

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 218 (2008) 1012-1026

www.elsevier.com/locate/aim

Finite Gorenstein representation type implies simple singularity ☆

Lars Winther Christensen^a, Greg Piepmeyer^{b,1}, Janet Striuli^{b,*}, Ryo Takahashi^c

^a Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
 ^b Department of Mathematics, University of Nebraska, Lincoln, NE 68588, USA
 ^c Department of Mathematical Sciences, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

Received 26 April 2007; accepted 3 March 2008

Available online 9 April 2008

Communicated by David J. Benson

To Lucho Avramov on his sixtieth birthday

Abstract

Let *R* be a commutative noetherian local ring and consider the set of isomorphism classes of indecomposable totally reflexive *R*-modules. We prove that if this set is finite, then either it has exactly one element, represented by the rank 1 free module, or *R* is Gorenstein and an isolated singularity (if *R* is complete, then it is even a simple hypersurface singularity). The crux of our proof is to argue that if the residue field has a totally reflexive cover, then *R* is Gorenstein or every totally reflexive *R*-module is free. © 2008 Elsevier Inc. All rights reserved.

MSC: 14B05; 18G25; 13C14

Keywords: Approximations; Cohen–Macaulay representation type; Covers; Gorenstein dimension; Precovers; Simple singularity; Totally reflexive modules

Corresponding author.

E-mail addresses: lars.w.christensen@ttu.edu (L.W. Christensen), greg@math.missouri.edu (G. Piepmeyer), jstriuli2@math.unl.edu (J. Striuli), takahasi@math.shinshu-u.ac.jp (R. Takahashi).

0001-8708/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.aim.2008.03.005

^{*} This work was done while L.W.C. visited University of Nebraska–Lincoln (UNL), partly supported by a grant from the Carlsberg Foundation. Part of it was done during R.T.'s visit to UNL supported by NSF grant DMS 0201904. J.S. was supported by NSF grant DMS 0201904.

¹ Current address: Department of Mathematics, University of Missouri, Columbia, MO 65211, USA.

0. Introduction

Remarkable connections between the module theory of a local ring and the character of its singularity emerged in the 1980s. They show how finiteness conditions on the category of maximal Cohen–Macaulay modules² characterize particular isolated singularities. We develop these connections in several directions.

A local ring with only finitely many isomorphism classes of indecomposable maximal Cohen– Macaulay modules is said to be of finite Cohen–Macaulay (CM) representation type. By work of Auslander [5], every complete Cohen–Macaulay local ring of finite CM representation type is an isolated singularity.

Specialization to Gorenstein rings opens to a finer description of the singularities; it centers on the simple hypersurface singularities identified in Arnol'd's work on germs of holomorphic functions [1]. By work of Buchweitz, Greuel, and Schreyer [12], Herzog [18], and Yoshino [32], a complete Gorenstein ring of finite CM representation type is a simple singularity in the generalized sense of [32]. Under extra assumptions on the ring, the converse holds by work of Knörrer [21] and Solberg [25].

In this introduction, R is a commutative noetherian local ring with maximal ideal m and residue field k. To avoid the *a priori* condition in [12,18,32] that R is Gorenstein, we replace finite CM representation type with a finiteness condition on the category $\mathcal{G}(R)$ of modules of Gorenstein dimension 0. Over a Gorenstein ring, these modules are precisely the maximal Cohen–Macaulay modules, but they are known to exist over any ring, unlike maximal Cohen–Macaulay modules.

Theorem A. Let R be complete. If the set of isomorphism classes of non-free indecomposable modules in $\mathcal{G}(R)$ is finite and not empty, then R is a simple singularity.

The category $\mathcal{G}(R)$ was introduced by Auslander and Bridger [4,6]. An *R*-module *G* is in $\mathcal{G}(R)$ if there is an exact complex of finitely generated free *R*-modules

$$\mathbf{F} = \cdots \to F_{n+1} \xrightarrow{\partial_{n+1}} F_n \xrightarrow{\partial_n} F_{n-1} \to \cdots,$$

such that G is isomorphic to Coker ∂_0 and the complex $\operatorname{Hom}_R(F, R)$ is exact. Every finitely generated free *R*-module is in $\mathcal{G}(R)$, and the modules in this category have Gorenstein dimension 0 as in [4,6]; following [11] we call them *totally reflexive*.

The aforementioned works [12,18,32] show that Theorem A follows from the next result, which is proved as (4.3).

Theorem B. If the set of isomorphism classes of indecomposable modules in $\mathcal{G}(R)$ is finite, then *R* is Gorenstein or every module in $\mathcal{G}(R)$ is free.

As this theorem does not require R to be complete, we considerably strengthen Theorem A using work of Huneke, Leuschke, and R. Wiegand [19,22,30]; this occurs in (4.5). Theorem B was conjectured by R. Takahashi [29], who proved it for henselian rings of depth at most two [27–29]. The class of rings over which all totally reflexive modules are free is poorly understood, but it is

 $^{^2}$ The finitely generated modules whose depth equals the Krull dimension of the ring.

known to include all Golod rings [11], in particular, all Cohen-Macaulay rings of minimal multiplicity.

To prove Theorem B we use a notion of $\mathcal{G}(R)$ -approximations, which is close kin to the CMapproximations of Auslander and Buchweitz [7]. When R is Gorenstein, a $\mathcal{G}(R)$ -approximation is exactly a CM-approximation. By [7], every module over a Gorenstein ring has a CMapproximation. Our proof of Theorem B goes via the following strong converse, proved as (3.4).

Theorem C. Let R be a local ring and assume there is a non-free module in $\mathcal{G}(R)$. If the residue field k has a $\mathcal{G}(R)$ -approximation, then R is Gorenstein.

This theorem complements recent developments in relative homological algebra. The notion of totally reflexive modules has two extensions to non-finitely generated modules; see [13] for details. One is Gorenstein projective modules, which allows arbitrary free modules in the definition above. By recent work of Jørgensen [20], every module over a complete local ring has a Gorenstein projective precover. The other extension is Gorenstein flat modules. By a result of Enochs and López-Ramos [15], every module has a Gorenstein flat precover.

Theorem C counterposes these developments; it shows that for finitely generated modules, the precovers found in [20] and [15] cannot, in general, be finitely generated. Assume that *R* is complete. Then a finitely generated *R*-module has a $\mathcal{G}(R)$ -approximation if and only if it has a $\mathcal{G}(R)$ -precover. Assume further that *R* is not Gorenstein. Theorem C shows that if $X \to k$ is a Gorenstein projective/flat precover and *X* is not free, then *X* is not finitely generated.

1. Categories and covers

In this paper, rings are commutative and noetherian; modules are finitely generated (unless otherwise specified). We write mod(R) for the category of finitely generated modules over a ring R.

