn dmW

∣∣∣∣∣ .
Recalling the notation defined by (4.10), we fix j and estimate the difference. Define

φj = (|DTn|−1JU1
j
Tn ψ1 ◦ Tn) ◦GU1

j
◦G−1

U2
j
.

The function φj is well-defined on U2
j and we can estimate,∣∣∣∣∣

∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

h|DTn|−1JU2
j
Tn ψ2 ◦ Tn

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣+

∣∣∣∣∣
∫
U2
j

h(φj − |DTn|−1JU2
j
Tn ψ2 ◦ Tn)

∣∣∣∣∣ .
(4.13)
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We estimate the first term in equation (4.13) using the strong unstable norm. The distortion
bounds given by (A.1) and the estimates of (4.3) and (4.4) imply that

| |DTn|−1JU1
j
Tn · ψ1 ◦ Tn|U1

j ,0,p
≤ cos(U1

j )| |DTn|−1JU1
j
Tn · ψ1 ◦ Tn|Cp(U1

j )

≤ C
cos(U1

j )

cosW 1
| |DTn|−1JU1

j
Tn|C0(U1

j )
≤ C|JU1

j
Tn|C0(U1

j )
.

(4.14)

Similarly, since |GU1
j
◦G−1

U2
j
|C1 ≤ Cg, where Cg is from (3.18),

cos(U2
j )|φj |Cp(U2

j )
≤ C

cos(U2
j )

cosW 2
| |DTn|−1JU1

j
Tn|C0(U1

j )
≤ C|JU1

j
Tn|C0(U1

j )
,

where
cos(U2

j )

cosW 2 ≤ C2
0

cos(U1
j )

cosW 1 by Lemma 3.6 since the corresponding curves lie in the same homogeneity
strips. By the definition of φj and dq(·, ·),

dq(|DTn|−1JU1
j
Tnψ1 ◦ Tn, φj) =

∣∣∣[|DTn|−1JU1
j
Tnψ1 ◦ Tn

]
◦GU1

j
− φj ◦GU2

j

∣∣∣
Cq(Ij)

= 0.

To complete the estimate on the first term of (4.13), we need the following lemma.

Lemma 4.2. There exists C > 0, independent of W1 and W2, such that for each j,

dWs(U1
j , U

2
j ) ≤ CΛ−nnε =: ε1.

We postpone the proof of the lemma until Section 4.3.1 and use it to complete the estimate of
the first term of (4.13).

In view of (4.14), we renormalize the test functions by Rj = C|JU1
j
Tn|C0(U1

j )
. Then we apply

the definition of the strong unstable norm with ε1 in place of ε. Thus,

∑
j

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣
≤ Cεβ1‖h‖u

∑
j

|JU1
j
Tn|C0(U1

j )
≤ C‖h‖uΛ−nβnβεβ

∑
j

|TnU1
j |

|U1
j |

,

(4.15)

where the sum is ≤ Cs by Lemma 3.2 since there is at most one matched piece U1
j corresponding

to each component of T−nW 1, W 1,n
i ∈ Gn(W 1).

It remains to estimate the second term in (4.13) using the strong stable norm. We need the
following lemma.

Lemma 4.3. There exists C > 0 such that for each j ≥ 1,

|(|DTn|−1JU1
j
Tn) ◦GU1

j
− (|DTn|−1JU2

j
Tn) ◦GU2

j
|Cq(Ij) ≤ C||DT

n|−1JU2
j
Tn|C0(U2

j )
ε1/3−q.

Proof. Throughout the proof, for ease of notation we write Jn` for |DTn|−1JU`jT
n.

For any r ∈ Ij , x = GU1
j
(r) and x̄ = GU2

j
(r) lie on a common vertical segment γx. Thus Tn(x)

and Tn(x̄) also lie on the element Tnγx ∈ Wu which intersects W 1 and W 2 and has length at most
Cε. By (A.3) and (A.4),

|Jn1 (x)− Jn2 (x̄)| ≤ C|Jn2 |C0(U2
j )

(d(Tnx, Tnx̄)1/3 + θ(Tnx, Tnx̄)),
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where θ(Tnx, Tnx̄) is the angle between the tangent line to W 1 at Tnx and the tangent line to
W 2 at Tnx̄. Let y ∈ W 2 be the unique point in W 2 which lies on the same vertical segment
as Tnx. Since by assumption dWs(W 1,W 2) ≤ ε, we have θ(Tnx, y) ≤ ε. Due to the uniform
transversality of curves in Wu and Ws and the fact that W 1 and W 2 are graphs of C2 functions
with uniformly bounded C2 norms, we have θ(y, Tnx̄) ≤ Cε and so θ(Tnx, Tnx̄) ≤ Cε. Similarly,
dW (Tnx, Tnx̄) ≤ Cε so that

|Jn1 (x)− Jn2 (x̄)| ≤ Cε1/3|Jn2 |C0(U2
j )
. (4.16)

Using this estimate and the fact that |GU`j |C1(Ij) ≤ Cg, we write for r, s ∈ Ij ,

|(Jn1 ◦GU1
j
(r)− Jn2 ◦GU2

j
(r))− (Jn1 ◦GU1

j
(s)− Jn2 ◦GU2

j
(s))|

|r − s|q
≤

2Cε1/3|Jn2 |C0(U2
j )

|r − s|q
. (4.17)

