
A UNIFORM ARTIN-REES PROPERTY FOR SYZYGIES

IN RINGS OF DIMENSION ONE AND TWO.

JANET STRIULI

Abstract. Let (R,m, k) be a local Noetherian ring, let M be a finitely gen-

erated R-module and let I ⊂ R be an m-primary ideal. Let F = {Fi, ∂i} be

a free resolution of M . In this paper we study the question whether there

exists an integer h such that InFi ∩ ker(∂i) ⊂ In−h ker(∂i) holds for all i.
We give a positive answer for rings of dimension at most two. We relate this
property to the existence of an integer s such that Is annihilates the modules
TorR

i
(M, R/In) for all i > 0 and all integers n.

1. Introduction

In this paper (R,m, k) denotes a local Noetherian ring, and all modules are
finitely generated. As general reference we refer to [1, 4].

Let I be an ideal of R, let M be an R-module and N a submodule of M . The
Artin-Rees lemma states that there exists an integer h depending on I, M and N
such that for all n ≥ h one has

(1.0.1) InM ∩ N = In−h(IhM ∩ N).

A weaker property, which is often the one used in applications, is

(1.0.2) InM ∩ N ⊂ In−hN.

Much work has been done to determine whether h can be chosen uniformly, in the
sense that (1.0.2) would be satisfied simultaneously for every ideal belonging to a
given family; see [3, 6, 8–11]. We study another kind of uniformity.

(1.1) Theorem. Let (R,m, k) be a local Noetherian ring with dim R ≤ 2. Let

M a finitely generated R-module and I ⊂ R an m-primary ideal. There exists an

integer h such that for every free resolution F = {Fi, ∂
F
i } of M there are inclusions

(1.1.1) InFi−1 ∩ ker(∂F
i ) ⊆ In−h ker(∂F

i ) for all i ≥ 1 and all n > h.

The main motivation for this work is a theorem due to Eisenbud and Huneke [5,
Theorem 3.1]): Let M be an R-module and let F = {Fi, ∂

F
i } be a free resolution

of M . If for every non-maximal prime ideal p of R the Rp-module Mp has finite
projective dimension and its rank is independent of p, then there exists an integer
h such that (1.1.1) holds.

To prove Theorem 1.1 we study the annihilators of the modules TorR
i (M,R/In);

see also [5, Proposition 4.1].
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(1.2) Theorem. Let (R,m, k) be a local Noetherian ring, let r be an integer and

let F be a family of ideals. Assume that one of the following conditions holds:

(1) dim R = 1, r = 2 and F is the family of all m-primary ideals;

(2) dim R = 2, r = 3 and F is the family of all parameter ideals.

Then there exists an integer h such that

Ih TorR
j (M,R/In) = 0

for every R-module M , every integer n, every j ≥ r and every I ∈ F .

In the next section we define syzygetically Artin-Rees modules and study the case
where the ring is Cohen-Macaulay. In Section Three we study uniform annihilators
for certain Tor-modules. In Section Four we prove Theorems 1.2 and 1.1 (see
Theorems 4.4 and 4.5) for rings of dimension one, and in Section Five we prove
them (see Theorems 5.4 and 6.1) for rings of dimension two.

2. Syzygetically Artin-Rees modules

Given an R-module M and F = {Fi, ∂
F
i } a minimal free resolution of M , we

define ΩR
i (M) := ker(∂F

i−1).

(2.1) Lemma. Let M be an R-module and let I be an ideal of R. Let h be an

integer. The following conditions are equivalent:

(1) for every free resolution G = {Gi, ∂
G
i } one has

(2.1.1) InGi ∩ ker(∂G
i ) ⊂ In−h ker(∂G

i ) for all i ≥ 1 and all n > h;

(2) for some free resolution G = {Gi, ∂
G
i } inclusion (2.1.1) holds.

Proof. For every free resolution G = {Gi, ∂
G
i }, we can write Gi = Fi ⊕ Ci ⊕ Di,

where ∂G
i |Fi

⊆ mFi−1, ∂G
i (Di) = 0 and ∂G

i (Ci) = Ci−1. In particular, the inclusion
InGi ∩ ker(∂G

i ) ⊂ In−h ker(∂G
i ) holds for all i > 0 and n > h for a free resolution

G of M if and only if it holds for the minimal free resolution F of M . �

(2.2) Definition. Let (R,m, k) be a local Noetherian ring. Let M be a finitely
generated R-module, let I be an ideal of R and let h be an integer. An R-module
M is syzygetically Artin-Rees of level h with respect to I if one of the equivalent
conditions of Lemma 2.1 holds.