For an *R*-module *M*, we denote by M_i the *i*th syzygy in a free resolution. When *R* is local, we denote by $\Omega_i^R(M)$ the *i*th syzygy in the minimal free resolution of *M*. For an *R*-module *M*, set $M^* = \text{Hom}_R(M, R)$; we refer to this module as the *algebraic dual* of *M*.

We only consider full subcategories of mod(R); this allows us to define a subcategory by specifying its objects. In the following, \mathcal{B} is a subcategory of mod(R).

(1.1) Closures. Recall that the category \mathcal{B} is said to be closed under extensions if for every short exact sequence $0 \to B \to X \to B' \to 0$ with B and B' in \mathcal{B} also X is in \mathcal{B} . The closure of \mathcal{B} under extensions is by definition the smallest subcategory containing \mathcal{B} and closed under extensions. Recall also that \mathcal{B} is closed under direct sums and direct summands when a direct sum $M \oplus N$ is in \mathcal{B} if and only if both summands are in \mathcal{B} . The closure of \mathcal{B} under addition is by definition the smallest subcategory containing \mathcal{B} and closed under summands; we denote it by $add(\mathcal{B})$.

We define the closure $\langle \mathcal{B} \rangle$ to be the smallest subcategory containing \mathcal{B} and closed under direct summands and extensions. It is straightforward to verify that the closure $\langle \mathcal{B} \rangle$ is reached by countable alternating iteration, starting with \mathcal{B} , between closure under addition and closure under extensions.

We say that \mathcal{B} is *closed under algebraic duality* if for every module B in \mathcal{B} the module B^* is also in \mathcal{B} . Similarly, we say that \mathcal{B} is *closed under syzygies* if for every module B in \mathcal{B} every first syzygy B_1 is in \mathcal{B} ; then every syzygy B_i is in \mathcal{B} .

(1.2) **Precovers and covers.** Let *M* be an *R*-module. A *B*-precover of *M* is a homomorphism $\varphi: B \to M$, with $B \in \mathcal{B}$, such that every homomorphism $X \to M$ with $X \in \mathcal{B}$, factors through φ ; i.e., the homomorphism

$$\operatorname{Hom}_R(X, \varphi) : \operatorname{Hom}_R(X, B) \to \operatorname{Hom}_R(X, M)$$

is surjective for each module X in \mathcal{B} . A \mathcal{B} -precover $\varphi: B \to M$ is a \mathcal{B} -cover if every $\gamma \in \text{Hom}_R(B, B)$ with $\varphi \gamma = \varphi$ is an automorphism.

Note that if the category \mathcal{B} contains R, then every \mathcal{B} -precover is surjective.

(1.3) If there are only finitely many isomorphism classes of indecomposable modules in \mathcal{B} , then every finitely generated *R*-module has a \mathcal{B} -precover; see [2, Prop. 4.2].

(1.4) Consider a diagram $B \xrightarrow{\varphi} M \oplus N \xrightarrow{\pi} M$, where $\pi \iota$ is the identity on M. If φ is a \mathcal{B} -precover, then so is $\pi \varphi : B \to M$.

The next two lemmas appear in Xu's book [31, 2.1.1 and 1.2.8]. We include a proof of the second one since Xu left it to the reader.

(1.5) Wakamatsu's lemma. Let \mathcal{B} be a subcategory of mod(R), and let φ be a \mathcal{B} -cover of an *R*-module *M*. If \mathcal{B} is closed under extensions, then $\text{Ext}^1_R(X, \text{Ker } \varphi) = 0$ for all $X \in \mathcal{B}$.

(1.6) Lemma. Let \mathcal{B} be a subcategory of mod(R), and let M be an R-module. If M has a \mathcal{B} -cover, then a \mathcal{B} -precover $\varphi: X \to M$ is a cover if and only if Ker φ contains no non-zero direct summand of X.

Proof. Let $\psi : Y \to M$ be a \mathcal{B} -cover. For the "if" part, consider the commutative diagram below, where α and β are given by the precovering properties of φ and ψ .

Since $\psi\beta\alpha = \psi$ and ψ is a cover, the composite $\beta\alpha$ is an automorphism, so β is surjective. It also follows that X is isomorphic to Ker $\beta \oplus \text{Im} \alpha$. As Ker φ contains no non-zero summand of X, the inclusion Ker $\beta \subseteq \text{Ker } \varphi$ implies that β is also injective. Consequently, φ is a β -cover.

For the "only if" part, consider a decomposition $X = Y \oplus Z$, and assume there is an inclusion $Z \subseteq \text{Ker } \varphi$. Let π be the endomorphism of X projecting onto Y, then $\varphi \pi = \varphi$. Since φ is a cover, π is an automorphism, whence Z = 0. \Box

2. Approximations and reflexive subcategories

Stability of (pre-)covers under base change is delicate to track. To avoid this task, we develop a notion between precover and cover. The next definition is in line with that of CM-approximations [7]; for $\mathcal{G}(R)$ it broadens the notion used in [11].

(2.1) **Definitions.** Let \mathcal{B} be a subcategory of mod(R) and set

 $\mathcal{B}^{\perp} = \{ L \in \operatorname{mod}(R) \mid \operatorname{Ext}_{R}^{i}(B, L) = 0 \text{ for all } B \in \mathcal{B} \text{ and all } i > 0 \}.$

Let M be an R-module. A \mathcal{B} -approximation of M is a short exact sequence

$$0 \rightarrow L \rightarrow B \rightarrow M \rightarrow 0$$
,

where *B* is in \mathcal{B} and *L* is in \mathcal{B}^{\perp} .

(2.2) Let \mathcal{B} be a subcategory of mod(R) and M be an R-module.

- (a) If $0 \to \text{Ker} \varphi \to B \xrightarrow{\varphi} M \to 0$ is a *B*-approximation of *M*, then φ is a *special B*-precover of *M*; see [31, Prop. 2.1.3].
- (b) If $B \xrightarrow{\varphi} M$ is a surjective \mathcal{B} -cover, and \mathcal{B} is closed under syzygies and extensions, then the sequence $0 \to \text{Ker } \varphi \to B \xrightarrow{\varphi} M \to 0$ is a \mathcal{B} -approximation of M by Wakamatsu's lemma.
- (c) Assume mod(R) has the Krull–Schmidt property (e.g., R is henselian) and B is closed under direct summands. The module M has a B-cover if and only if it has a B-precover; see [29, Cor. 2.5].

The next two results study the behavior of approximations under base change.

Let $\vartheta: R \to S$ be a ring homomorphism. We say that ϑ is of finite flat dimension if *S*, viewed as an *R*-module through ϑ , has a bounded resolution by flat *R*-modules. We write $\operatorname{Tor}_{i>0}^{R}(S, \mathcal{B}) = 0$ if for all $B \in \mathcal{B}$, and for all i > 0, the modules $\operatorname{Tor}_{i}^{R}(S, B)$ vanish. We denote by $S \otimes \mathcal{B}$ the subcategory of *S*-modules $S \otimes_{R} B$ with $B \in \mathcal{B}$.