Also, using (A.1) since GU`j
(r) and GU`j

(s) lie on the same stable curve,

|(Jn1 ◦GU1
j
(r)− Jn1 ◦GU1

j
(s))− (Jn2 ◦GU2

j
(r)− Jn2 ◦GU2

j
(s))|

|r − s|q
≤ 2C|Jn2 |C0(U2

j )
|r − s|1/3−q. (4.18)

Putting (4.17) and (4.18) together implies that the Hölder constant of Jn1 ◦ GU1
j
− Jn2 ◦ GU2

j
is

bounded by

Hq(Jn1 ◦GU1
j
− Jn2 ◦GU2

j
) ≤ C|Jn2 |C0(U2

j )
sup
r,s∈Ij

min{ε1/3|r − s|−q, |r − s|1/3−q}.

This expression is maximized when ε1/3|r − s|−q = |r − s|1/3−q, i.e., when ε = |r − s|. Thus the
Hölder constant satisfies, Hq(Jn1 ◦GU1

j
−Jn2 ◦GU2

j
) ≤ C|Jn2 |C0(U2

j )
ε1/3−q, which, together with (4.16),

concludes the proof of the lemma.

Using the strong stable norm, we estimate the second term in (4.13) by∣∣∣∣∣
∫
U2
j

h(φj − |DTn|−1JU2
j
Tnψ2 ◦ Tn)

∣∣∣∣∣ ≤ ‖h‖s|U2
j |α cos(U2

j )
∣∣∣φj − |DTn|−1JU2

j
Tnψ2 ◦ Tn

∣∣∣
Cq(U2

j )
.

(4.19)
In order to estimate the Cq-norm of the function in (4.19), we split it up into two differences. Since
|GU2

j
|C1 , |G−1U2

j
|C1 ≤ Cg, we obtain

|φj − (|DTn|−1JU2
j
Tn) · ψ2 ◦ Tn|Cq(U2

j )

≤ C
∣∣∣[(|DTn|−1JU1

j
Tn) · ψ1 ◦ Tn

]
◦GU1

j
−
[
(|DTn|−1JU2

j
Tn) · ψ2 ◦ Tn

]
◦GU2

j

∣∣∣
Cq(Ij)

≤ C
∣∣∣(|DTn|−1JU1

j
Tn) ◦GU1

j

[
ψ1 ◦ Tn ◦GU1

j
− ψ2 ◦ Tn ◦GU2

j

]∣∣∣
Cq(Ij)

+ C
∣∣∣[(|DTn|−1JU1

j
Tn) ◦GU1

j
− (|DTn|−1JU2

j
Tn) ◦GU2

j

]
ψ2 ◦ Tn ◦GU2

j

∣∣∣
Cq(Ij)

≤ C| |DTn|−1JU1
j
Tn|C0(U1

j )

∣∣∣ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j

∣∣∣
Cq(Ij)

+ C(cosW 2)−1
∣∣∣(|DTn|−1JU1

j
Tn) ◦GU1

j
− (|DTn|−1JU2

j
Tn) ◦GU2

j

∣∣∣
Cq(Ij)

.

(4.20)

Note that the second term can be bounded using Lemma 4.3. To bound the first term, we prove
the following lemma.
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Lemma 4.4. |ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cq(Ij) ≤ C(cosW 2)−1 εp−q.

We postpone the proof of the lemma to Section 4.3.1 and show how this completes the estimate
on the strong unstable norm. Notice that ||DTn|−1JU1

j
Tn|C0(U1

j )
≤ C||DTn|−1JU2

j
Tn|C0(U2

j )
by the

distortion bounds (A.3) and (A.4). Then using Lemmas 4.3 and 4.4 together with (4.20) yields by
(4.19) ∑

j

∣∣∣ ∫
U2
j

h(φj − |DTn|−1JU2
j
Tnψ2 ◦ Tn) dmW

∣∣∣
≤ C‖h‖s

∑
j

|U2
j |α

cosU2
j

cosW 2
||DTn|−1JU2

j
Tn|C0(U2

j )
εp−q ≤ C‖h‖sεp−q

∑
j

|TnU2
j |

|U2
j |

,

(4.21)

where again the sum is finite as in (4.15). This completes the estimate on the second term in (4.13).
Now we use this bound, together with (4.12) and (4.15) to estimate (4.11)∣∣∣∣∫

W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣ ≤ CCn1 ‖h‖sεα + C‖h‖uΛ−nβnβεβ + C‖h‖sεp−q.

Since p− q ≥ β and α ≥ β, we divide through by εβ and take the appropriate suprema to complete
the proof of (2.6).

4.3.1 Proof of Lemmas 4.2 and 4.4

Proof of Lemma 4.2. Note that by construction U1
j and U2

j lie in the same homogeneity strip. Also,
they are both defined on the same interval Ij so the length of the symmetric difference of their
r-intervals is 0. Recalling the definition of dWs(U1

j , U
2
j ), we see that it remains only to estimate

|ϕU1
j
− ϕU2

j
|C1(Ij) for their defining functions ϕU`j

.

