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Abstract

In this paper we study closely Yoneda’s correspondence between short exact se-
quences and the Ext1 group. We prove a main theorem which gives conditions on
the splitting of a short exact sequence after taking the tensor product with R/I, for
any ideal I of R. As an application we prove a generalization of Miyata’s Theorem
on the splitting of short exact sequences and we improve a proposition of Yoshino
about efficient systems of parameters. We introduce the notion of sparse module and
we show that Ext1R(M, N) is a sparse module provided that there are finitely many
isomorphism classes of maximal Cohen-Macaulay modules having multiplicity the
sum of the multiplicities of M and N . We prove that sparse modules are Artinian.
We also give some information on the structure of certain Ext1 modules.
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1 Introduction

Let R a Noetherian ring and M and N finitely generated R-modules. If I ⊂ R
is an ideal and α : 0 → N → X → M → 0 is a short exact sequence, we
denote by α⊗R/I the sequence 0 → N/IN → X/IX →M/IM → 0.
In the first part of this paper we prove the following:

Theorem 1.1. Let R be a Noetherian ring. Suppose α ∈ I Ext1
R(M,N) is a

short exact sequence of finitely generated modules. Then α ⊗ R/I is a split
exact sequence.

An immediate corollary is an extension of Miyata’s theorem [1], which gives a
necessary and sufficient condition on the splitting of short exact sequences:
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Theorem 1.2. Let R be a Noetherian ring. Let α : 0 → N → Xα → M → 0
and β : 0 → N → Xβ → M → 0 be two short exact sequences. If Xα is
isomorphic to Xβ and β ∈ I Ext1

R(M,N) for some ideal I ⊂ R, then α⊗R/I
is split exact.

In the second part of the paper, we give some applications of Theorem 1.1
to efficient systems of parameters and, more in particular, to the structure of
Ext1

R(M,N) for rings of finite Cohen-Macaulay type.

Recall that a finitely generated R-module is said to be maximal Cohen-
Macaulay if the depth(M) = dim(R). We also say that R has finite Cohen-
Macaulay type if there are a finite number of isomorphism classes of inde-
composable maximal Cohen-Macaulay modules. Auslander [2] proved that if
R is a complete local ring of finite Cohen-Macaulay type then the length of
Ext1

R(M,N) is finite, where M and N are maximal Cohen-Macaulay modules.
Recently, Huneke and Leuschke [3] generalized this theorem to the non com-
plete case. A different proof is given as an application of Theorem 1.1.
In section 4 we introduce the notion of sparse modules. More specifically, sup-
pose that depthR ≥ 1; then we say that a module is sparse if there are a finite
number of submodules of the form xM where x is a non-zero-divisor on R. we
prove several properties for sparse modules. In particular, we show that sparse
modules are Artinian and that Ext1

R(M,N) is sparse if M and N are maximal
Cohen-Macaulay modules over a ring of finite Cohen-Macaulay type.
In the last section, we are able to give more information about the struc-
ture of Ext1

R(M,N). In particular, we give an explicit bound for the power of
the maximal ideal which kills the Ext module, depending on the number of
isomorphism classes of maximal Cohen-Macaulay modules of multiplicity the
sum of the multiplicities of M and N . Our bound improves the one given in
[3]. Finally, we use the developed techniques to show that Ext1

R(M,N) is a
cyclic module, under certain conditions.

2 Main theorem and Miyata’s theorem

We recall the theorem due to Miyata [1] on the splitting of short exact se-
quences.

Theorem 2.1 (Miyata). Let (R,m) be a local Noetherian ring and let

α : 0 //N
i //Xα

π //M // 0

be a short exact sequence of finitely generated R-modules. Then, α is a split
exact sequence if and only if Xα and M ⊕N are isomorphic.

We can further relax the assumptions on α and prove the following:
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Lemma 2.2. Let (R,m) be a local Noetherian ring and let α be the following
exact complex of finitely generated R-modules:

N
i //Xα

π //M // 0

If Xα is isomorphic to M ⊕N then α is split exact.

Proof. By Theorem 2.1, it suffices to prove that i is an injective map. By
way of contradiction, suppose that there exists an element c 6= 0 such that
c ∈ ker i. Choose n such that c 6∈ mnN . Then we have the exact sequence

0 //C //N/mnN ī //Xα/m
nXα

π //M/mnM // 0,

where C is the kernel of i⊗R/mn. By the assumption on n, C is not the zero
module because the equivalence class of c belongs to it. If λ denotes length,
we have the following contradiction:

λ(Xα/m
nXα) < λ(Xα/m

nXα) + λ(C)

= λ(N/mnN) + λ(M/mnM), from the exact sequence ξ,

= λ(Xα/m
nXα), from Xα

∼= M ⊕N.