(2.3) Lemma. Let $R \to S$ be a ring homomorphism of finite flat dimension. Let \mathcal{B} be a subcategory of mod(R) such that $\operatorname{Tor}_{i>0}^{R}(S, \mathcal{B}) = 0$. If $L \in \mathcal{B}^{\perp}$ and $\operatorname{Tor}_{i>0}^{R}(S, L) = 0$, then for every $m \in \mathbb{Z}$ and every $B \in \mathcal{B}$ there is an isomorphism

$$\operatorname{Ext}_{S}^{m}(S \otimes_{R} B, S \otimes_{R} L) \cong \operatorname{Tor}_{-m}^{R}(S, \operatorname{Hom}_{R}(B, L)).$$

In particular, there are isomorphisms $\operatorname{Hom}_{S}(S \otimes_{R} B, S \otimes_{R} L) \cong S \otimes_{R} \operatorname{Hom}_{R}(B, L)$, and $S \otimes_{R} L$ is in $(S \otimes B)^{\perp}$.

Proof. Fix $B \in \mathcal{B}$. Take a free resolution $E \to B$ and a bounded flat resolution $F \to S$ over R. By the vanishing of (co)homology, the induced morphisms

 $S \otimes_R E \to S \otimes_R B$, $F \otimes_R L \to S \otimes_R L$, and $\operatorname{Hom}_R(B, L) \to \operatorname{Hom}_R(E, L)$

are homology isomorphisms. In particular, the first one is a free resolution of the S-module $S \otimes_R B$. The functors $\text{Hom}_R(E, -)$ and $F \otimes_R -$ preserve homology isomorphisms. This explains the first, third, and fifth isomorphisms below.

$$\operatorname{Ext}_{S}^{m}(S \otimes_{R} B, S \otimes_{R} L) \cong \operatorname{H}^{m}(\operatorname{Hom}_{S}(S \otimes_{R} E, S \otimes_{R} L))$$
$$\cong \operatorname{H}^{m}(\operatorname{Hom}_{R}(E, S \otimes_{R} L))$$

1016

$$\cong \operatorname{H}^{m} \left(\operatorname{Hom}_{R}(E, F \otimes_{R} L) \right) \cong \operatorname{H}^{m} \left(F \otimes_{R} \operatorname{Hom}_{R}(E, L) \right) \cong \operatorname{H}^{m} \left(F \otimes_{R} \operatorname{Hom}_{R}(B, L) \right) \cong \operatorname{Tor}_{-m}^{R} \left(S, \operatorname{Hom}_{R}(B, L) \right).$$

The second isomorphism follows from Hom-tensor adjointness, and the fourth is tensor evaluation; see [17, Prop. II.5.14]. For m = 0 the composite isomorphism reads $\operatorname{Hom}_S(S \otimes_R B, S \otimes_R L) \cong S \otimes_R \operatorname{Hom}_R(B, L)$. That $S \otimes_R L$ is in $\langle S \otimes B \rangle^{\perp}$ follows as Tor_i^R is zero for i < 0. \Box

(2.4) **Proposition.** Let $R \to S$ be a ring homomorphism of finite flat dimension and \mathcal{B} be a subcategory of mod(R). Let M be an R-module with a \mathcal{B} -approximation $0 \to L \to B \to M \to 0$. If $\operatorname{Tor}_{i>0}^{R}(S, \mathcal{B}) = 0$ and $\operatorname{Tor}_{i>0}^{R}(S, M) = 0$, then

 $0 \to S \otimes_R L \to S \otimes_R B \to S \otimes_R M \to 0$

is an $(S \otimes B)$ -approximation.

Proof. By the assumptions on \mathcal{B} and M, application of the functor $S \otimes_R -$ to the \mathcal{B} -approximation of M yields the desired short exact sequence and also equalities $\operatorname{Tor}_{i>0}^R(S, L) = 0$. Now Lemma (2.3) gives that $S \otimes_R L$ is in $\langle S \otimes \mathcal{B} \rangle^{\perp}$. \Box

(2.5) Let \mathcal{B} be a subcategory of mod(R) with $R \in \mathcal{B}^{\perp}$. For every $B \in \mathcal{B}$ and every R-module N, dimension shifting yields

$$\operatorname{Ext}_{R}^{i}(B, N) \cong \operatorname{Ext}_{R}^{i+h}(B, N_{h}) \text{ for } i > 0 \text{ and } h \ge 0.$$

Moreover, for $h \ge 0$ the algebraic dual B^* is an *h*th syzygy of $(B_h)^*$, so

$$\operatorname{Ext}_{R}^{i}(B^{*}, N) \cong \operatorname{Ext}_{R}^{i+h}((B_{h})^{*}, N) \text{ for } i > 0 \text{ and } h \ge 0.$$

If, furthermore, \mathcal{B} is closed under syzygies and algebraic duality, then these isomorphisms combine to yield

$$\operatorname{Ext}_{R}^{i}(B^{*}, N_{j}) \cong \operatorname{Ext}_{R}^{i}((B_{h})^{*}, N_{j-h}) \quad \text{for } i > 0 \text{ and } j \ge h \ge 0.$$

$$(2.5.1)$$

In particular, (2.5.1) holds when \mathcal{B} is a category satisfying the next definition.

(2.6) **Definition.** A subcategory \mathcal{B} of mod(R) is *reflexive* if R is in $\mathcal{B} \cap \mathcal{B}^{\perp}$ and \mathcal{B} is closed under

- (1) direct sums and direct summands,
- (2) syzygies, and
- (3) algebraic duality.

It is standard that the category $\mathcal{G}(R)$ of totally reflexive *R*-modules is a reflexive subcategory of mod(*R*). Moreover, using the characterization of $\mathcal{G}(R)$ provided by [13, (1.1.2) and (4.1.4)], it

is straightforward to verify that every reflexive subcategory of mod(R) is, in fact, a subcategory of $\mathcal{G}(R)$.

(2.7) In the rest of the paper, $\mathcal{F}(R)$ denotes the category of finitely generated free *R*-modules. Let \mathcal{B} be a reflexive subcategory of mod(*R*). There are containments

$$\mathcal{F}(R) \subseteq \mathcal{B} \subseteq \mathcal{G}(R).$$

Further, let $R \rightarrow S$ be a ring homomorphism of finite flat dimension, then

$$\operatorname{Tor}_{i>0}^{R}(S,\mathcal{B}) = 0,$$

as every module in \mathcal{B} is an infinite syzygy.

The next observation is crucial for our proofs of the main theorems.