The fact that |ϕU1
j
−ϕU2

j
|C0(Ij) ≤ CΛ−nε follows from the fact that U1

j and U2
j are connected by

a foliation of vertical segments {γx} and T iγx lies in the enlarged unstable cone Ĉu(x) = {(dr, dϕ) ∈
TxM : Kmin ≤ dϕ

dr ≤ ∞}, for 0 ≤ i ≤ n. Since any vector in Ĉu(x) undergoes the uniform expansion3

given by (2.8) under iteration by T (see [CM, §4.4]) and |Tnγx| ≤ Cε by assumption on W 1 and
W 2, we have |γx| ≤ CΛ−nε.

Finally, we must estimate |ϕ′
U1
j
−ϕ′

U2
j
|, where ϕ′

U`j
denotes the derivative of ϕU`j

with respect to

r. For x ∈ U `j , let φ(x) denote the angle that GU`j
makes with the positive r-axis at x. For x ∈ U1

j

and x̄ = γx ∩ U2
j , let θ(x, x̄) denote the angle between the tangent vectors to U1

j and U2
j at the

points x and x̄, respectively. We have

|ϕ′U1
j
(x)−ϕ′U2

j
(x̄)| = | tanφ(x)− tanφ(x̄)| ≤

[
sup
z∈U`j

sec2 φ(z)
]
|φ(x)−φ(x̄)| =

[
sup
z∈U`j

sec2 φ(z)
]
θ(x, x̄).

Since the slopes of vectors in Cs(x) are uniformly bounded away from 0 and −∞, we have sec2 φ(z)
uniformly bounded above for any z ∈ U `j . It follows from (A.5) that

θ(x, x̄) ≤ CΛ−n(nd(Tnx, Tnx̄) + θ(Tnx, Tnx̄)).

Since Tnx ∈W 1, Tnx̄ ∈W 2, it follows from the assumption dWs(W 1,W 2) ≤ ε that d(Tnx, Tnx̄) +
θ(Tnx, Tnx̄) ≤ Cε, which proves the lemma.

3Indeed, all the uniformly hyperbolic properties of Section 2.5.1 hold in the larger cone Ĉu(x). The reason we
define the narrower cones Cs(x) and Cu(x) is to maintain uniform transversality of curves in Ws and Wu.
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Proof of Lemma 4.4. Let ϕW ` be the function whose graph is W `, defined for r ∈ IW ` , and set
f `j := G−1

W ` ◦ Tn ◦ GU`j , ` = 1, 2. Notice that since |G−1
W ` |C1 , |GU`j |C1 ≤ Cg, and due to the uniform

contraction along stable curves, we have |f `j |C1(Ij) ≤ C, where C is independent of W ` and j. We

may assume that f `j (Ij) ⊂ IW 1 ∩ IW 2 since if not, by the transversality of Cu(x) and Cs(x), we

must be in a neighborhood of one of the endpoints of W ` of length at most Cε; such short pieces
may be estimated as in (4.12) using the strong stable norm. Thus

|ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cq(Ij) ≤ |ψ1 ◦GW 1 ◦ f1j − ψ2 ◦GW 2 ◦ f1j |Cq(Ij)

+ |ψ2 ◦GW 2 ◦ f1j − ψ2 ◦GW 2 ◦ f2j |Cq(Ij).
(4.22)

Using the above observation about f1j , we estimate the first term of (4.22) by

|ψ1 ◦GW 1 ◦ f1j − ψ2 ◦GW 2 ◦ f1j |Cq(Ij) ≤ C|ψ1 ◦GW 1 − ψ2 ◦GW 2 |Cq(f1j (Ij)) ≤ Cε. (4.23)

To estimate the second term of (4.22), notice that since dWs(W 1,W 2) ≤ ε, we have |f1j −
f2j |C0(Ij) ≤ Cε. Thus for r ∈ Ij ,

|ψ2 ◦GW 2 ◦ f1j (r)− ψ2 ◦GW 2 ◦ f2j (r)| ≤ C|ψ2|Cp |f1j (r)− f2j (r)|p ≤ C|ψ2|Cpεp. (4.24)

Using (4.24), we write for r, s ∈ Ij ,

|(ψ2 ◦GW 2 ◦ f1j (r)− ψ2 ◦GW 2 ◦ f2j (r))− (ψ2 ◦GW 2 ◦ f1j (s)− ψ2 ◦GW 2 ◦ f2j (s))| ≤ 2C|ψ2|Cpεp.

On the other hand, notice that for k = 1, 2,

|ψ2 ◦GW 2 ◦ fkj (r)− ψ2 ◦GW 2 ◦ fkj (s)| ≤ C|ψ2|Cp |fkj (r)− fkj (s)|p ≤ C|ψ2|Cp |r − s|p,

using the fact that |fkj |C1 ≤ C. These estimates together imply that the Hölder constant of

ψ2 ◦ GW 2 ◦ f1j − ψ2 ◦ GW 2 ◦ f2j is bounded by C|ψ1|Cp supr,s∈Ij min{εp|r − s|−q, |r − s|p−q}. The
minimum is attained when the two bounds are equal, i.e., when ε = |r − s|. This, together with
(4.24), implies

|ψ2 ◦GW 2 ◦ f1j − ψ2 ◦GW 2 ◦ f2j |Cq(Ij) ≤ C|ψ2|Cpεp−q.
This estimate combined with (4.23) proves the lemma since |ψ2|Cp(W 2) ≤ (cosW 2)−1.