Lemma 2.3. Let R be a Noetherian ring and let α be the following short exact
sequence:

α : 0 //N
f

//Xα
g

//M // 0.

Denote by C the image of the connecting homomorphism δ, obtained by ap-
plying the functor HomR( , N) to α:

. . . // HomR(Xα, N)
f∗

// HomR(N,N) δ // Ext1
R(M,N)

g∗
// . . .

Then, α is a split exact sequence if and only if C = 0.

Proof. Suppose C = 0. Since α = δ(idN), α = 0 in Ext1
R(M,N) and hence α

is a split exact sequence.

On the other hand, if α is a split exact sequence then there exists an R-
homomorphism f ′ : Xα → N , such that f ′f = idN . To prove the lemma, it is
enough to show that the map f ∗ : Hom(Xα, N) → Hom(N,N) is a surjective
map. For, if l ∈ Hom(N,N) we have l = f ∗(lf ′).

Recall the following result (see [4], [5], [6],[7],[8]):
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Proposition 2.4. Let (R,m) be a local Noetherian ring and let M and N
two finitely generated R-modules. Denote by λ(−) the length of a R-module.
Then, the following are equivalent

(1) M ∼= N ;
(2) λ(HomR(M,L)) = λ(HomR(N,L)), for all modules L of finite length;
(3) λ(M ⊗R L) = λ(N ⊗R L), for all modules L of finite length.

We are now ready to give the proof of Theorem 1.1.

Proof. (Theorem 1.1). We first show that it is enough to prove the local state-
ment. Assume that the local version of the theorem holds. If

α : 0 //N
f

//Xα
g

//M // 0

is a short exact sequence in I Ext1
R(M,N) then α/1 ∈ Ext1

Rm

(Mm, Nm) is
given by the sequence

α/1 : 0 //Nm

f/1
//Xαm

g/1
//Mm

// 0,

for any maximal ideal m. Let C be the kernel of f ⊗ idR/I , then Supp(C) ⊂
V (I). Let m ∈ V (I). α ∈ I Ext1

R(M,N) implies α/1 ∈ IRm Ext1
Rm

(Mm, Nm)
and therefore α/1 ⊗Rm/IRm is a split exact sequence. In particular,

Cm = ker(f ⊗ idR/I)m = ker(f/1 ⊗ idRm/IRm
) = 0,

proving that α⊗R/I is a short exact sequence. We need to show that α⊗R/I
is actually a split exact sequence. By Lemma 2.3, it is enough to prove that
Image(δ) = 0, where δ is the connecting homomorphism:

HomR(N/IN,N/IN) δ // Ext1
R(M/IM,N/IN).

Call C = Image(δ), again Supp(C) ⊂ V (I). Let m any maximal ideal in V (I),
then Cm = Image(δ/1), where δ/1 is the connecting homomorphism:

HomRm
(Nm/INm, Nm/INm)

δ/1
// Ext1

Rm

(Mm/IMm, Nm/INm).

But, by Lemma 2.3, Image(δ/1) = 0 since α/1 ⊗ Rm/IRm is a split exact
sequence. Therefore, Cm = 0 for any m ∈ V (I), which implies that C = 0.

We may assume (R,m) is a local Noetherian ring. By Lemma 2.2 it is enough
to show that Xα/IXα 'M/IM ⊕N/IN .
Let

F2
d2 //F1

d1 //F0
d0 //M // 0

be part of a minimal resolution of M over R, and let L ⊂ F0 be the kernel of
d0. Following Yoneda’s correspondence (see [9], page 652-654), there exists a
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Ψ ∈ ker d∗2 ⊂ HomR(F1, N) which induces a map ψ from L = ker d0 to N in
such a way that α is the pushout of the following diagram:

ξ : 0 //L

��

i //F0

��

d0 //M // 0

α : 0 //N
f

//Xα
g

//M // 0,

where i is the inclusion. Since α is an element of I Ext1
R(M,N), we can choose

Ψ ∈ I HomR(F1, N), which implies that ψ(L) ⊂ IN . Denote by να the follow-
ing exact sequence:

να : 0 //L
(i,−ψ)

//F0 ⊕N π //Xα
// 0.