(2.8) Assume mod(R) has the Krull–Schmidt property (e.g., R is henselian) and let \mathcal{B} be a reflexive subcategory of mod(R) closed under extensions. We claim that an R-module M has a \mathcal{B} -precover if and only if it has a \mathcal{B} -approximation. Indeed, let $\varphi: B \to M$ be a \mathcal{B} -precover; by (2.2)(c) the module M also has a \mathcal{B} -cover. Decompose B as $B' \oplus B''$, where B'' is the largest direct summand of B contained in Ker φ . By Lemma (1.6) the factorization $\varphi': B' \to M$ is a cover, and by (2.2)(b) the sequence $0 \to \text{Ker} \varphi' \to B' \to M \to 0$ is a \mathcal{B} -approximation.

(2.9) Lemma. Let \mathcal{B} be a reflexive subcategory of mod(R) and M be an R-module. If M has a \mathcal{B} -approximation, then every syzygy of M has a \mathcal{B} -approximation.

Proof. Let $0 \to L \to B \to M \to 0$ be a \mathcal{B} -approximation. It is sufficient to prove that every first syzygy M_1 has a \mathcal{B} -approximation. By the horseshoe construction, there is a short exact sequence $0 \to L_1 \to B_1 \to M_1 \to 0$, and the syzygy B_1 is in \mathcal{B} by assumption. Let X be in \mathcal{B} . Since \mathcal{B} is reflexive, there is an isomorphism $X \cong X^{**}$, and also the module $((X^*)_1)^*$ is in \mathcal{B} . Now (2.5.1) yields the second isomorphism in the chain

$$\operatorname{Ext}_{R}^{i}(X, L_{1}) \cong \operatorname{Ext}_{R}^{i}(X^{**}, L_{1}) \cong \operatorname{Ext}_{R}^{i}(((X^{*})_{1})^{*}, L) = 0. \qquad \Box$$

(2.10) Proposition. Let $R \to S$ be a ring homomorphism of finite flat dimension. If \mathcal{B} is a reflexive subcategory of mod(R), then $\langle S \otimes \mathcal{B} \rangle$ is a reflexive subcategory of mod(S). In particular, $\langle S \otimes \mathcal{G}(R) \rangle$ is reflexive.

Proof. The *S*-module *S* is in $\langle S \otimes B \rangle$. As $R \in B^{\perp}$, it follows from (2.7) and Lemma (2.3) that *S* is in $\langle S \otimes B \rangle^{\perp}$. By definition, $\langle S \otimes B \rangle$ is closed under direct sums and direct summands; this leaves (2) and (3) in Definition (2.6) to verify.

First we prove closure under syzygies. Take $B \in \mathcal{B}$ and consider a short exact sequence $0 \rightarrow B_1 \rightarrow F \rightarrow B \rightarrow 0$, where F is a free R-module. By assumption, the syzygy B_1 is in \mathcal{B} . By (2.7) the sequence

$$0 \to S \otimes_R B_1 \to S \otimes_R F \to S \otimes_R B \to 0$$

is exact. It shows that the syzygy $S \otimes_R B_1$ of $S \otimes_R B$ is in $S \otimes B$. Moreover, it follows that any summand of $S \otimes_R B$ has a first syzygy in $add(S \otimes B)$, in particular, in $\langle S \otimes B \rangle$. By Schanuel's lemma, a module in $\langle S \otimes B \rangle$ with some first syzygy in $\langle S \otimes B \rangle$ has every first syzygy in $\langle S \otimes B \rangle$. Finally, given a short exact sequence $0 \to M \to X \to N \to 0$, where M, N, and their first syzygies are in $\langle S \otimes B \rangle$, we claim that also a first syzygy of X is in $\langle S \otimes B \rangle$. Indeed, take presentations of M and N. Since $\langle S \otimes B \rangle$ is closed under extensions, it follows from the horseshoe construction that a first syzygy of X is in $\langle S \otimes B \rangle$.

Next we prove closure under algebraic duality. Take $B \in \mathcal{B}$ and note that by (2.7), Lemma (2.3) applies (with L = R) to yield the isomorphism

$$\operatorname{Hom}_{S}(S \otimes_{R} B, S) \cong S \otimes_{R} \operatorname{Hom}_{R}(B, R).$$

Thus, the algebraic dual of $S \otimes_R B$ is in $S \otimes B$. Moreover, the algebraic dual of any summand of $S \otimes_R B$ is in $add(S \otimes B)$, in particular, in $\langle S \otimes B \rangle$. It is now sufficient to prove that for every short exact sequence $0 \to M \to X \to N \to 0$, where M, N, and the duals M^* and N^* are in $\langle S \otimes B \rangle$, also the dual X^* is in $\langle S \otimes B \rangle$. Since $\langle S \otimes B \rangle$ is closed under extensions, this is immediate from the exact sequence

$$0 \to N^* \to X^* \to M^* \to \operatorname{Ext}^1_S(N, S),$$

where $\operatorname{Ext}^{1}_{S}(N, S) = 0$ as S is in $\langle S \otimes \mathcal{B} \rangle^{\perp}$. \Box

3. Approximations detect the Gorenstein property

The main result of this section is Theorem C from the introduction. Lemma (3.2) furnishes the base case; for that we study a standard homomorphism.

(3.1) For modules X and N over a ring S there is a natural map

$$\theta_{XN}: X \otimes_S N \to \operatorname{Hom}_S(X^*, N),$$

given by evaluation $\theta(x \otimes n)(\zeta) = \zeta(x)n$. Auslander computed the kernel and cokernel of this map in [3, Prop. 6.3]. Because the map is pivotal for our proof of the next lemma, we include a computation for the case where *X* is totally reflexive.

Consider a short exact sequence $0 \rightarrow N_1 \rightarrow F \rightarrow N \rightarrow 0$, where *F* is a free *S*-module. For any totally reflexive *S*-module *X*, the evaluation homomorphism θ_{XF} is an isomorphism, and the commutative diagram

shows that there is an isomorphism $\operatorname{Coker} \theta_{XN} \cong \operatorname{Ext}^1_S(X^*, N_1)$. The snake lemma applies to yield $\operatorname{Ker} \theta_{XN} \cong \operatorname{Coker} \theta_{XN_1} \cong \operatorname{Ext}^1_S(X^*, N_2)$, and then (2.5.1) gives

$$\operatorname{Ker} \theta_{XN} \cong \operatorname{Ext}^{1}_{S}((X_{2})^{*}, N) \quad \text{and} \quad \operatorname{Coker} \theta_{XN} \cong \operatorname{Ext}^{1}_{S}((X_{1})^{*}, N).$$
(3.1.1)

(3.2) Lemma. Let (S, n, l) be a complete local ring of depth 0. Let C be a reflexive subcategory of mod(S). If l has a C-approximation and l is not in C, then $C = \mathcal{F}(S)$.

Proof. Consider a *C*-approximation $0 \to L \xrightarrow{\alpha} C \to \ell \to 0$, and dualize to get $0 \to \ell^* \to C^* \xrightarrow{\alpha^*} L^*$. Let *I* be the image of α^* , and let φ be the factorization of α^* through the inclusion $I \hookrightarrow L^*$.