Let F be a family of ideals. If there exists an integer h such that (2.1.1) holds
for every ideal I ∈ F then we say that M is syzygetically Artin-Rees with respect
to F , or simply syzygetically Artin-Rees if F is the family of all ideals.

(2.3) Uniform Artin-Rees. Let (R,m, k) be a local Noetherian ring. Given an
R-module M and a submodule N , there exists an integer h = h(M,N) such that
InM ∩N ⊂ In−hN , for every ideal I of R and every n > h. See [6, Theorem 4.12].

(2.4) Lemma. Let M be an R-module and let F be a family of ideals. Then the

following hold

(1) M is syzygetically Artin-Rees with respect to F if and only if ΩR
i (M) is

syzygetically Artin-Rees with respect to F for some integer i > 0.

(2) Let R → S be a faithfully flat extension. If M⊗RS is syzygetically Artin-Rees

with respect to the family of ideals IS where I ∈ F , then M is syzygetically

Artin-Rees with respect to F .
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Proof. For the first statement, assume that there exists integer i > 0 such that
ΩR

i (M) is syzygetically Artin-Rees with respect to F at level h. Let F be a
minimal free resolution of M . Let h1 the integer given in 2.3 for the R-modules
⊕j=i

j=1 ΩR
j (M) ⊂

⊕j=i−1
j=1 Fj . If s = max{h0, h1}, then M is syzygetically Artin-

Rees with respect to F at level s.
For the second statement, notice that tensoring with a faithfully flat extension

commutes with inclusions and intersections. �

The proof of the next theorem is due to D. Katz.

(2.5) Theorem. Let (R,m, k) be a Cohen-Macaulay local ring and let M be an

R-module. If I is an m-primary ideal, then M is syzygetically Artin-Rees with

respect to I.

For the proof we need two lemmas.

(2.6) Lemma. Let F be an R-module, K be a submodule of F and set M =
F/K. Let J = (a1, . . . , al) be an ideal generated by an M -regular sequence. Then

JnF ∩ K = JnK for all n > 0.

Proof. Let ξ ∈ JnF ∩ K. Then there exists a homogeneous polynomial Φ in
F [x1, . . . , xl] of degree n such that Φ(a1, . . . , al) = ξ. By going modulo K, we
have a homogeneous polynomial Φ0 = Φ of degree n in M [x1, . . . , xn] such that
Φ0(a1, . . . , al) = 0. We want to prove that Φ0 is the zero polynomial, which im-
plies that the coefficients of Φ are in K. Since Φ0(a1, . . . , al) = 0 ∈ Jn+1M ,
the coefficients of Φ0 are in JM , by [1, Theorem 1.1.7]. Therefore, there ex-
ists a homogeneous polynomial Φ1 ∈ M [x1, . . . , xn] of degree n + 1 such that
Φ1(a1, . . . , al) = Φ0(a1, . . . , al) = 0. By repeating this argument we can see that
the coefficients of Φ0 are in JnM for every n and therefore they are zero by the
Krull Intersection Theorem. �

(2.7) Lemma. Let (R,m, k) be a Cohen-Macaulay local ring with infinite residue

field. Let I be an m-primary ideal of R and let J ⊂ I a minimal reduction with

reduction number h. If M is a maximal Cohen-Macaulay R-module and

0 → K → F → M → 0,

is an exact sequence of R-modules with F finitely generated, then

(2.7.1) InF ∩ K ⊆ In−hK, for every n > h.

Proof. Let J = (x1, . . . , xd). Since M is a maximal Cohen-Macaulay R-module,
x1, . . . xd is a regular sequence on M . For every i > 0 and for every n > h we have

InF ∩ K = Jn−hIhF ∩ K

⊆ Jn−hF ∩ K

= Jn−hK, by Lemma 2.6

⊆ In−hK. �

Now we are able to give the proof of Theorem 2.5.
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Proof. By Lemma 2.4(2), we may assume that the residue field is infinite. Let F

be a minimal free resolution of M . By Lemma 2.4(1) it is enough to show that
ΩR

d (M) is syzygetically Artin-Rees with respect to I. We can now use the inclusion
(2.7.1) replacing K by ΩR

i (M) and F by Fi−1, for every i ≥ d + 1 (see [1, Exercise
2.1.26]). �

3. Uniform annihilators of Tor modules

In this section we explore the relation between modules that are syzygetically
Artin-Rees and the annihilators of a certain family of Tor modules.