Let Ω be a finitely generated module of finite length such that IΩ = 0. Tensor
both the sequences ξ and να with Ω and set

Image1 = (i⊗R id)(L⊗R Ω),

Image2 = (i⊗R id,−ψ ⊗R id)(L⊗R Ω).

Since Image(ψ) ⊂ IN , it follows that Image1 = Image2 ⊂ F0 ⊗R Ω.

If λR(M) denotes the length of an R-module M , we have:

λR(Xα ⊗R Ω) =λR(F0 ⊗R Ω) + λR(N ⊗R Ω) − λR(Image2)

=λR(M ⊗R Ω) + λR(Image1) + λR(N ⊗R Ω) − λR(Image2)

=λR(M ⊗R Ω) + λR(N ⊗R Ω).

Notice that if Y is any R-module, which is also an R/I-module, then we have
λR(Y ) = λR/I(Y ). Therefore, the equality above says:

λR/I(M/IM ⊗R Ω) + λR/I(N/IN ⊗R Ω) = λR/I(Xα/IXα ⊗R Ω).

Since in this equality we can choose any R/I module of finite length Ω, by
Proposition 2.4, we have :

M/IM ⊕N/IN ∼= Xα/IXα.

As a corollary of the theorem we can prove 1.2:
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Proof. (Theorem 1.2). Since β ∈ I Ext1
R(M,N), Theorem 1.1 implies that

Xβ/IXβ 'M/IM ⊕N/IN and hence Xα/IXα 'M/IM ⊕N/IN . Applying
Lemma 2.2, we have that α⊗R/I is split exact.

If the ideal I is the zero ideal Theorem 2.1 is recovered.

Another corollary of Theorem 1.1 is the following proposition, which we will
use later.

Proposition 2.5. Let (R,m) be a local Noetherian ring. Consider the short
exact sequence α : 0 → N → Xα →M → 0, and let M1 the first syzygy of M
in a minimal free resolution. Assume that Ext1

R(Xα,M1) = 0. If α is not the
zero element in Ext1

R(M,N), then α is a minimal generator of Ext1
R(M,N).

Proof. By way of contradiction, assume α ∈ mExt1
R(M,N). By Theorem 1.1,

α⊗R/m is a split exact sequence and therefore

µ(M) + µ(N) = µ(Xα).

On the other hand, if 0 → M1 → F → M → 0 is the beginning of a minimal
free resolution for M , there exists an R-homomorphism φ : M1 → N such that
Xα is the cokernel as in the following short exact sequence:

β : 0 //M1
(i,−φ)

//F ⊕N //Xα
// 0,

where i is the inclusion. Since Ext1
R(Xα,M1) = 0, β is a split exact sequence

and Xα ⊕M1
∼= F ⊕N . Therefore we have the following contradiction:

µ(M) + µ(N) = µ(Xα) < µ(Xα) + µ(M1) = µ(F ) + µ(N) = µ(M) + µ(N).

Remark 2.6. The same conclusion of Proposition 2.5 holds if we assume Ext1
R(Xα, N) =

0 instead of Ext1
R(Xα,M1) = 0.

The converse of Theorem 1.1 does not hold as the following example shows.

Example 2.7. Let R = k[|x2, x3|]. Every non-zero element α ∈ Ext1
R(k,R) is

a minimal generator and hence is not in mExt1
R(k,R).

Let α be the short exact sequence as in the following diagram:

0 // m

ψ

��

i //R

��

// k // 0

α : 0 //R //P // k // 0,

6



where ψ is the R-homomorphism sending x2 to x3 and x3 to x4 and P is the
pushout. The short exact sequence α is not split exact because there is no map
from R that extends ψ, hence α is not in mExt1(k,R). On the other hand,
the minimal number of generators of P is 2 and hence P/mP ' k ⊕ k.

However we can prove a converse of Theorem 1.1 in the following sense:

Proposition 2.8. Let M and N be finitely generated R-modules, let y ∈ R
be a non-zero-divisor on R, M, N and let α be the short exact sequence

0 //N //Xα
//M // 0.

Suppose that Xα/yXα 'M/yM ⊕N/yN . Then α ∈ y Ext1
R(M,N).

Proof. Since y is a non-zero-divisor on N we have the following exact se-
quences:

0 //N
y

//N
π //N/yN // 0,

and, by applying the functor HomR(M, ),

. . . // Ext1
R(M,N)

y
// Ext1

R(M,N) π∗

// Ext1
R(M,N/yN) // . . . .

By exactness, to show that α ∈ y Ext1
R(M,N), it is enough to show that

π∗(α) = 0.