5 Proof of Theorem 2.5

The Lasota-Yorke estimate (2.7) and the compactness of the unit ball of B in Bw imply via the
standard Hennion argument that the spectral radius of L on B is bounded by 1 and the essential
spectral radius is bounded by σ < 1 (see for example [B1]). Indeed, the spectral radius is 1, since
if it were smaller than 1, by Lemma 3.9, we would obtain the following contradiction,

1 = m(1) = lim
n→∞

|Lnm(1)| ≤ C lim
n→∞

‖Lnm‖B = 0. (5.1)

Our proof of Theorem 2.5 follows very closely that in [DL, Section 5]. Although our proofs in
Sections 3 and 4 were different from those in [DL] due to the countable number of singularities
and the additional cutting to maintain bounded distortion, the norms are in fact very similar
(excluding the additional weights of cosW ) so that once the spectral gap is proved, the subsequent
characterization of the peripheral spectrum of L follows from the same rather general arguments.4

We include some of the arguments here for completeness and to point out which properties follow
from our functional analytic setup and which follow from previously known properties of billiards.

4See also [BG1, Appendix B] for a general strategy to prove the characterization of the peripheral spectrum once
the Lasota-Yorke inequalities and several of the lemmas of Section 3.3 have been established.
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5.1 Peripheral Spectrum

Let Vθ be the eigenspace of L associated with the eigenvalue e2πiθ and let Πθ be the eigenprojector
onto Vθ. We begin by proving the following characterization of the peripheral spectrum of L.

Lemma 5.1. Let V = ⊕θVθ. Then,

(i) L restricted to V has semi-simple spectrum (no Jordan blocks);

(ii) V consists of signed measures;

(iii) all measures in V are absolutely continuous with respect to µ := Π0m. Moreover, 1 is in the
spectrum of L.

(iv) Let SH±n,ε denote the ε-neighborhood of SH±n. Then for each ν ∈ V, n ∈ N, we have ν(SH±n,ε) ≤
Cnε

α, for some constants Cn > 0.

Proof. (i) Suppose there exists z ∈ C, |z| = 1, and h1, h2 ∈ B, h1 6= 0, such that Lh1 = zh1 and
Lh2 = zh2 + h1. Then Lnh2 = znh2 + nzn−1h1 so that

‖Lnh2‖B ≥ n‖h1‖B − ‖h2‖B, for each n ≥ 0,

which contradicts the fact that ‖Ln‖B remains bounded for all n due to (2.7).

(ii) Recall that for ψ ∈ Cp(Ws), we have ψ ◦ Tn ∈ Cp(T−nWs). Thus by Lemma 3.9, for h ∈ B,

|Lnh(ψ)| = |h(ψ ◦ Tn)| ≤ C‖h‖B(|ψ|∞ +Hp
n(ψ ◦ Tn)) ≤ C‖h‖B(|ψ|∞ + Λ−pnHp

0 (ψ)), (5.2)

where as usual, Hp
n(·) is the Hölder constant with exponent p measured along curves in T−nWs ⊆

Ws and we have used (4.3).
Suppose ν ∈ V with Lν = zν, for some z ∈ C, |z| = 1. Then by (5.2), for each n ≥ 0,

|ν(ψ)| = |z|−n|Lnν(ψ)| ≤ C‖ν‖B(|ψ|∞ + Λ−pnHp
0 (ψ)).

Taking the limit as n→∞ yields |ν(ψ)| ≤ C‖ν‖B|ψ|∞ for all ψ ∈ Cp(Ws), so that ν is a measure.

(iii) By density, Vθ = ΠθC1(M). So for each ν ∈ Vθ, there exists h ∈ C1(M) such that Πθh = ν.
Now for each ψ ∈ Cp(M),

|ν(ψ)| = |Πθh(ψ)| ≤ |h|∞Π01(|ψ|) = |h|∞µ(|ψ|).

Thus ν is absolutely continuous with respect to µ. Moreover, letting hν = dν
dµ , we have hν ∈

L∞(M,µ). This implies that µ 6= 0 since then the spectral radius of L would be strictly less than
1, leading to the contradiction given by (5.1). Since Lµ = µ, µ 6= 0, then 1 belongs to the spectrum
of L.

(iv) We give a different proof here from that in [DL] due to the fact that our singularity set is
countable rather than finite.

Let ν ∈ V and fix n ≥ 0. Let SH−n,ε denote the ε-neighborhood of SH−n and let hk be a sequence
of C1 functions converging to ν in B; then since L is bounded, Lnhk converges to Lnν in B. It is
straightforward to check (applying Lemma 3.7) that (Lnhk)ε(ψ) := Lnhk(1SH−n,εψ) belongs to Bw
due to the uniform transversality of curves in SH−n to the stable cone. Then, for ψ ∈ Cp(M) and
W ∈ Ws,∫

W
(Lnhk)εψ dmW =

∫
W
Lnhk 1SH−n,ε

ψ dmW =
∑
i

∫
Wn
i ∩T−nSH−n,ε

hk|DTn|−1JWn
i
Tnψ ◦ TndmW .
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Notice that since Wn
i are created by intersections of W with SH−n, it follows that there are at most

two connected components in each Wn
i ∩ T−nSH−n,ε and |TnWn

i ∩ SH−n,ε| ≤ Cε. Consequently, we
estimate the above expression following (4.12),∣∣∣∣∫