First we prove that the surjection φ is a $\langle C \rangle$ -precover of I. Let X be a module in $\langle C \rangle$. If X is a free S-module, then any homomorphism $X \to I$ lifts through φ . We may now assume that X is indecomposable and not free. Because $\operatorname{Hom}_S(X, I)$ is a submodule of $\operatorname{Hom}_S(X, L^*)$, it suffices to prove surjectivity of

$$\operatorname{Hom}_{S}(X, \alpha^{*}) : \operatorname{Hom}_{S}(X, C^{*}) \to \operatorname{Hom}_{S}(X, L^{*}),$$

which we do next.

The vertical maps in the commutative diagram below are evaluation homomorphisms, see (3.1).

$$\begin{array}{c|c} X \otimes_R L & \xrightarrow{\iota} X \otimes_R C & \longrightarrow X \otimes_R \ell & \longrightarrow 0 \\ \\ \theta_{XL} & & \theta_{XC} & & \theta_{X\ell} \\ 0 & \longrightarrow & \operatorname{Hom}_S(X^*, L) & \longrightarrow & \operatorname{Hom}_S(X^*, C) & \longrightarrow & \operatorname{Hom}_S(X^*, \ell) & \longrightarrow & \operatorname{Ext}^1_S(X^*, L) \end{array}$$

First we argue that the rows of this diagram are short exact sequences. The module X is in $\langle C \rangle$ and hence in $\mathcal{G}(S)$, see (2.7), so $\operatorname{Ext}^1_S(X^*, L) = 0$. Moreover, θ_{XL} is an isomorphism by (3.1.1), hence ι is injective. Next note that for every $\zeta \in X^*$ the image of $\zeta : X \to S$ is in n as X is indecomposable and not free. Thus, for all $x \in X$ and $u \in \ell$, we have $\theta_{X\ell}(x \otimes u)(\zeta) = \zeta(x)u = 0$. Finally, apply $\operatorname{Hom}_S(-, S)$ to the diagram above and use Hom-tensor adjointness to get

The diagram shows that $\text{Hom}_{S}(X, \alpha^{*})$ is surjective, as desired.

Now $\varphi: \mathbb{C}^* \to I$ is a $\langle \mathbb{C} \rangle$ -precover, so by completeness of S, the module I has a $\langle \mathbb{C} \rangle$ -cover; see (2.2)(c). The ring has depth 0, so ℓ^* is a non-zero ℓ -vector space. By the assumptions on \mathbb{C} , the residue field ℓ cannot be a direct summand of \mathbb{C}^* . As Ker $\varphi = \ell^*$, it follows from Lemma (1.6) that φ is a $\langle \mathbb{C} \rangle$ -cover. For every $X \in \langle \mathbb{C} \rangle$ Wakamatsu's lemma gives $\operatorname{Ext}^1_S(X, \ell^*) = 0$. Consequently, every module in \mathbb{C} is projective and hence free, since S is local. \Box

(3.3) Let (R, \mathfrak{m}, k) be a local ring and denote by $\mathcal{M}(R)$ the category of maximal Cohen-Macaulay *R*-modules.

(a) If *R* is Cohen–Macaulay, then $\mathcal{G}(R) \subseteq \mathcal{M}(R)$ by the Auslander–Bridger formula [4, §3.2, Prop. 3]. Conversely, if $\mathcal{G}(R) \subseteq \mathcal{M}(R)$, then *R* is Cohen–Macaulay.

- (b) If *R* is Gorenstein, then the categories *G*(*R*) and *M*(*R*) coincide by [4, §3.2, Thm. 3] and the Auslander–Bridger formula. Conversely, if *G*(*R*) = *M*(*R*), then *R* is Gorenstein. Indeed, *R* is Cohen–Macaulay by (a), so Ω^R_{dim R}(k) is in *M*(*R*), hence in *G*(*R*), and therefore *R* is Gorenstein by [4, §3.2, Rmk. after Thm. 3].
- (c) If R is Gorenstein, then a short exact sequence 0 → L → G → M → 0 is a CM-approximation if and only if it is a G(R)-approximation. This follows from (b) and the fact that L is in M(R)[⊥] if and only if L has finite injective dimension.

If *R* is Gorenstein, then every *R*-module has a CM-approximation by [7, Thm. A]. In view of (3.3)(c) the next result contains a converse, cf. Theorem C.

(3.4) **Theorem.** Let (R, \mathfrak{m}, k) be a local ring and \mathcal{B} be a reflexive subcategory of $\operatorname{mod}(R)$. If k has a \mathcal{B} -approximation, then R is Gorenstein or $\mathcal{B} = \mathcal{F}(R)$.

In our proof of this theorem we use the next lemma. We do not know a reference giving a direct argument, so one is supplied here.

(3.5) Lemma. Let $(R, \mathfrak{m}, \mathsf{k})$ be a local ring, and let $\mathbf{x} = x_1, \ldots, x_n$ be a sequence in $\mathfrak{m} \setminus \mathfrak{m}^2$. If \mathbf{x} is linearly independent modulo \mathfrak{m}^2 , then k is a direct summand of the module $\Omega_n^R(\mathsf{k})/\mathbf{x}\Omega_n^R(\mathsf{k})$.

Proof. Let (K(x), d) be the Koszul complex on x. If necessary, supplement x to a minimal generating sequence x, y for m. Let (F, ∂) be a minimal free resolution of k. The identification R/(x, y) = k lifts to a morphism of complexes $\sigma : K(x, y) \to F$. Serre proves in [24, Appendix I.2] that σ is injective and degreewise split. The natural inclusion $\iota : K(x) \to K(x, y)$ is also degreewise split, so the composite $\rho = \sigma \iota$ is an injective morphism of complexes and degreewise split.

From the short exact sequence $0 \to \Omega_n^R(\mathbf{k}) \xrightarrow{\iota} F_{n-1} \to \Omega_{n-1}^R(\mathbf{k}) \to 0$, we get an exact sequence in homology that reads in part

$$\operatorname{Tor}_{1}^{R}(R/(\mathbf{x}), \Omega_{n-1}^{R}(\mathsf{k})) \to R/(\mathbf{x}) \otimes_{R} \Omega_{n}^{R}(\mathsf{k}) \xrightarrow{R/(\mathbf{x}) \otimes_{R} \iota} R/(\mathbf{x}) \otimes_{R} F_{n-1}.$$
(*)

The module $\operatorname{Tor}_{1}^{R}(R/(\mathbf{x}), \Omega_{n-1}^{R}(\mathsf{k})) \cong \operatorname{Tor}_{n}^{R}(R/(\mathbf{x}), \mathsf{k})$ is annihilated by \mathfrak{m} .