Denote by φ : Ext1
R(M,N/yN) → Ext1

R(M/yM,N/yN) the isomorphism
that takes a short exact sequence β : 0 → N/yN → Y → M → 0 to the
short exact sequence β⊗R/yR : 0 → N/yN → Y/yY →M/yM → 0 (which
is exact since y is a non-zero-divisor on M). Since π∗(α) is 0 → N/yN →
Xα/yf(N) →M → 0, φπ∗(α) is the short exact sequence:

α⊗R/yR : 0 //N/yN //Xα/yXα
//M/yM // 0,

which is split exact. Hence, π∗(α) = 0.

Question 2.9. Let (R,m) a Cohen-Macaulay local ring. Let M and N be
finitely generated maximal Cohen-Macaulay modules over R and let x1, . . . , xn
be a regular sequence on R. Let α ∈ Ext1

R(M,N) be a short exact sequence.
Is it true that

α⊗R/(x1, ..., xn) is split exact

if and only if

α ∈ (x1, . . . , xn) Ext1
R(M,N)?

In the remainder of this section we present another proposition on the anni-
hilator of short exact sequences, which we will use later.
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Let α and β will be the following two short exact sequences:

α : 0 //N
α1 //Xα

α2 //M // 0,

β : 0 //N
β1 //Xβ

β2 //M // 0.

Assume Xα
∼= Xβ. It follows from Miyata’s theorem that Rad(Ann(α)) =

Rad(Ann(β)). The following example, due to Giulio Caviglia, shows that
Annα and Ann β do not have the same integral closure (see exercise A3.29,
page 656, [9]).

Example 2.10. Let α and β be the following sequences:

α, β : 0 // Z
2 ⊕ Z2

α1

β1

// Z
2 ⊕ Z4 ⊕ Z2

α2

β2

// Z4 ⊕ Z2 ⊕ Z2
// 0,

where α1(x, y, z) = (4x, y, 2z, 0) and β1(x, y, z) = (2x, 2y, 0, z). Notice that
β = β1 ⊕ β2 ⊕ β2, where β1 is the split exact sequence 0 → Z2 → Z2 ⊕
Z4 → Z4 → 0 and β2 is the generator of Ext1

Z
(Z2,Z). The annihilator of

β is therefore 2Z. On the other hand α is the direct sum of the split exact
sequence 0 → Z → Z ⊕ Z2 → Z2 → 0 and the generators of Ext1

Z
(Z4,Z) and

Ext1
Z
(Z2,Z2). Therefore Ann(α) = 4Z.

Proposition 2.11. Let α and β be two short exact sequences in Ext1
R(M,N)

with middle modules isomorphic to X. If Ext1
R(X,N) = 0 then Ann(α) =

Ann(β).

Proof. Applying the functor HomR( , N) to the short exact sequence α, we
get the exact sequence HomR(N,N) → Ext1

R(M,N) → 0. Therefore there
exists a homomorphism ψ ∈ HomR(N,N) such that β ∈ Ext1

R(M,N) is the
pushout of ψ as in the following diagram:

α : 0 //N

��

α1 //X

��

//M // 0

β : 0 //N
β1 //X //M // 0,

φ induces a homomorphism ψ∗ : Ext1
R(M,N) → Ext1

R(M,N) taking α to β,
which implies that Ann(α) ⊂ Ann(β). Since we can switch the role of α and
β, we have the thesis.

8



3 Applications

3.1 Efficient systems of parameters

Recall the following definition:

Definition 3.1. A system of parameters x1, . . . , xn is an efficient system of
parameters if for any i = 1, . . . , n there is a regular subring Ti of R over which
R is finite and such that xi belongs to the Noetherian different N R

Ti
.

The proofs above can be used to give an improvement of the following propo-
sition 6.17 in [10]:

Proposition 3.2. Let x = {x1, . . . , xn} be an efficient system of parameters.
Let α : 0 → N → X → M → 0 be a short exact sequence of maximal Cohen-
Macaulay modules. Denote by x2 the ideal generated by x2

1, . . . , x
2
n and let ᾱ

be the short exact sequence 0 → N/x2N → X/x2X → M/x2M → 0. If ᾱ is
split exact then α is split exact.

We can substitute x2 simply by x and prove the following Proposition:

Proposition 3.3. Let x = {x1, . . . , xn} be an efficient system of parameters.
Let α : 0 → N → X → M → 0 be a short exact sequence of maximal Cohen-
Macaulay modules and let ᾱ be 0 → N/xN → X/xX → M/xM → 0. If ᾱ is
split exact then α is split exact.