W
(Lnhk)εψ dmW

∣∣∣∣ ≤ C‖hk‖s∑
i

|Wn
i ∩ T−nSH−n,ε|α

|TnWn
i |

|Wn
i |

≤ Cεα‖hk‖s
∑
i

|TnWn
i |1−α

|Wn
i |1−α

≤ Cεα‖hk‖sCn1 ,

by Lemma 3.4 with ς = 1−α. Similarly, (Lnhk)ε is a Cauchy sequence in Bw and so must converge
to (Lnν)ε(ψ) := Lnν(1SH−n,ε

ψ). Then by Lemma 3.9, we have |Lnν(SH−n,ε)| ≤ Cn‖ν‖sεα. But since

Lnν = znν for some z ∈ C, |z| = 1, we have the same bound for ν(SH−n,ε). The bound for ν(SHn,ε)
follows since T−nSH−n = SHn for each n ≥ 0.

Since the spectrum outside the circle of radius σ < 1 consists of only finitely many eigenvalues
of finite multiplicity and there are no Jordan blocks, the limit

lim
n→∞

1

n

n−1∑
k=0

e−2πiθkLk = Πθ (5.3)

is well-defined in the uniform topology of L(B,B).
Further information about the measures corresponding to the peripheral spectrum of L can be

proved using similar techniques as in Lemma 5.1: In other words, they are proved using properties
of the Banach spaces we have defined without relying on specific properties of the billiard map.
We summarize these results in our next lemma, which we state without proof since the proof can
be found in [DL, Lemmas 5.5 and 5.7].

Recall that an ergodic invariant probability measure ν is called a physical measure if there
exists a positive Lebesgue measure invariant set Bν , with ν(Bν) = 1, such that, for each continuous
function f ,

lim
n→∞

1

n

n−1∑
i=0

f(T ix) = ν(f) ∀x ∈ Bν .

Lemma 5.2. (i) There exist a finite number of qi ∈ N such that the spectrum of L on the unit

circle is ∪k{e
2πi p

qk : 0 ≤ p < qk, p ∈ N}. In addition, the set of ergodic probability measures
absolutely continuous with respect to µ form a basis of V0.

(ii) T admits only finitely many physical probability measures and they belong to V0.

(iii) The ergodic decomposition with respect to Lebesgue and with respect to µ coincide. In addition,
the ergodic decomposition with respect to Lebesgue corresponds to the supports of the physical
measures.

The only properties of T that are used in the proof of the preceding lemma in [DL] are the
invertibility of T and the items in Lemma 5.1.

At this point it is useful to invoke some well-known facts about the Lorentz gas that simplify the
spectral picture greatly. Recall that T has a smooth invariant measure dµ = ρ dm where ρ = c cosϕ
and c is a normalizing constant. Since ρ ∈ C1(M), we have µ ∈ B. So by Lemma 5.1(iii), µ is
absolutely continuous with respect to µ and since the support of µ is all of M , it must be that
µ = µ.
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Now the ergodicity and mixing properties of T imply that the peripheral spectrum of L consists
of just the simple eigenvalue at 1 with µ as its unique normalized eigenvector. Thus the spectral
projectors Πθ are all zero except for Π0 which can be recharacterized by Π0h = limn→∞ Lnh. It
thus follows that any probability measure ν ∈ B satisfies Π0ν = µ and this convergence occurs at an
exponential rate given by the spectral radius of L−Π0 on B. This proves item (1) of Theorem 2.5.

5.2 Statistical Properties

We prove items (2) and (3) of Theorem 2.5. Given φ ∈ Cγ(M), γ > 2β and ψ ∈ Cp(Ws), we define
the correlation functions by

Cφ,ψ(n) := µ(φψ ◦ Tn)− µ(φ)µ(ψ).

Define µφ = φµ. Since φ cosϕ ∈ Cγ(M), by Lemma 3.7 we have µφ ∈ B. Thus by Theorem 2.5(1),
Π0µφ = µ(φ)µ and so

|µ(φψ ◦ Tn)− µ(φ)µ(ψ)| = |(Lnµφ − µ(φ)µ)(ψ)| ≤ C‖Lnµφ − µ(φ)µ‖B(|ψ|∞ +Hp
0 (ψ))

and again the exponential rate of convergence is given by the spectral radius of L−Π0 on B as in
item (1). Item (2) of Theorem 2.5 follows by noting that ‖µφ‖B ≤ C|φ|Cγ(M) by (3.24) in the proof
of Lemma 3.7.

If we assume φ, ψ ∈ Cp′(M), where p′ > max{p, 2β}, we can define the Fourier transform of the
correlation function,5

Ĉφ,ψ(z) :=
∑
n∈Z

znCφ,ψ(n).

The importance of this function stems from the connection between its poles and the Ruelle reso-
nances, which are in principal measurable in physical systems, [Ru1, Ru2, PP1, PP2, L2].

Given the spectral picture we have established, it follows by standard arguments (see for example
[DL, Section 5.3]) that the function is convergent in a neighborhood of |z| = 1 and admits a
meromorphic extension in the annulus {z ∈ C : σ < |z| < σ−1} where σ is from (2.7). It follows
that the poles of the correlation function are in a one-to-one correspondence (including multiplicity)
with the spectrum of L outside the disk of radius σ. This is item (3) of Theorem 2.5.