(3.1) Lemma. If M is a finitely generated R-module and if F is a minimal free

resolution of M , then one has

TorR
j (M,R/In) ∼=

ΩR
j (M) ∩ InFj−1

InΩR
j (M)

for every j > 0.

Proof. Since Tor1(Ω
R
j−1(M), R/In) ∼= TorR

j (M,R/In) it is enough to consider the
case j = 1. Tensor the exact sequence

0 → ΩR
1 (M) → F0 → M → 0

by R/In to obtain the exact sequence

0 // TorR
1 (M,R/In) // ΩR

1 (M)/InΩR
1 (M) // F0/I

nF0.

The modules

TorR
1 (M,R/In) and

ΩR
1 (M) ∩ InF0

InΩR
1 (M)

are isomorphic as both are the kernel of the right-hand map. �

An immediate application of the previous lemma gives a stronger Artin-Rees
property for the syzygies of the residue field.

(3.2) Theorem. Let (R,m, k) be a local Noetherian ring. If F = {Fi} is the

minimal free resolution of R-module k, then there exists an integer h such that

mnFi−1 ∩ ΩR
i (k) = mn−h(mhFi−1 ∩ ΩR

i (k)) for all n > h and all i > 0.

Proof. By [7, Corollary 3.16] there exists an integer h such that for n ≥ h and for
all j ≥ 1:

TorR
j (k, R/mn) ∼=

mn−1ΩR
j (k)

mnΩR
j (k)

.

Hence, for every n ≥ h, we have:

ΩR
j (k) ∩ mnFj−1

mnΩR
j (k)

∼= TorR
j (k, R/mn) ∼=

mn−1ΩR
j (k)

mnΩR
j (k)

,

where the first isomorphism holds by Lemma 3.1. In particular the two modules

mn−1ΩR
j (k)

mnΩR
j (k)

⊆
ΩR

j (k) ∩ mnFj−1

mnΩR
j (k)

have the same length and therefore they are equal. We have the following chain
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ΩR
j (k) ∩ mnFj−1 = mn−1ΩR

j (k)

= m(mn−2ΩR
j (k))

⊆ m(ΩR
j (k) ∩ mn−1Fj−1)

⊆ ΩR
j (k) ∩ mnFj−1. �

(3.3) Definition. Let M be a family of finitely generated R-modules, let F be a
family of ideals of R and let h be an integer. We say that Torj(M, ) is uniformly

F-annihilated at level h if

(3.3.1) Ih Torj(M,R/In) = 0 for all M ∈ M, all I ∈ F and all n ∈ Z.

If (3.3.1) holds for every j ≥ 1, then we say that Tor(M, ) is uniformly F-

annihilated at level h.

Note that the phrase ‘at level h’ is dropped if h is not explicitly specified. When
M consists of a single module M and F consists of a single ideal I, we say that
Tor(M, ) is uniformly I-annihilated.

(3.4) Lemma. Let M be an R-module, let I be an ideal of R and let j, h be an

integers. The following hold.

(1) If InFj−1 ∩ ΩR
j (M) = I(In−1Fj−1 ∩ ΩR

j (M)) for every n > h, then

annR(TorR
j (M,R/In)) ⊆ annR(TorR

j (M,R/In+1)) for every n > h.

(2) If InFi−1 ∩ ΩR
i (M) ⊂ In−hΩR

i (M) for every n ≥ h, then Torj(M, ) is

uniformly I-annihilated at level h.

Proof. For the first statement, let x ∈ annR(Torj(M,R/In)). Lemma 3.1 yields
x(InFj−1 ∩ ΩR

j (M)) ⊆ InΩj(M). For every n > h, one has

x(In+1Fj−1 ∩ ΩR
j (M)) = xI(InFj−1 ∩ ΩR

j (M)), since n > h,

= Ix(InFj−1 ∩ ΩR
j (M))

⊆ IInΩR
j (M) = In+1ΩR

j (M).

By Lemma 3.1 one has x ∈ annR(TorR
j (M,R/In+1)).

For the second statement, notice that Ih TorR
j (M,R/In) = 0 for every n ≤ h.