Let *e* be a generator of $\mathbf{K}(\mathbf{x})_n$. The image $\rho_n(e)$ in F_n is a minimal generator as ρ_n is split. Set $\varepsilon = \partial_n \rho_n(e) \in \Omega_n^R(\mathbf{k})$; since \mathbf{F} is minimal, ε is a minimal generator of the syzygy $\Omega_n^R(\mathbf{k})$. The minimal generator $1 \otimes \varepsilon$ of $R/(\mathbf{x}) \otimes_R \Omega_n^R(\mathbf{k})$ is in the kernel of $(R/(\mathbf{x}) \otimes_R \iota)$, as the element $\varepsilon = \partial_n \rho_n(e) = \rho_{n-1} \mathbf{d}_n(e)$ is in $\mathbf{x}F_{n-1}$. By exactness of (*) the element $1 \otimes \varepsilon$ is annihilated by \mathfrak{m} , hence it generates a 1-dimensional k-vector space that is a direct summand of $\Omega_n^R(\mathbf{k})/\mathbf{x}\Omega_n^R(\mathbf{k})$. \Box

Proof of (3.4). We aim to apply Lemma (3.2). By Propositions (2.4) and (2.10), and by faithful flatness of \widehat{R} , we may assume *R* is complete. Set $d = \operatorname{depth} R$; by Lemma (2.9) the *d*th syzygy $\Omega_d^R(\mathbf{k})$ has a \mathcal{B} -approximation:

$$0 \to L \to B \to \Omega_d^R(\mathbf{k}) \to 0.$$

Let $\mathbf{x} = x_1, \ldots, x_d$ be an *R*-regular sequence in $\mathfrak{m} \setminus \mathfrak{m}^2$ linearly independent modulo \mathfrak{m}^2 . The Koszul homology modules

$$H_i(\mathbf{K}(\mathbf{x}) \otimes_R \Omega_d^R(\mathbf{k})) \cong \operatorname{Tor}_i^R(R/(\mathbf{x}), \Omega_d^R(\mathbf{k})) \cong \operatorname{Tor}_{i+d}^R(R/(\mathbf{x}), \mathbf{k})$$

vanish for i > 0, so \mathbf{x} is also $\Omega_d^R(\mathbf{k})$ -regular.

Set S = R/(x); by (2.7) and Proposition (2.4) the sequence

$$0 \to S \otimes_R L \to S \otimes_R B \xrightarrow{\psi} S \otimes_R \Omega_d^R(\mathsf{k}) \to 0$$

is an $\langle S \otimes B \rangle$ -approximation. Moreover, the category $\langle S \otimes B \rangle$ is reflexive by Proposition (2.10). By Lemma (3.5) the residue field k is a direct summand of $S \otimes_R \Omega_d^R(k)$, so by (1.4) there is an $\langle S \otimes B \rangle$ -precover of k. Since S is complete, it follows from (2.8) that k has an $\langle S \otimes B \rangle$ -approximation.

Assume *R* is not Gorenstein. Then *S* is not Gorenstein, so the residue field k is not in $\mathcal{G}(S)$ and hence not in $\langle S \otimes \mathcal{B} \rangle$; see [4, §3.2, Rmk. after Thm. 3] or [13, Thm. (1.4.9)]. By Lemma (3.2) every module in $\langle S \otimes \mathcal{B} \rangle$ is now free, so for every $B \in \mathcal{B}$ the module $S \otimes_R B$ is free over *S*. By (2.7) the sequence \mathbf{x} is *B*-regular; therefore, *B* is a free *R*-module by Nakayama's lemma. \Box

An approximation of a module M is *minimal* if the map onto M is a cover. When R is Gorenstein, every R-module has a minimal CM-approximation by unpublished work of Auslander; see [8, Sec. 4] and [14, Thm. 5.5]. Hence we have

(3.6) Corollary. Let (R, \mathfrak{m}, k) be a local ring and assume there is a non-free module in $\mathcal{G}(R)$. The following are then equivalent:

- (i) R is Gorenstein.
- (ii) k has a $\mathcal{G}(R)$ -approximation.
- (iii) Every finitely generated *R*-module has a minimal $\mathcal{G}(R)$ -approximation.

(3.7) If *R* has a dualizing complex, cf. [17, V.§2], then k has a Gorenstein projective precover $X \to k$ by [20, Thm. 2.11]. Assume *X* is finitely generated, i.e., *X* is in $\mathcal{G}(R)$ and, further, that *R* is henselian. If *X* is free, then it follows from (2.8) that k has a $\mathcal{G}(R)$ -approximation $0 \to L \to X' \to k \to 0$, where *X'* is free. Hence, k is in $\mathcal{G}(R)^{\perp}$ and then $\mathcal{G}(R) = \mathcal{F}(R)$. If *X* is not free, then *R* is Gorenstein by (3.6).

(3.8) Questions. Let $(R, \mathfrak{m}, \mathsf{k})$ be a local ring. If k has a $\mathcal{G}(R)$ -precover, is then $\mathcal{G}(R)$ precovering? If $\mathcal{G}(R)$ is precovering and contains a non-free module, is then *R* Gorenstein?

4. On the number of totally reflexive modules

In this section we prove Theorems A and B. Note that by (1.3) the latter would follow immediately from a positive answer to the second question in (3.8).

(4.1) Lemma. Let R be a local ring and M and N be finitely generated R-modules. If only finitely many isomorphism classes of R-modules X can fit in a short exact sequence $0 \rightarrow N \rightarrow X \rightarrow M \rightarrow 0$, then the R-module $\text{Ext}_{R}^{1}(M, N)$ has finite length.

Proof. Given an *R*-module *X*, we denote by [X] the subset of $\operatorname{Ext}_R^1(M, N)$ whose elements have representatives of the form $0 \to N \to Y \to M \to 0$, where $Y \cong X$. By assumption, there exist non-isomorphic *R*-modules X_0, \ldots, X_n such that $\operatorname{Ext}_R^1(M, N)$ is the disjoint union of the sets $[X_i]$. We may take $X_0 = M \oplus N$, so $[X_0]$ is the zero submodule of $\operatorname{Ext}_R^1(M, N)$. We must prove that there is an integer q > 0 such that $\operatorname{m}^q \operatorname{Ext}_R^1(M, N)$ is contained in $[X_0]$.

By [16, Cor. 1] there are integers p_i such that if $M/\mathfrak{m}^p M \oplus N/\mathfrak{m}^p N \cong X_i/\mathfrak{m}^p X_i$ for some $p \ge p_i$, then $X_i \cong M \oplus N$. Set $q = \max\{p_1, \ldots, p_n\}$. Take a short exact sequence ξ in $\mathfrak{m}^q \operatorname{Ext}^1_R(M, N)$; it belongs to some set $[X_i]$. By [26, Thm. 1.1] the sequence $\xi \otimes_R R/\mathfrak{m}^q$ splits, so $M/\mathfrak{m}^q M \oplus N/\mathfrak{m}^q N \cong X_i/\mathfrak{m}^q X_i$. By the choice of q this implies $X_i \cong M \oplus N$, so i = 0, i.e. ξ is in the zero submodule $[X_0]$. \Box

Let $R \to S$ be a flat ring homomorphism. It does not follow from the natural isomorphism $S \otimes_R \operatorname{Ext}^1_R(M, N) \cong \operatorname{Ext}^1_S(S \otimes_R M, S \otimes_R N)$ that every extension of the *S*-modules $S \otimes_R N$ and $S \otimes_R M$ has the form $S \otimes_R X$ for some *R*-module *X*. In a seminar, Roger Wiegand alerted us to the next result.