6 Proofs of Limit Theorems

In this section, we show how Theorem 2.6 follows from the established spectral picture. Choose
γ = max{p, 2β + ε} for some ε > 0. Let g ∈ Cγ(M) and define Sng =

∑n−1
j=0 g ◦ T j . We define the

generalized transfer operator Lg on B by, Lgh(ψ) = h(egψ ◦ T ) for all h ∈ B. It is then immediate
that

Lngh(ψ) = h(eSngψ ◦ Tn), for all n ≥ 0.

The main element in the proofs of the limit theorems is that Lzg, z ∈ C, is an analytic perturbation
of L = L0 for small |z|.

Lemma 6.1. For g ∈ Cp(M), the map z 7→ Lzg is analytic for all z ∈ C.

5Here we need that µφ := φµ ∈ B and µψ := ψµ belongs to the corresponding space of distributions for T−1,
which, given the invertibility of T , is simply B with the roles of Ws and Wu reversed.
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Proof. The lemma will follow once we show that our strong norm ‖ · ‖B is continuous with respect
to multiplication by ezg. We will prove that for h ∈ B and f ∈ Cγ(M), ‖hf‖B ≤ C|f |Cp(M)‖h‖B
for some uniform constant C. Then defining the operator Pnh = L(gnh), h ∈ B, the claim implies
that

‖Pn(h)‖B = ‖L(gnh)‖B ≤ C‖L‖ ‖h‖B |gn|Cp(M),

which allows us to conclude that the operator
∑∞

n=0
zn

n!Pn is well-defined on B and equals Lzg since

∞∑
n=0

zn

n!
Pnh(ψ) = h

( ∞∑
n=0

zn

n!
gn · ψ ◦ T

)
= h(ezgψ) = Lzgh(ψ), for ψ ∈ Cp(Ws),

once we know the sum converges. We proceed to prove our claim.
By density, it suffices to prove the claim for h ∈ C1(M) and f ∈ Cγ(M). By Lemma 3.7, hf ∈ B.

To estimate the strong stable norm of hf , let W ∈ Ws and ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1. Then∫
W
hfψ dmW ≤ ‖h‖s|W |α cosW |f |Cq(W )|ψ|Cq(W ) ≤ ‖h‖s|f |Cq(W ).

Next we estimate the strong unstable norm of hf . Let ε ≤ ε0 and choose W1,W2 ∈ Ws with
dWs(W1,W2) < ε. For ` = 1, 2, let ψ` ∈ W` with |ψ`|Cp(W`) ≤ 1 and dq(ψ1, ψ2) ≤ ε. We must
estimate ∫

W1

hf ψ1 dmW −
∫
W2

hf ψ2 dmW .

Recalling the notation of Section 3.1, we write W` = GW`
(IW`

) = {(r, ϕW`
(r)) : r ∈ IW`

} and let
I = IW1 ∩ IW2 . Then,

dq(fψ1, fψ2) := |(fψ1) ◦GW1 − (fψ2) ◦GW2 |Cq(I)
≤ |f ◦GW1 |Cq(I)dq(ψ1, ψ2) + |ψ2 ◦GW2 |Cq(I)|f ◦GW1 − f ◦GW2 |Cq(I).

The first term above is bounded by C|f |Cq(W1)ε by assumption on ψ1 and ψ2, where C depends
only on the maximum slope in Cs(x). Similarly, |ψ2 ◦GW2 |Cq(I) ≤ C|ψ2|Cq(W2).

For r ∈ I, we have d(GW1(r), GW2(r)) ≤ ε by definition of dWs(·, ·). Thus |f ◦ GW1(r) − f ◦
GW2(r)| ≤ |f |Cp(M)ε

p, and so by the proof of Lemma 4.3, we have |f ◦ GW1 − f ◦ GW2 |Cq(I) ≤
|f |Cp(M)ε

p−q. Putting these estimates together yields,

dq(fψ1, fψ2) ≤ C|f |Cp(M)ε
p−q.

Since p− q ≥ β and p > q, we may thus estimate,

ε−β
∣∣∣∣∫
W1

hf ψ1 dmW −
∫
W2

hf ψ2 dmW

∣∣∣∣ ≤ C‖h‖u|f |Cp(M),

which completes the estimate on the strong unstable norm and the proof of the lemma.

With the analyticity of z 7→ Lzg established, it follows from analytic perturbation theory [Ka]
that both the discrete spectrum and the corresponding spectral projectors of Lzg vary smoothly
with z. Thus, since L0 has a spectral gap, then so does Lzg for z ∈ C sufficiently close to 0.

Proof of Theorem 2.6(a). We follow [RY], making necessary modifications to generalize to non-
invariant measures ν ∈ B. (See also [D].)
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Let ν ∈ B be a probability measure. Assume |z| is sufficiently small so that Lzg has a spectral
gap. Let λz be the eigenvalue of maximum modulus and denote by Πλz the associated eigenpro-
jector. Since Πλ0ν(1) = 1 and the spectral projectors vary continuously, we have Πλzν(1) 6= 0 for
z sufficiently small, say |z| < γ for some γ > 0. We define the moment generating function q(z) by

q(z) := lim
n→∞

1

n
log ν(ezSng) = lim

n→∞

1

n
logLnzgν(1) = log λz,

where the second and third equalities follows from the spectral gap of Lzg and the fact that
Πλzν(1) 6= 0. Notice that q(z) is independent of ν and is analytic in |z| < γ.