Using Lemma 3.1 we have

TorR
j (M,R/In) = (InFj−1 ∩ ΩR

j (M))/InΩj(M) ⊆ In−hΩj(M)/InΩj(M),

for every n > h, proving that Ih ⊂ annR(TorR
j (M,R/In)). �

An immediate consequence of Lemma 3.4(2) is the following

(3.5) Proposition. If M is syzygetically Artin-Rees at level h with respect to I,

then Tor(M, ) is uniformly I-annihilated at level h.

From 2.5 one deduces
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(3.6) Corollary. Let (R,m, k) be a Cohen-Macaulay local ring and let M be the

family of maximal Cohen-Macaulay R-modules. If I is an m-primary ideal, then

Tor(M, ) is uniformly I-annihilated.

It is natural to ask the following.

(3.7) Question. Let (R,m, k) be a local Noetherian ring. Let I ⊆ R be an m-
primary ideal of R and let M be a finitely generated R-module. If Tor(M, ) is
uniformly I-annihilated is M syzygetically Artin-Rees with respect to I?

In the next section we shall use the following.

(3.8) Lemma. Let M be an R-module and let F be a family of ideals of R. If there

exist integers h and q such that Tori(M, ) is uniformly F-annihilated at level h
for every i ≥ q, then Tor(M, ) is uniformly F-annihilated.

Proof. Let s be an integer as in 2.3 for the R-modules
⊕q+1

i=1 Ωi(M) ⊂
⊕q

i=0 Fi.
Lemma 3.4(2) implies that Tori(M, ) are uniformly F-annihilated at level s. If
l := max{s, h}, then Tor(M, ) is uniformly F-annihilated at level l. �

4. Rings of dimension one

In this section we prove that every R-module over a one dimensional ring is
syzygetically Artin-Rees.

(4.1) Superficial elements. Let (R,m, k) be a local Noetherian ring and let I ⊂ R
an ideal. An element x ∈ I is said to be superficial in I if there exists an integer c
such that

(In : x) ∩ Ic = In−1 for every n > c.

Superficial elements always exist if k is infinite. See for example [12, Proposition
3.2, Chapter 1].

(4.2) Lemma. Let (R,m, k) be a Noetherian ring.

(1) If I is an ideal and x is superficial in I for R, then there exists an integer c
such that

(4.2.1) (0 :F x) ∩ IcF = 0 for every free module F .

Moreover, if (4.2.1) holds for x, then it does for every power of x.

(2) If dim R = 1, then there exists an integer c such that equality (4.2.1) holds
for all m-primary ideals I and for all elements x superficial in I which are
not in ∪p∈assR(R)−{m}p.

Proof. For the first statement, if x is a superficial element, then there exists an
integer c such that (In : x) ∩ Ic = In−1 for all n > c. Therefore,

(0 :F x) ∩ IcF = (∩n≥cI
nF :F x) ∩ IcF = ∩n≥c(I

nF :F x) ∩ IcF

= ∩n≥cI
n−1F = 0.

For the second statement, if x /∈ ∪p∈assR(R)−{m}p, then (0 : x) ⊂ H0
m(R).

Let s be an integer as in 2.3 for the R-modules H0
m(R) ⊂ R and set the integer

t = length(H0
m(R)), then

(0 :F x) ∩ It+sF ⊂ H0
m(F ) ∩ It+sF ⊂ It H0

m(F ) ⊂ mt H0
m(F ) = 0.
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Set c = t + s. �

(4.3) Strong uniform Artin-Rees in one dimensional rings. Let (R,m, k) be
a one-dimensional Noetherian ring with infinite residue field.

(1) There exists an integer r > 0, depending only on the ring, such that for every
m-primary ideal I there exists a reduction (x) ⊂ I such that

In = xIn−1 for all n > r.

See [12, Lemma 2.6] and [14, Proposition 2.6]. Such x can be choosen in
a non-empty Zariski-open subset of I/mI. Since there exists a non-empty
Zariski-open U subset of I/mI such that each element r ∈ U is superficial for
I, we may assume that x is superficial for I with respect to R, (see [15]).

(2) Let N ⊂ M be two finitely generated R-modules and let J ⊂ R be an ideal
such that JM ⊆ N . Let h0 be an integer such that mh0 H0

m(M/N) = 0. If
dim R/J = 0 then H0

m(M/N) = M/N , so for all ideals I and for all n > h0+1
one has InM ∩N = I(In−1M ∩N). If dim R/J = 1, by [14, Proposition 2.10]
there exists an integer h1, depending on R/J , such that In∩J = In−h1(Ih1 ∩
J) for all ideals I. For I now an arbitrary m-primary ideal, apply (1) for R/J
to get an integer h2 and set h = max{h1, h0 + max{h0, h2}}. Then

InM ∩ N = In−h(IhM ∩ N),

for every ideals I and every n > h; for details see [14, Proposition 2.11].