Proof. Denote by xi = {x1, . . . , xi} and by αi the following short exact se-
quence:

0 //N/xiN //X/xiX //M/xiM // 0.

We will show by descending induction on i that αi is split exact. The case
i = 0 will give the thesis of the improved Proposition 3.3. The assumptions
says that αn is a split exact sequence, which is the case i = n. Suppose that
the case i = k is true. Then, by Proposition 2.8,

αk−1 ∈ xk Ext1
R/xk−1R

(M/xk−1M,N/xk−1N) ' xk Ext1
R(M,N/xk−1N).

By definition of efficient systems of parameters, there exists a regular subring
Sk such that the extension Sk ⊂ R is finite and xk is in NR

Sk
, the Noethe-

rian different. By a result proved by Wang ([11], Proposition 5.9), we have
that NR

Sk
Ann(Ext1

Sk
(M,N/xk−1N)) ⊂ Ann(Ext1

R(M,N/xk−1N)). But M is a

free Sk−module so that Ann(Ext1
Sk

(M,N/xk−1N)) is the unit ideal of Sk and

hence xk ∈ Ann(Ext1
R(M,N/xk−1N)), which implies that αk−1 is a split exact

sequence.

9



3.2 Rings of finite Cohen-Macaulay type

Let us study the structure of the Ext modules and then prove some applica-
tions for rings of finite Cohen-Macaulay type. Assume that (R,m) is a local
Noetherian ring. First of all we need some notation. For every short exact
sequence α ∈ Ext1

R(M,N) denote by Xα the middle module. For every finitely
generated R-module X, denote by [X] the isomorphism class of X and define
the following set

E[X] := {α ∈ Ext1
R(M,N) | Xα

∼= X}. (1)

For every y ∈ m, define

Sy := {[X] | ∃α ∈ y Ext1
R(M,N) and X ∼= Xα}. (2)

Lemma 3.4. Let (R,m) be a local Noetherian ring. Let y be a non-zero-divisor
on M , N and R. Then, with the above notation,

y Ext1
R(M,N) =

⋃

[X]∈Sy

E[X].

Proof. The fact that y Ext1
R(M,N) ⊂

⋃

[X]∈Sy
E[X], follows immediately from

the definition of the sets Sy. For the other direction, all it is to prove is that
if E[X] ∩ y Ext1

R(M,N) 6= then E[X] ⊂ y Ext1
R(M,N). For it, let α ∈ E[X] ∩

y Ext1
R(M,N) and β ∈ E[X]. By Theorem 1.2, β ⊗ R/(y) is a split exact

sequence and, by Proposition 2.8, β ∈ y Ext1
R(M,N), proving the lemma.

Theorem 3.5. Let (R,m) be a Cohen-Macaulay local ring. Assume dimR ≥ 1
and let M and N be two finitely generated maximal Cohen-Macaulay modules
over R. Assume that there are only finitely many isomorphism classes of max-
imal Cohen-Macaulay modules of multiplicity the sum of the multiplicities of
M and N . If h is the number of such isomorphism classes, then there are at
most 2h submodules of the form xExt1

R(M,N), where x is a non-zero-divisor
on R.

Proof. Let X1, . . . , Xh be representatives for the isomorphism classes of all
the possible modules that can fit in the middle of a short exact sequence in
Ext1

R(M,N). Let y ∈ m but not in the union of the minimal primes of R.
Consider the module xExt1

R(M,N). By Lemma 3.4, we have

y Ext1
R(M,N) =

⋃

[X]∈Sy

E[X].

Since there are at most h modules that can fit in the middle of a short exact
sequence in Ext1

R(M,N), there at most 2h different subsets of {X1, . . . , Xh}
and hence at most 2h different sets Sy, proving the theorem.
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We can apply this theorem to the theory of rings of finite Cohen-Macaulay
type. Recall that a Noetherian local ring (R,m) is said of finite Cohen-
Macaulay type if there are only a finite number of classes of non-isomorphic
maximal Cohen-Macaulay modules. As a corollary of 3.5 we can give a different
proof of the following theorem due, in this generality, to [3]:

Theorem 3.6. Let (R,m) be a Noetherian of finite Cohen-Macaulay type and
let M , N two maximal Cohen-Macaulay modules. Then there exists a t such
that mt Ext1

R(M,N) = 0.