(4.2) Lemma. Let $(R, \mathfrak{m}) \to (S, \mathfrak{n})$ be a flat ring homomorphism with $\mathfrak{m}S = \mathfrak{n}$ and $R/\mathfrak{m} \cong S/\mathfrak{n}$. Let M and N be finitely generated R-modules and ξ be an element of the S-module $\operatorname{Ext}^1_S(S \otimes_R M, S \otimes_R N)$. If the R-module $\operatorname{Ext}^1_R(M, N)$ has finite length, then there is an element χ in $\operatorname{Ext}^1_R(M, N)$ such that $\xi = S \otimes_R \chi$.

Proof. The functor $S \otimes_R -$ from the category mod(R) to itself induces a natural isomorphism $K \to S \otimes_R K$ on *R*-modules of finite length. Applied to $Ext^1_R(M, N)$ this yields the first isomorphism below

$$\operatorname{Ext}^{1}_{R}(M,N) \xrightarrow{\cong} S \otimes_{R} \operatorname{Ext}^{1}_{R}(M,N) \xrightarrow{\cong} \operatorname{Ext}^{1}_{S}(S \otimes_{R} M, S \otimes_{R} N).$$

The composite sends an exact sequence χ to $S \otimes_R \chi$. \Box

The next result is Theorem B from the introduction.

(4.3) **Theorem.** Let *R* be a local ring. If the set of isomorphism classes of indecomposable modules in $\mathcal{G}(R)$ is finite, then *R* is Gorenstein or $\mathcal{G}(R) = \mathcal{F}(R)$.

Proof. Assume there are only finitely many isomorphism classes of indecomposable modules in $\mathcal{G}(R)$. By (1.3) the residue field k then has a $\mathcal{G}(R)$ -precover $\varphi : B \to k$. We claim that $\widehat{R} \otimes_R \varphi$ is an $\langle \widehat{R} \otimes \mathcal{G}(R) \rangle$ -precover of k. Since \widehat{R} is complete, this implies the existence of an $\langle \widehat{R} \otimes \mathcal{G}(R) \rangle$ -approximation of k, see (2.8), and the desired conclusion follows from Theorem (3.4) and faithful flatness of \widehat{R} .

To prove the claim, we must show that

$$\operatorname{Hom}_{\widehat{R}}(H', \widehat{R} \otimes_R \varphi) : \operatorname{Hom}_{\widehat{R}}(H', \widehat{R} \otimes_R B) \to \operatorname{Hom}_{\widehat{R}}(H', \mathsf{k})$$

is surjective for every module $H' \in \langle \widehat{R} \otimes \mathcal{G}(R) \rangle$. By flatness of \widehat{R} , surjectivity holds for modules in $\widehat{R} \otimes \mathcal{G}(R)$ and hence for every module in $\operatorname{add}(\widehat{R} \otimes \mathcal{G}(R))$. It is now sufficient to prove that the category $\operatorname{add}(\widehat{R} \otimes \mathcal{G}(R))$ is closed under extensions, because then $\langle \widehat{R} \otimes \mathcal{G}(R) \rangle$ is $\operatorname{add}(\widehat{R} \otimes \mathcal{G}(R))$. First we show that $\widehat{R} \otimes \mathcal{G}(R)$ is closed under extensions. Fix modules *G* and *K* in $\mathcal{G}(R)$, and consider short exact sequences $0 \to G \to H \to K \to 0$. Each *H* is in $\mathcal{G}(R)$, and the minimal number of generators of each *H* is bounded by the sum of the numbers of minimal generators for *G* and *K*. Since the number of indecomposable modules in $\mathcal{G}(R)$ is finite, there are, up to isomorphism, only finitely many such modules *H*. By Lemma (4.1) the module $\operatorname{Ext}^1_R(K, G)$ has finite length, and by (4.2) every element of $\operatorname{Ext}^1_{\widehat{R}}(\widehat{R} \otimes_R K, \widehat{R} \otimes_R G)$ is extended from $\operatorname{Ext}^1_R(K, G)$.

To prove that $\operatorname{add}(\widehat{R} \otimes \mathcal{G}(R))$ is closed under extensions, let G' and K' be summands of extended modules, i.e., $G' \oplus G'' \cong \widehat{R} \otimes_R G$ and $K' \oplus K'' \cong \widehat{R} \otimes_R K$ for modules $G, K \in \mathcal{G}(R)$. Consider a short exact sequence $0 \to G' \to H' \to K' \to 0$. Then a sequence

$$0 \to G' \oplus G'' \to H' \oplus G'' \oplus K'' \to K' \oplus K'' \to 0,$$

is exact, so by what has already been proved, the middle term $H' \oplus G'' \oplus K''$ is in $\widehat{R} \otimes \mathcal{G}(R)$; whence H' is in $\operatorname{add}(\widehat{R} \otimes \mathcal{G}(R))$. \Box

In view of (3.3)(a) we have

(4.4) Corollary. Let R be a Cohen–Macaulay local ring. If R is of finite CM representation type, then R is Gorenstein or $\mathcal{G}(R) = \mathcal{F}(R)$.

The next result contains Theorem A from the introduction.

(4.5) **Theorem.** Let R be a local ring and assume the set of isomorphism classes of indecomposable modules in $\mathcal{G}(R) \setminus \mathcal{F}(R)$ is finite and not empty. Then R is Gorenstein and an isolated singularity. Further, \widehat{R} is a hypersurface singularity; if finite CM representation type ascends from R to \widehat{R} , then \widehat{R} is even a simple singularity.

Proof. By Theorem 4.3 the ring *R* is Gorenstein. From (3.3)(b) it follows that *R* is of finite CM representation type and hence an isolated singularity by [19, Cor. 2]. By [18, Satz 1.2] the completion \hat{R} is a hypersurface singularity and, assuming that also \hat{R} is of finite CM representation type, it follows from [32, Cor. (8.16)] that \hat{R} is a simple singularity. \Box

(4.6) Remark. In [23] Schreyer conjectured that a Cohen–Macaulay local k-algebra R is of finite CM representation type if and only if \hat{R} is of finite CM representation type. In [30] R. Wiegand proved descent of finite CM representation type from \hat{R} to R for any local ring R. Ascent is verified in [30] when R is Cohen–Macaulay and either \hat{R} is an isolated singularity or dim $R \leq 1$. Ascent also holds for excellent Cohen–Macaulay local rings by work of Leuschke and R. Wiegand [22].