(4.4) Theorem. Let (R,m, k) be a one-dimensional local Noetherian ring. Let M
be an R-module and let N be the family of all submodules of free R-modules. If

F is the family of all m-primary ideals, then

(1) Tor(N , ) is uniformly F-annihilated.

(2) Tor(M, ) is uniformly F-annihilated.

Proof. Without loss of generality we may assume that the residue field is infinite.
Since any higher Tor module can be realized as Tor1, for (1) it is enough to prove
that Tor1(N , ) is uniformly F-annihilated.

Let N ∈ N , let h1 be a positive integer such that mh1 H0
m(R) = 0. Since N is a

first syzygy, we have H0
m(N) ⊆ H0

m(F ) where F is some free module. Therefore

Ih1 H0
m(N) ⊆ mh1 H0

m(N) = 0

and Ih1 TorR
1 (R/In,H0

m(N)) = 0, for every n > 0. Consider the exact sequence

0 → H0
m(N) → N → N/H0

m(N) → 0.

After tensoring with R/In we obtain the exact sequence

TorR
1 (R/In,H0

m(N)) → TorR
1 (R/In, N) → TorR

1 (R/In, N/H0
m(N)).

The R-module N/H0
m(N) is a maximal Cohen-Macaulay. Let F → N/H0

m(N) be
a surjective homomorphism where F is a finitely generated free R-module and
let K be the kernel. Let h2 be an integer as in 4.3(1). By Lemma 2.7 one
has Ih2(InF ∩ K) ⊂ InK, for every I ∈ F . Lemma 3.1 yields the equality

Ih2 TorR
1 (N/H0

m(N), R/In) = 0, for every I ∈ F and every integer n. If h = h1+h2,

then TorR
1 (N, ) is uniformly F-annihilated at level h.

For the second part apply Lemma 3.8. �
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The previous theorem contains Theorem 1.2(1), while the following is a stronger
version of Theorem 1.1 for one-dimensional rings.

(4.5) Theorem. Let (R,m, k) be a Noetherian local ring of dimension one. Then

each finitely generated R-module M is syzygetically Artin-Rees.

Proof. Without loss of generality we may assume that the residue field is infinite.
By Proposition [6, 2.3] it is enough to show that M is syzygetically Artin-Rees
with respect to the family of all m-primary ideals. Let F be a free resolution of
M . For every m-primary ideal I, choose a reduction (x) ⊂ I and h1 as in 4.3(1).
Let c an integer as in 4.2(2) and let h2 be an integer as in Theorem 4.4(2). Let
h = max{h1, h2}. Then for every j > 0 and every n > 2h + c we have

xh(InFj−1 ∩ ΩR
j (M)) ⊆ InΩR

j (M) = xn−hIhΩR
j (M).

Let u ∈ InFj−1 ∩ ΩR
j (M). Then xhu = xn−hv, for some v ∈ IhΩR

j (M). Since

n − 2h > c we have u − xn−2hv ∈ IcFj−1 ∩ (0 :Fj−1
xh). Since x is superficial, we

get (0 :Fj−1
xh) ∩ IcFj−1 = 0 from 4.2(a), and therefore

u = xn−2hv ∈ In−hΩR
j (M) ⊆ In−(2h+c)ΩR

j (M). �

5. Uniform annihilators in dimension two

In this section we prove Theorem 1.2(2). We need two lemmas. The first one
can be found in [16, 2.2.6]. We include the proof for completeness.