Proof. If the dimension of the ring R is zero, then there is nothing to prove.
Suppose that dim(R) ≥ 1. Assume, by way of contradiction, that the maximal
ideal m is not the radical ideal of Ann(Ext1

R(M,N)). By prime avoidance, we
can pick an element x in the maximal ideal but not in the union

Ann(Ext1
R(M,N)) ∪

⋃

P∈Ass(R)

P.

Let h be the number of isomorphism classes of modules that can fit in the
middle of a short exact sequence in Ext1

R(M,N). By Theorem 3.5, there exist
i < j < 2h + 1 such that xi Ext1

R(M,N) = xj Ext1
R(M,N). By Nakayama

Lemma, xi Ext1
R(M,N) = 0, showing a contradiction.

We can actually give a bound for t in terms of the number of possible maximal
Cohen-Macaulay modules that can fit in the middle of a short exact sequence
in Ext1

R(M,N), improving the bound of [3]. For this, see the last section.

4 Sparse Modules

Theorem 3.5 motivates us to make the following definition:

Definition 4.1. Let (R,m) be a Noetherian local ring of depth at least 1.
Let M a finitely generated R-module. M is said to be sparse if there is only a
finite number of submodules xM , where x ∈ R is a non-zero-divisor of R.

Remark 4.2. Notice that sparseness is closed under taking direct sums and
moreover the quotient of a sparse module is sparse. On the other hand, a
submodule of a sparse module does not need to be sparse.

Example 4.3. Let R = k[|x, y|], with k infinite. Let M be the cokernel of the
following map:

R4 β
//R2 // 0
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where β is given by the following matrix:







0 x 0 y2

x y y2 0





 .

Notice that m2M = 0. The only submodules of the form lM with l ∈ m
are xM and (x + y)M . Let N = Rm1 be the generator of M corresponding
to (1, 0). Notice that mN is a two dimensional vector space and therefore it
cannot be sparse.

Proposition 4.4. Let (R,m) be a local Noetherian ring of positive depth and
let M be a finitely generated R- module. If M is sparse then M is Artinian.

Proof. Choose x1, . . . , xn to be the generators of the maximal ideal m in such a
way that xi is a non-zero-divisor of R for any i = 1, . . . , n. For each i, consider
the modules xhiM . Since xhi is a non-zero-divisor for any h and since M is
sparse, xniM = xmi M for some m > n. By Nakayama’s lemma, this implies
that xniM = 0. It follows that M is Artinian.

Let us suppose that the ring contains the residue field k, which we assume to
be infinite.

Proposition 4.5. Let (R,m, k) be a local Noetherian ring of positive depth
and with infinite residue field. Suppose M is a finitely generated R-module. If
M is sparse then there exists an element l ∈ m such that mM = lM .

Proof. Since M is sparse, we can list the all possible submodules of the form
xM , where x is a non-zero-divisor. Let the list be l1M, . . . , lhM . Let x1, . . . , xn
be a set of minimal generators of the maximal ideal. Choose n vectors with
entries in k which are linearly independent. Say si =< si1, ..., s

i
n >, for i =

1, ..., n. For any i > n choose a vector si which is linearly independent with
respect to any subset of n − 1 vectors si, i ∈ {1, ..., i − 1}. For i = nh + 1,
there exists a j, 1 ≤ j ≤ h, and a sequence of n linearly independent vectors,
si1 , ..., sin , such that

(
n

∑

h=1

s
ig
k xh)M = ljM,

for any g = 1, . . . , n. Without loss of generality we may assume that j = 1 and
{si1 , ..., sin}={s1, . . . , sn}. Since s1, ..., sn are linearly independent, uj =

∑

sjixi
for j = 1, ..., n, are a minimal system of generators for the maximal ideal. We
claim that mM = lM . For, it is enough to show that uM ⊂ lM , for any
u ∈ m. If u = f1u1 + ...+ fnun ∈ m then uM ⊂ u1M + ...+ unM = lM .

Corollary 4.6. Let (R,m, k) be a local Noetherian ring of positive depth and
with infinite residue field. Let M a finitely generated sparse R-module. Denote
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by µ the minimal number of generators. Then µ(mkM) ≤ µ(M), for any
k ≥ 0.

Proof. By Proposition 4.5, for any integer h, we have that mhM = lhM , from
which the proposition follows.

Suppose that R is a standard graded ring over k. Assume k is infinite and R
has depth at least one. Let M be a finitely generated graded R-module. Then,
we can formulate the following:

Definition 4.7. M is said to be homogeneously sparse if there are a finite
number of submodules xM where x ∈ m is a homogeneous non-zero-divisor
of R.