Let ς2 denote the limit of the variance of n−1/2Sng as n→∞ where {g ◦ T k}j∈N is distributed
according to the invariant measure µ. (Such a ς exists and is finite whenever the auto-correlations
Cg,g(k) are summable). One can show as in [RY, Theorem 4.3] that in fact q′(0) = µ(g), q′′(0) = ς2

and q is strictly convex for real z whenever ς2 > 0.
Now let I(u) be the Legendre transform of q(z). Then it follows from the Gartner-Ellis theorem

[DZ] that for any interval [a, b] ⊂ [q′(−γ), q′(γ)] and for any probability measure ν ∈ B, we have

lim
n→∞

1

n
log ν

(
x ∈M :

1

n
Sng(x) ∈ [a, b]

)
= − inf

u∈[a,b]
I(u),

which is the desired large deviation estimate with uniform rate function I.

Proof of Theorem 2.6(b). We assume µ(g) = 0 and distribute (g ◦T j)j∈N according to µ. As above,
let ς2 denote the variance of n−1/2Sng as n→∞. We consider purely imaginary z = it with |t| < γ.
Since Lzg depends analytically on z, it follows from standard perturbation theory that the leading

eigenvalue of Litg is given by 1− ς2t2

2 +O(t3) for |t| < γ. It then follows using the weak dependence
of g ◦ T j that,

lim
n→∞

µ(e
−i t√

n
Sng) = lim

n→∞

(
1− ς2t2

2n

)n
= e−ς

2t2/2,

which is the Central Limit Theorem.
The extension to non-invariant probability measures follows easily as well. Let ν ∈ B be a

probability measure. We still require µ(g) = 0, but now distribute (g ◦ T )j∈N according to ν. As
j goes to ∞, the asymptotic mean is ν(g ◦ T j) = Ljν(g) → µ(g) = 0 and the asymptotic variance
is still ς2 as above. At this point, there are a variety of references at our disposal, but we choose
to cite [G] as a recent work since it proves both the Central Limit Theorem and the almost-sure
invariance principle using spectral methods.

Since the transfer operator Litg codes the characteristic function of the process (g ◦ T j) in the
sense of [G, Section 2.1], i.e. ν(e−itSng) = Lnitgν(1), and we have proved that Litg satisfies the
assumptions of strong continuity in [G, Section 2.2], we may apply [G, Theorem 2.1] to conclude
that 1√

n
Sng converges in distribution to a normal random variable with mean 0 and variance ς2,

as required.

Proof of Theorem 2.6(c). The almost-sure invariance principle follows from the analyticity of the
map z → Lzg and the resulting persistence of the spectral gap in a neighborhood of the origin,
similar to the proofs of the previous two limit theorems. Indeed, the invariance principle holds
under much weaker conditions than those present here. As in the proof of (b), noting that we
have proved our operators Litg satisfy the assumptions of strong continuity in [G, Section 2.2], we
may apply [G, Theorem 2.1] to conclude the almost-sure invariance principle in the context of the
functional analytic framework we have constructed here.
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A Distortion Bounds

The following are distortion bounds used in deriving the Lasota-Yorke estimates which hold for
the Lorentz gas with both finite and infinite horizon. There exists a constant Cd > 0 with the
following properties. Let W ′ ∈ Ws and for any n ∈ N, let x, y ∈W for some connected component
W ⊂ T−nW ′ such that T iW is a homogeneous stable curve for each 0 ≤ i ≤ n. Then,∣∣∣∣ |DTn(x)|

|DTn(y)|
− 1

∣∣∣∣ ≤ CddW (x, y)1/3 and

∣∣∣∣JWTn(x)

JWTn(y)
− 1

∣∣∣∣ ≤ CddW (x, y)1/3. (A.1)

In particular, these bounds imply that ||DTn|−1|Cp(W ) ≤ Cd||DTn|−1|C0(W ) and |JWTn|Cp(W ) ≤
Cd|JWTn|C0(W ) for any 0 ≤ p ≤ 1/3.

The second inequality in (A.1) is equivalent to (3.1) and is a standard distortion bound for
billiards (see [BSC1, BSC2] or [Ch2] for both the finite and infinite horizon cases). In the proof of
the distortion bound, the main idea is to prove that along a stable curve W ∈ Ws, for any x, y ∈W

d(x, y)

cosϕ(x)
≤ Cd(x, y)1/3, (A.2)

which follows from the definition of the homogeneity strips Hk and the uniform transversality of
the stable cone to horizontal lines. Indeed the first inequality of (A.1) directly follows from the
estimate (A.2). More precisely, for any x, y belonging to a stable curve W ,∣∣∣∣ln |DT (x)|

|DT (y)|

∣∣∣∣ =

∣∣∣∣ln cosϕ(x)

cosϕ(y)
+ ln

cosϕ(Ty)

cosϕ(Tx)

∣∣∣∣
≤ C1

d(x, y)

cosϕ(x)
+ C2

d(Tx, Ty)

cosϕ(Tx)
≤ Cd(x, y)1/3,

where C1, C2, C are positive constants and we used the hyperbolicity (2.8) in the last inequality.
By an entirely analogous argument (due to the time reversibility of the billiard map), if W ∈ Wu

is an unstable curve such that T iW is a homogeneous unstable curve for 0 ≤ i ≤ n, then for any
x, y ∈W , ∣∣∣∣ |DTn(x)|

|DTn(y)|
− 1

∣∣∣∣ ≤ Cdd(Tnx, Tny)1/3. (A.3)