(5.1) Lemma. Let (R,m, k) be a two-dimensional local ring and let M be a finitely

generated R-module. Let a, b be a system of parameters with b a non-zero-divisor

on M and let A = Z[a, b]. Let x ∈ R be an element satisfying x(blM :M as) ⊆ blM ,

for every l, s ≥ 0. Then for any integer n one has

(5.1.1) xTorR
1 (R/(a, b)n,M) = xTorA

1 (A/(a, b)n,M) = 0,

Proof. The equality xTorR
1 (R/(a, b)n,M) = 0 follows from the second equality in

(5.1.1), as the ring homomorphism A → R induces a surjective homomorphism

TorA
1 (A/(a, b)n,M) → TorR

1 (R/(a, b)n,M).
Since the elements a, b form a regular sequence on A, we can compute the A-

module TorA
1 (A/(a, b)i,M) as the homology of the complex

M i
φ1

// M i+1
φ2

// M,

where φ1 is given by






















b 0 0 · · · 0 0 0
−a b 0 · · · 0 0 0
0 −a b · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . b 0 0
0 0 0 . . . −a b 0
0 0 0 . . . 0 −a b






















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and φ2 is given by
(

ai ai−1b · · · bi
)

, see for example [4, Exercise 17.11].
If m = (m1, . . . ,mi+1) is in ker(φ2), then in the localized module Mb one has
m = φ1(n), where n = (n1, . . . , ni) and

nj =
aj−1m1 + · · · + bj−1mj

bj
,

for every j, 1 ≤ j ≤ i. The containment

aj−1m1 + · · · + bj−1mj ∈ (bjM : ai−j+1)

resulting from m being in ker(φ2) yields xnj ∈ M , and xm ∈ Image φ1. �

(5.2) Generalized Cohen-Macaulay modules. Let M be a finitely generated
R-module and set d = dimR(M). The R-module M is called generalized Cohen-

Macaulay if the R-modules Hi
m(M) are finitely generated for i ≤ d−1. Recall that

the R-module Hi
m(M) vanishes for i < depth M .

Since the modules Hi
m(M) are artinian, if M is generalized Cohen-Macaulay

then there exists an ideal J such that J Hi
m(M) = 0 for all i ≤ d − 1. Then

(5.2.1) J((a1, . . . , ai)M : ai+1) ⊆ (a1, . . . , ai)M,

for every part of system of parameters a1, . . . , ai+1; for a proof see [13, Satz 2.4.2,
page 44].

(5.3) Lemma. Let (R,m, k) be a two-dimensional local ring and let I = (a, b) be

a parameter ideal. Let M a two-dimensional generalized Cohen-Macaulay module

R-module and let h0, and h1 two integers such that

mh0 H0
m(M) = 0 and mh1 H1

m(M) = 0.

One then has m2h0+h1 TorR
1 (M,R/In) = 0 for every n.

Proof. From the following exact sequence

0 → H0
m(M) → M → M/H0

m(M) → 0

we obtain

(5.3.1) TorR
1 (H0

m(M), R/In) → TorR
1 (M,R/In) → TorR

1 (M/H0
m(M), R/In).

The assumption on h0 gives

mh0 TorR
1 (H0

m(M), R/In) = 0 for every n > 0.

Notice that the module M/H0
m(M) has positive depth and

H1
m(M) = H1

m(M/H0
m(M)).

By prime avoidance we may assume that b is a non-zero-divisor on M/H0
m(M).

Let a be an element such that I = (a, b). By 5.2 one has mh0+h1(aiM : bj) ⊆ aiM

while Lemma 5.1 gives mh0+h1 TorR
1 (R/In,M/H0

m(M)) = 0 for every n > 0. The
exact sequence (5.3.1) concludes the proof. �

This lemma is used in the proof of the next theorem, (see Theorem 1.2(2)). We
shall find bounds for h0 and h1 that do not depend on the module M . In that way
we obtain a power of the maximal ideal that annihilates the Tor1 module and does
not depend on M .
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(5.4) Theorem. Let (R,m, k) be a two-dimensional complete local ring. If M is

the family of R-modules which are second syzygies and F is the family of parameter

ideals, then Tor(M, ) is uniformly F-annihilated.

Proof. We may assume that k is infinite. Since any higher Tor can be realize
as Tor1 it is enough to show that Tor1(M, ) is uniformly F-annihilated. Let
0 = q1 ∩ · · · ∩qs ∩Q1 ∩ · · · ∩Qn be a primary decomposition of the zero ideal, such
that dim(R/qi) = 2 for i ≤ s, and dim(R/Qi) ≤ 1 for i ≤ n. Let q = q1 ∩ · · · ∩qs.

For any second syzygy M we may choose an exact sequence

0 → M → F1 → F0

We define submodules of M as follows:

M0 = qF1 ∩ M and Mi = M0 ∩ (Q1 · · · ∩ Qi)F1.

By induction on i we will prove that there exists an integer li such that

I li TorR
1 (M/Mi, R/In) = 0

for every parameter ideal I and every n > 0. The case i = n will prove the
proposition since M = M/Mn.