Question 4.8. In the case of graded modules over graded ring, being sparse
implies being homogeneously sparse. Is the converse true?

Theorem 4.9. Let R be a standard graded ring over an algebraically closed
field k and assume that R1 is generated by two elements. Let M be a standard
graded module over R. Then, M is homogeneously sparse if and only if M is
Artinian and there exists a linear form l ∈ m such that lM = mM , where m
is the homogeneous maximal ideal.

Proof. The proof for the “only if” direction is the graded version of Proposition
4.4 and Proposition 4.5. For the other direction, suppose that M is Artinian
and that there exists an l ∈ m such that lM = mM . Since M is Artinian, it
is enough to show that there are finitely many submodules of the form fM ,
where f is a homogeneous polynomial of degree less than d, for some d > 0.
Since k is algebraically closed, any homogeneous polynomial in two variables
can be factored into linear terms; hence it is enough to show that there are
finitely many submodules of the form tM , where t is a linear form. Moreover,
since M = ⊕Mi, it is enough to show that there are finitely many tMi, where
t is a linear form and Mi is the i-th degree component of the module M . It
is enough to show that there are finitely many k vector spaces of the form
tM0, for t a linear form. Indeed, if we want to show that there are finitely
many tMi for i > 0, replace the module M by the module generated by Mi.
Without loss of generality, let R1 be generated by l and s. Since lM = mM ,
µ(mM) ≤ µ(M). Suppose m1, ...,mh are minimal generators in degree zero,
such that lm1, ..., lmh generate mM . Complete m1, ...,mh to a minimal system
of generators of M , m1, ...,mn say. Let αl + βs be a general linear form. Let
A to be the matrix where the columns are the images in M1 of (αl+ βs)mi in
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terms of the lmi, i = 1, . . . , h:





















α + βa11 βa12 . . . βa1h . . . βa1n

βa21 α + βa22 . . . βa2h . . . βa1n

. . . . . . . . . . . . . . . . . .

βah1 . . . . . . α + βahh . . . βahn





















.

If there are only finitely many (α, β) such that the first h−columns have a
zero determinant, then the module M is sparse. Since the determinant of the
first h-columns is a homogeneous polynomial of degree h in two variables, it
is enough to show that it is not identically zero. But the values α = 1, β = 0
give a non zero determinant.

5 Structure of Ext1
R(M,N)

Remark 5.1. By Theorem 3.5, Ext1
R(M,N) is a sparse module when M and N

are maximal Cohen-Macaulay modules over a ring of finite Cohen-Macaualy
type.

We are ready to improve the bound given in [3] for the power of the maximal
ideal that kills the module Ext1

R(M,N) when R is a ring of finite Cohen-
Macaulay type and M and N are maximal Cohen-Macaulay modules. More
precisely:

Theorem 5.2. Let (R,m, k) be a Cohen-Macaulay local ring of positive depth
and with infinite residue field. Assume, as in Theorem 3.5, that there are only
h isomorphism classes of maximal Cohen-Macaulay modules of multiplicity
the sum of the multiplicities of M and N . Then mh−1 Ext1

R(M,N) = 0.

Proof. Let X1, . . . , Xh
∼= M ⊕ N be a complete list of representative of iso-

morphism classes of modules that can fit in the middle of a short exact se-
quence in Ext1

R(M,N) and let EXj
the set defined in 1. Suppose by way

of contradiction that mh−1 Ext1
R(M,N) 6= 0. By Theorem 3.5, Ext1

R(M,N)
is a sparse module; hence there exists a non-zero-divisor l ∈ m such that
mExt1

R(M,N) = lExt1
R(M,N), by Proposition 4.5. Let S1 = {0, 1, . . . , h−1}

and S2 = S1\{0}. Let φ a multivalued map from S1 to S2 such that φ(i) ⊂ S2,
and j ∈ φ(i) if and only if there exists a minimal generator of mi Ext1

R(M,N)
in EXj

. If we prove that φ(i) ∩ φ(j) = ∅ for i < j, we will get a contradic-
tion since the cardinality of S2 is strictly smaller than the cardinality of S1.
Suppose that there exists a t ∈ φ(i)∩ φ(j); then EXt

contains a minimal gen-
erator α of mi Ext1

R(M,N) = li Ext1
R(M,N) and a minimal generator β of

14



mj Ext1
R(M,N) = lj Ext1

R(M,N). By Theorem 1.1, β ⊗ R/ljR is split exact
and, by Theorem 1.2, α⊗R/ljR is split exact. By Proposition 2.8,

α ∈ lj Ext1
R(M,N) = lj−ili Ext1

R(M,N) ⊂ mli Ext1
R(M,N),

which contradicts α being a minimal generator of li Ext1
R(M,N).