In Section 4.3, we will need to compare the stable Jacobian of T along different stable curves.
For this, the following distortion bound is essential. Let W 1,W 2 ∈ Ws and suppose there exist
U ` ⊂ T−nW `, ` = 1, 2, such that T iU ` is a homogeneous stable curve for 0 ≤ i ≤ n, and U1 and
U2 can be put into a 1-1 correspondence by a smooth foliation {γx}x∈U1 of curves γx ∈ Wu such
that {Tnγx} ⊂ Wu creates a 1-1 correspondence between TnU1 and TnU2. Let JU`T

n denote the
stable Jacobian of Tn along the curve U `. Then for x ∈ U1, x̄ ∈ γx ∩ U2, we have∣∣∣∣JU1Tn(x)

JU2Tn(x̄)
− 1

∣∣∣∣ ≤ C1d(Tnx, Tnx̄)1/3 + C2θ(T
nx, Tnx̄), (A.4)

where θ(Tnx, Tnx̄) is the angle formed by the tangent lines of TnU1 and TnU2 at Tnx and Tnx̄,
respectively.

This distortion bound is proved as part of [Ch2, Theorem 8.1] (see also [CM, §5.8]). We explain
the argument briefly, modifying the notation as necessary since the proof in [Ch2] is written for
unstable curves mapped by T while we need these bounds for stable curves mapped backwards by
T−1. In addition, the time reversal of the setup in [Ch2] would have x and x̄ lying on the same
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unstable manifold, while in our setting, x and x̄ just lie on a common unstable curve. The reason
these estimates hold is because we are able to choose our foliation {γx} after fixing n.

We relabel TnU1 = V 1, TnU2 = V 2 and {ωz}z∈V 1 = {Tnγx}x∈U1 , with the identification
z = Tnx. For any z ∈ V 1, z̄ ∈ ωz ∩ V 2, and i = 0, · · · , n, we denote V `

i = T−iV `, ` = 1, 2 and
zi = T−iz, z̄i = T−iz̄. By [Ch2, eq (8.6)], we have∣∣∣∣∣ln JV 1

i
T−1(zi)

JV 2
i
T−1(z̄i)

∣∣∣∣∣ ≤ C(ρ
1
3
i+1 + θi + θi+1 + ρi), i = 0, 1, . . . , n− 1,

where C is a uniform constant, ρi = |T−iωz| and θi is the angle made by the tangent lines of V 1
i

and V 2
i at zi, z̄i, respectively.

It is important for the uniformity of this estimate that ωz = Tn(γT−nz) so that T−iωz remains
in Wu for each i = 0, 1, . . . , n. In addition, it is a consequence of [Ch2, eq (8.9)] that

θi ≤ C(ρ0iΛ
−i + θ0Λ

−i). (A.5)

Combining this with the fact that ρi ≤ Cρ0Λ−i due to uniform hyperbolicity, we get

| ln JV 1
i
T−1(zi)− ln JV 2

i
T−1(z̄i)| ≤ const.

(
ρ

1
3
0 Λ−i/3 + ρ0iΛ

−i + θ0Λ
−i
)
.

Summing over i = 0, . . . , n− 1, we obtain (A.4) with x = T−nz, x̄ = T−nz̄.
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No. 187-188, (1990), 268 pp.

[RY] L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergod. Th.
and Dynam. Systems 28 (2008), 587-612.

[Ru1] D. Ruelle, Locating resonances for Axiom A dynamical systems, J. Stat. Phys. 44:3-4 (1986), 281-292.

[Ru2] D. Ruelle, Resonances for Axiom A flows, J. Differential Geom. 25:1 (1987), 99-116.

[R1] H.H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5:6 (1992), 1237-1263.

[R2] H.H. Rugh, Fredholm determinants for real-analytic hyperbolic diffeomorphisms of surfaces. XIth Interna-
tional Congress of Mathematical Physics (Paris, 1994), 297–303, Internat. Press, Cambridge, MA, 1995.

[R3] H.H. Rugh, Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems.
Ergod. Th. and Dynam. Sys. 16:4 (1996), 805-819.

[S] B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math.
116 (2000), 223-248.

[T1] M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane,
Comm. Math. Phys. 208:3 (2000), 605-622.

[T2] M. Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps, Invent. Math. 143:2
(2001), 349-373.

[Y] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Math. 147:3
(1998), 585-650.

38


	Introduction
	Setting, Definitions and Results
	Billiard maps associated with a Lorentz gas
	Transfer Operator
	Definition of the Norms
	Statement of Results
	Limits theorems for billiards

	Known Facts about the Lorentz gas
	Hyperbolicity
	Singularities


	Preliminary Estimates and Properties of the Banach Spaces
	Family of Admissible Stable Curves
	Growth Lemmas
	Properties of the Banach spaces

	Lasota-Yorke Estimates
	Estimating the Weak Norm
	Estimating the Strong Stable Norm
	Estimating the Strong Unstable Norm
	Proof of Lemmas 4.2 and 4.4


	Proof of Theorem 2.5
	Peripheral Spectrum
	Statistical Properties

	Proofs of Limit Theorems
	Distortion Bounds