Let us prove the claim for i = 0. The R-module R/q is generalized Cohen-
Macaulay. For it, notice that the associated primes of R/q are the minimal primes
of R. In particular R/q is an equidimensional local ring and it is Cohen-Macaulay
after localizing at a prime different from the maximal ideal. In particular there
exist integers k0, k1

mk0 H0
m(R/q) = 0,

mk1 H1
m(R/q) = 0,

and k2 such that mk2 H0
m(R) = 0. Set h0 = k0 and h1 = k1 + k2. From

(5.4.1) 0 → F1/M → F0.

we obtain H0
m(F1/M) ⊆ H0

m(F0) and mk2 H0
m(F1/M) = 0. From

(5.4.2) 0 → M/M0 → F1/qF1 → F1/M → 0

we obtain
H0

m(M/M0) ⊆ H0
m(F1/qF1)

and
H0

m(F1/M) → H1
m(M/M0) → H1

m(F1/qF1).

In particular M/M0 is a generalized Cohen-Macaulay module and

mh0 H0
m(M/M0) = 0 and mh1 H1

m(M/M0) = 0.

Now apply Lemma 5.3 to finish the case i = 0.
Assume that the claim holds for some i ≥ 0. Consider the exact sequences

(5.4.3) 0 → Mi/Mi+1 → M/Mi+1 → M/Mi → 0.

From the corresponding long exact sequence of Tor we need to find an h such
that mh Tor1(Mi/Mi+1, R/In) = 0 for all n > 0, for all parameter ideals and for
all second syzygies M .

Consider the following short exact sequence

0 → K → G → Mi/Mi+1 → 0
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where G is a free R-module. By Lemma 3.4(2) it is enough to find an integer hi not
depending on the parameter ideal I and on the module M such that InG ∩ K ⊆
In−hiK for all n > hi. If

J = annR(q ∩ Q1 ∩ · · · ∩ Qi/q ∩ Q1 ∩ . . .Qi+1)

then, dim(R/J) ≤ 1. The injective homomorphism

(5.4.4) Mi/Mi+1 → (q ∩ Q1 ∩ · · · ∩ Qi)F/(q ∩ Q1 ∩ . . .Qi+1)F

yields dimR(Mi/Mi+1) ≤ dim(R/J) ≤ 1. Since JG ⊆ K, by 4.3(2), there exist an
integer-valued function h increasing in the power of the maximal ideal annihilating
the local cohomology H0

m(Mi/Mi+1), such that

InG ∩ K ⊆ In−hK, for n > h.

By the inclusion (5.4.4) we can bound above such power by the a power of the
maximal ideal annihilating H0

m(q ∩ Q1 · · · ∩ Qi)F/(q ∩ Q1 ∩ · · · ∩ Qi+1)F ), which
does not depend on the module M . �

An application of Lemma 3.8 gives the following:

(5.5) Corollary. Let (R,m, k) be a two-dimensional complete local ring. If M is

a finitely generated R-module and F is the family of all parameter ideals, then

Tor(M, ) is uniformly F-annihilated.

6. Syzygetycally Artin-Rees modules in dimension two

In this section we prove Theorem 1.1 for two-dimensional rings.

(6.1) Theorem. Let (R,m) be a two-dimensional local ring. Let I ⊂ R be an

m-primary ideal. Then every finitely generated R-module M is syzygetically Artin-

Rees with respect to I.

Proof. Without loss of generality we may assume that the ring is complete and
the residue field is infinite. Let J ⊆ I be a reduction of I. By countable prime
avoidance (see [2, Lemma 3]) we can choose a system of parameters x, y such that
y is a non-zero-divisor on all the modules ΩR

i (M)/H0
m(ΩR

i (M)), x is a superficial
element in I for R and J = (x, y).

By 4.2(1) there exists an integer h0 such that

(0 :R x) ∩ In = 0,

for all n > h0.
By Corollary 5.5 there exists an h1 such that

Kh1 TorR
i (R/Kn,M) = 0,

for every i > 0 and for every n > 0 and for every ideal K generated by a system of
parameters.

Let h2 the least integer such that

In = Jn−h2Ih2 for all n ≥ h2.

Let h3 be the least integer such that

(y)n ∩ (xh1) ⊆ xh1yn−h3 , for every n > h3.
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Finally, an application of the Artin-Rees Lemma and the fact that H0
m(R) is a finite

length module gives an integer h4 such that

Ih4 ∩ H0
m(R) = 0.