Proposition 5.3. Let (R,m, k) be a Cohen-Macaulay local Noetherian ring
of positive depth and with algebraically closed residue field. Let M be a finitely
generated R-module which is maximal Cohen-Macauly and let M1 be the first
syzygy in a minimal free resolution of M . Assume that there are only h iso-
morphism classes of maximal Cohen-Macaulay modules of multiplicity the
sum of the multiplicities of M and M1 and mh−2 Ext1

R(M,M1) 6= 0. Then
Ext1

R(M,M1) is the direct sum of cyclic modules.

Proof. Let X1, . . . , Xh
∼= M⊕N be a complete list of representative of isomor-

phism classes of modules that can fit in the middle of a short exact sequence in
Ext1

R(M,N) and let EXj
the set defined in 1. Let , let S1 := {0, 1, . . . , h− 2}

and S2 := {1, . . . , h − 2}. Moreover, let φ : S1 → S2 a multivalued map
such that φ(i) ⊂ S2 and j ∈ φ(i) if and only if there exists a minimal
generator of mi Ext1

R(M,M1) in EXj
. Since the sets φ(i) are disjoint and

mh−2 Ext1
R(M,M1) 6= 0, we have that the cardinality of φ(i) is one, for ev-

ery i ∈ S1. In particular, all the short exact sequence, which are minimal
generators for the R-modules mi Ext1

R(M,M1), have isomorphic modules in
the middle. By Proposition 2.5, the initial part of the minimal free resolu-
tion of M , α : 0 → M1 → F → M → 0, is a minimal generator for the
R-module Ext1

R(M,M1) and hence any other minimal generator of the R-
module Ext1

R(M,M1) belongs to EX1
, where we set X1 to be the free module

F .
By Proposition 4.5, there exists an element which is a non-zero-divisor on
R, l ∈ m\m2, such that lh−2 Ext1

R(M,M1) = mh−2 Ext1
R(M,M1) 6= 0; hence

there exists a β ∈ E1 such that ljβ 6= 0, for j ∈ S2. By Proposition 2.11,
ljγ 6= 0, for every γ ∈ E1 and j ∈ S2.
Let α1, . . . , αm be a minimal set of generators for Ext1

R(M,M1). We first claim
that for any j ∈ S2, l

jα1, . . . , l
jαm are a minimal system of generators for the

modules mj Ext1
R(M,M1). For it, assume there exists a linear combination

∑m
i=1 λil

jαi = 0, where not all the λi are zero, hence lj(
∑m
i=1 λiαi) = 0. Since

∑m
i=1 λiαi ∈ EX1

, applying Proposition 2.11 we get that ljγ = 0 for every
γ ∈ EX1

, contradicting the last statement of the above paragraph.
The last step is to prove that we can complete l to a minimal system of genera-
tors for m, say l, l1, . . . , ln, such that li Ext1

R(M,N) = 0, for every i = 1, . . . , n.
For it, we claim that if l, l1, . . . , ln is a system of minimal generators for m,
then there exists a λi ∈ k such that (li − λil)γ = 0 for every γ ∈ EX1

and for
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every i = 1, . . . , n. To prove the claim, notice that the multiplication by li

Ext1
R(M,M1)

mExt1
R(M,M1)

→
mExt1

R(M,M1)

m2 Ext1
R(M,M1)

,

is a k-linear map between km. Since k is algebraically closed, there exists an
eigenvalue λi and an eigenvector γi, in particular we can write liγi = λilγi.
This means that (li− λil)γi = 0, since γi ∈ EX1

, by Proposition 2.11, we have
(li − λil)γ = 0 for every γ ∈ EX1

. By replacing li with li − λil, we have the
claim.

This shows that we can write Ext1
R(M,M1) = ⊕m

i=1Rαi.

Remark 5.4. CallMi the modules Rαi. The above proof shows that the Hilbert
function of Mi can have just 1 or 0 as possible values. Recall that a module
is called uniserial if there exists a unique composition series. In the previous
Proposition, if R/(l1, . . . , lm) is a DVR, then the modules Mi are uniserial.

Remark 5.5. The above proposition shows that if all the minimal generators
of Ext1

R(M,N) have a free module in the middle, then Ext1
R(M,N) is direct

sum of cyclic modules.
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