(4.7) Remarks. Constructing rings with infinitely many totally reflexive modules is easy using Theorem 4.3. Indeed, let Q be a local ring of positive dimension and set $R = Q[[X]]/(X^2)$. As R is not reduced, it is not an isolated singularity. The R-module R/(X) is in $\mathcal{G}(R)$ and is not free, cf. [13, exa. (4.1.5)], so by (4.3) there are infinitely many non-isomorphic indecomposable modules in $\mathcal{G}(R)$.

More generally, Avramov, Gasharov, and Peeva [9] construct a non-free totally reflexive module³ G over any ring of the form $R \cong Q/(x)$, where (Q, \mathfrak{q}) is local and $x \in \mathfrak{q}^2$ is a Q-regular sequence. Such a ring R is said to have an embedded deformation of codimension c, where c is the length of x. Again (4.3) implies the existence of infinitely many non-isomorphic indecomposable modules in $\mathcal{G}(R)$. If \widehat{R} has an embedded deformation of codimension $c \ge 2$, a recent argument of Avramov and Iyengar builds from G an infinite family of non-isomorphic indecomposable modules in $\mathcal{G}(R)$; see [10, Thm. 6.8 and proof of 6.4.(1)]. For such R, this gives a constructive proof of the abundance of modules in $\mathcal{G}(R)$.

(4.8) Question. Let *R* be a local ring that is not Gorenstein. Given an indecomposable totally reflexive *R*-module $G \ncong R$, are there constructions that produce infinite families of non-isomorphic indecomposable modules in $\mathcal{G}(R)$?

Acknowledgment

We thank Luchezar Avramov for supporting R.T.'s visit to the University of Nebraska and for advice in the process of writing up this work.

References

- Vladimir I. Arnol'd, Critical points of smooth functions, in: Proceedings of the International Congress of Mathematicians, vol. 1, Vancouver, BC, 1974, Canad. Math. Congress, Montreal, Quebec, 1975, pp. 19–39, MR0431217.
- [2] Maurice Auslander, Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1) (1980) 61–122, MR591246.
- [3] Maurice Auslander, Coherent functors, in: Proc. Conf. Categorical Algebra, La Jolla, CA, 1965, Springer-Verlag, New York, 1966, pp. 189–231, MR0212070.
- [4] Maurice Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d'après des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. Available from http://www.numdam.org, MR0225844.
- [5] Maurice Auslander, Finite type implies isolated singularity, in: Orders and Their Applications, Oberwolfach, 1984, in: Lecture Notes in Math., vol. 1142, Springer-Verlag, Berlin, 1985, pp. 1–4, MR812487.
- [6] Maurice Auslander, Mark Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969), MR0269685.
- [7] Maurice Auslander, Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, in: Colloque en l'honneur de Pierre Samuel, Orsay, 1987, Mém. Soc. Math. Fr. (N.S.) 38 (1989) 5–37, MR1044344.
- [8] Maurice Auslander, Songqing Ding, Øyvind Solberg, Liftings and weak liftings of modules, J. Algebra 156 (2) (1993) 273–317, MR1216471.
- [9] Luchezar L. Avramov, Vesselin N. Gasharov, Irena V. Peeva, Complete intersection dimension, Publ. Math. Inst. Hautes Études Sci. 86 (1997) 67–114 (1998), MR1608565.
- [10] Luchezar L. Avramov, Srikanth B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (1) (2007) 1–20, MR2346182.
- [11] Luchezar L. Avramov, Alex Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2) (2002) 393–440, MR1912056.
- [12] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, Frank-Olaf Schreyer, Cohen–Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1) (1987) 165–182, MR877011.
- [13] Lars Winther Christensen, Gorenstein Dimensions, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000, MR1799866.
- [14] Edgar E. Enochs, Overtoun M.G. Jenda, Jinzhong Xu, A generalization of Auslander's last theorem, Algebr. Represent. Theory 2 (3) (1999) 259–268, MR1715748.

³ Actually, even a module of CI-dimension 0 as defined in [9, (1.2)].

- [15] Edgar E. Enochs, J.A. López-Ramos, Kaplansky classes, Rend. Sem. Mat. Univ. Padova 107 (2002) 67–79, MR1926201.
- [16] Robert M. Guralnick, Lifting homomorphisms of modules, Illinois J. Math. 29 (1) (1985) 153–156, MR769764.
- [17] Robin Hartshorne, Residues and Duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne, Lecture Notes in Math., vol. 20, Springer-Verlag, Berlin, 1966, MR0222093.
- [18] Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1) (1978) 21–34, MR0463155.
- [19] Craig Huneke, Graham J. Leuschke, Two theorems about maximal Cohen–Macaulay modules, Math. Ann. 324 (2) (2002) 391–404, MR1933863.
- [20] Peter Jørgensen, Existence of Gorenstein projective resolutions and Tate cohomology, J. Eur. Math. Soc. (JEMS) 9 (1) (2007) 59–76, MR2283103.
- [21] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1) (1987) 153–164, MR877010.
- [22] Graham Leuschke, Roger Wiegand, Ascent of finite Cohen-Macaulay type, J. Algebra 228 (2) (2000) 674–681, MR1764587.
- [23] Frank-Olaf Schreyer, Finite and countable CM-representation type, in: Singularities, Representation of Algebras, and Vector Bundles, Lambrecht, 1985, in: Lecture Notes in Math., vol. 1273, Springer-Verlag, Berlin, 1987, pp. 9– 34, MR915167.
- [24] Jean-Pierre Serre, Local Algebra, Springer Monogr. Math., Springer-Verlag, Berlin, 2000, MR1771925.
- [25] Øyvind Solberg, Hypersurface singularities of finite Cohen–Macaulay type, Proc. London Math. Soc. (3) 58 (2) (1989) 258–280, MR977477.
- [26] Janet Striuli, On extensions of modules, J. Algebra 285 (1) (2005) 383–398, MR2119119.
- [27] Ryo Takahashi, Modules of G-dimension zero over local rings of depth two, Illinois J. Math. 48 (3) (2004) 945–952, MR2114261.
- [28] Ryo Takahashi, On the category of modules of Gorenstein dimension zero II, J. Algebra 278 (1) (2004) 402–410, MR2068085.
- [29] Ryo Takahashi, On the category of modules of Gorenstein dimension zero, Math. Z. 251 (2) (2005) 249–256, MR2191025.
- [30] Roger Wiegand, Local rings of finite Cohen-Macaulay type, J. Algebra 203 (1) (1998) 156-168, MR1620725.
- [31] Jinzhong Xu, Flat Covers of Modules, Lecture Notes in Math., vol. 1634, Springer-Verlag, Berlin, 1996, MR1438789.
- [32] Yuji Yoshino, Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Math. Soc. Lecture Note Ser., vol. 146, Cambridge University Press, Cambridge, 1990, MR1079937.