We claim that for n > h0 + h1 + h2 + h3 + h4 and for every i ≥ 2 we have

InFi−1 ∩ ΩR
i (M) ⊆ In−h0−h1−h2−h3−h4ΩR

i (M).

By the choice of J and h2 we have for such n

InFi−1 ∩ ΩR
i (M) = Jn−h2Ih2Fi−1 ∩ ΩR

i (M)

⊆ Jn−h2Fi−1 ∩ ΩR
i (M).

In particular,

xh1(InFi−1 ∩ ΩR
i (M)) ⊆ xh1(Jn−h2Fi−1 ∩ ΩR

i (M)) ⊆ Jn−h2ΩR
i (M),

where the last inclusion is given by the choice of h1,x and Lemma 3.1. So

InFi−1 ∩ ΩR
i (M) ⊆ Jn−h2ΩR

i (M) : xh1 .

Let r ∈ Jn−h2ΩR
i (M) : xh1 , then

rxh1 =

h1−1
∑

j=0

mjx
jyn−h2−j +

n−h2
∑

j=h1

mjx
jyn−h2−j ,

for mj ∈ ΩR
i (M). In particular,

xh1(r −
n−h2
∑

j=h1

mjx
j−h1yn−h2−j) ∈ yn−h1−h2ΩR

i (M).

So

InFi−1 ∩ ΩR
i (M) ⊆ Jn−h2ΩR

i (M) : xh1

⊆ Jn−h2−h1ΩR
i (M) + (yn−h2−h1ΩR

i (M) : xh1)

⊆ Jn−h2−h1ΩR
i (M) + (yn−h2−h1Fi−1 : xh1).

By intersecting the last term of the inclusions by In−h1−h2Fi−1 we can write

InFi−1 ∩ ΩR
i (M) ⊆ (Jn−h2−h1ΩR

i (M) + (yn−h2−h1Fi−1 : xh1)) ∩ In−h1−h2Fi−1

⊆ Jn−h2−h1ΩR
i (M) + (yn−h2−h1Fi−1 : xh1)) ∩ In−h1−h2Fi−1,

where the last inclusion holds since Jn−h2−h1ΩR
i (M) ⊆ In−h1−h2Fi−1. In particu-

lar, each a ∈ InFi−1 ∩ ΩR
i (M) can be written as a = b + s, where

b ∈ Jn−h1−h2ΩR
i (M) and s ∈ (yn−h2−h1Fi−1 : xh1) ∩ In−h2−h1Fi−1.

By the choice of h3 we have

xh1s ∈ (xh1)Fi−1 ∩ yn−h2−h1Fi−1 = ((xh1) ∩ (yn−h2−h1))Fi−1

⊆ xh1yn−h1−h2−h3Fi−1.

Therefore we can write xh1s = xh1yn−h1−h2−h3v with v ∈ Fi−1 and

s − yn−h1−h2−h3v ∈ (0 : xh1) ∩ In−h1−h2−h3Fi−1.

Since x is a superficial element and n − h1 − h2 − h3 > h0, we have

(0 :Fi−1
xh1) ∩ In−h1−h2−h3Fi−1 = 0.
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In particular s = yn−h1−h2−h3v.
Since s = a − b ∈ ΩR

i (M), we obtain that

∂i−1(s) = yn−h1−h2−h3∂i−1(v) = 0

in Ωi−1(M). But y is a non-zero-divisor on Ωi−1(M)/H0
m(Ωi−1(M)), so that

∂i−1(v) ∈ H0
m(Ωi−1(M)).

By the choice of h4 we have

Ih4Fi−2 ∩ H0
m(Fi−2) = 0,

and because H0
m(Ωi−1(M)) ⊆ H0

m(Fi−2) we obtain

Ih4 H0
m(Ωi−1(M)) = 0.

In particular yh4∂i−1(v) = 0 ∈ Ωi−1(M), hence yh4v ∈ Ωi(M).
Therefore,

s = yn−h2−h3−h1v = yn−h1−h2−h3−h4yh4v

is an element of yn−h1−h2−h3−h4ΩR
i (M) ⊆ In−h2−h3−h1−h4ΩR

i (M), and a = b + s
is an element of

Jn−h1−h2ΩR
i (M) + In−h2−h3−h1−h4ΩR

i (M) ⊆ In−h2−h3−h1−h4ΩR
i (M). �
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