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Abstract. An algebraic approach to graph theory involves the study of the

edge ideal and the cover ideal of a given graph. While a lot is known for

the associated primes of powers of the edge ideal, much less is known for the
associated primes of the powers of the cover ideal. The associated primes of

the cover ideal and its second power are completely determined. We show that

the centered odd holes appear always among the associated primes of the third
power of the cover ideal.

1. Introduction

We start the paper by introducing some definitions and notations, for which we
follow [6] and [7]. In the following, a graph G consists of two finite sets, the vertex
set VG = {x1, . . . , xn} and the edge set EG whose elements are unordered pairs of
vertices. To conserve notation, for elements xi, xj ∈ VG, we denote the element
{xi, xj} ∈ EG by xixj , we say that the vertices xi and xj are adjacent and the edge
xixj is incident to xi or xj . In the rest of the paper we assume that all graphs are
simple, meaning that the only possible edges are xixj for i 6= j.

A subset C ⊆ VG is a vertex cover of G if each edge in EG is incident to a vertex
in C. A vertex cover C is a minimal cover if there is no proper subset of C which
is a vertex cover of G.

The results of this paper are in the area of algebraic graph theory, where algebraic
methods are used to investigate properties of graphs. Indeed, a graph G with ver-
tex set VG = {x1, . . . , xn} can be related to the polynomial ring R = k[x1, . . . , xn],
where k is a field. In the following we take the liberty to refer to xi as a variable
in the polynomial ring and as a vertex in the graph G, without any further speci-
fication. Given a ring R, we denote by (f1, . . . , fl) the ideal of R generated by the
elements f1, . . . , fl ∈ R.

Two ideals of the polynomial ring R = k[x1, . . . , xn] that have proven most useful
in studying the properties of a graph G with vertex set VG = {x1, . . . , xn} and edge
set EG are the edge ideal

IG = (xixj | xixj ∈ EG)

and the cover ideal

JG = (xi1 · · ·xik
| xi1 , . . . , xik

is a minimal cover of G).

Note that both the edge ideal and the cover ideal of a graph are monomial square-
free ideals, i.e. they are generated by monomials in which each variable appears at
most one time.
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One of the most basic tools in commutative algebra to study an ideal I of a
notherian ring R is to compute the finite set of associated prime ideals of I, which
is denoted by Ass(R/I) (see for details [3]). In the case of a monomial ideal L in
a polynomial ring S = k[x1, . . . , xn], an element in Ass(S/L) is a monomial prime
ideal, which is an ideal generated by a subset of the variables. Because of this fact
we can record the following definition.

Definition. Let L be a monomial ideal in the polynomial ring S = k[x1, . . . , xn]
and let P = (xi1 , . . . , xis

) a monomial prime ideal. If there exists a monomial m
such that xijm ∈ L for each j = 1, . . . , s and xim /∈ L for very i 6= i1, . . . , is then
P is an associated prime to L. We denote by Ass(S/L) the set of all associated
(monomial) primes of L.

In [2], the authors give a constructive method for determining primes associated
to the powers of the edge ideal, but much less is know for cover ideals. It is known
that, given a graph G and its cover ideal JG, a monomial prime ideal P is in
Ass(S/JG) if and only if P = (xi, xj) and xixj is an edge of G, (see for example
[7]).

Before we can present the next result, we need some more definitions about
graphs. Let G be a graph with vertices {x1, . . . , xn}. A path is a sequence of
distinct vertices xi1 , xi2 , . . . , xik

such that xij
xij+1 ∈ EG for j = 1, 2, . . . , k − 1.

The length of a path xi1 , xi2 , . . . , xik
is given by the number of edges it includes,

i.e. k−1. A cycle s is a path xi1,xi2 , . . . , xik
, where we assume that k ≥ 3, together

with the edge xik
xi1 . If there exists and l such that k = 2l + 1, we call s an odd

cycle, or odd hole. Given a graph G and a subset of the vertex set W ⊆ VG, the
graph generated by W has W has vertex set and for x, y ∈ W , xy is an edge of W
if and only if it is an edge for G.

A recent result of Francisco, Ha and VanTuyl describes the associated primes
of the ideal (JG)2, [4]. We state the result here as it is the initial point of our
investigation.

Theorem 1.1. Let G be a graph with vertex set VG = {x1, . . . , xn}, edge set EG

and cover ideal JG. A monomial prime ideal P = (xi1 , . . . , xik
) of the polynomial

ring S = k[x1, . . . , xn] is in the set Ass(S/J2
G) if and only if one of the following

cases hold:
• k = 2 and xi1xi2 ∈ EG;
• k is odd and the graph generated by xi1 , . . . , xk is an odd hole.

Before we present our theorem we summarize the concepts above with an exam-
ple. For the following graph G
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we obtain the following

Ass(J) = {(x1, x2), (x1, x7), (x2, x3), (x2, x4), (x3, x4), (x4, x5), (x4, x6), (x5, x6),

(x6, x7)}.
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The associated prime of J is exactly all the primes generated by two variables which
correspond to the edges of the graph.

Ass(J2) = {(x1, x2), (x1, x7), (x2, x3), (x2, x4), (x3, x4), (x4, x5), (x4, x6), (x5, x6),

(x6, x7), (x2, x3, x4), (x4, x5, x6), (x1, x2, x4, x6, x7)}.

The associated prime of J2
G contains all the primes that are either generated

by two variable corresponding to edges or that are generated by three variables
corresponding to odd cycles of G. 1

In this paper we study the associated primes of the third power of the cover ideal,
the ideal J3

G, where G is a graph. In particular we prove that the primes generated
by the variables corresponding to the vertices of a centered odd hole always appear
among the associated primes of J3

G. The definition of centered odd holes and the
proof of this statement will be given in Section 2.

The main result has connection with the coloring number of a graph, we discuss
this at the end of Section 2.

2. Centered odd holes and the Main Theorem

Definition. A graph C is said to be a centered odd hole if the following two con-
ditions hold:

(1) there is an odd hole H and a vertex y, called the center of C, such that
VC = VH ∪ {y};

(2) the center y is incident to at least three vertices of H such that there
are at least two and different odd cycles containing the center among the
subgraphs of C.

In fact, there are three odd cycles containing the center, as H is an odd hole.
For a centered odd hole, we need to define some invariants.

Definition. Let C be a centered odd hole, where H is the odd hole and y is the
center. A vertex x ∈ VH is a radial vertex if xy is an edge of the centered odd hole.
The number of radial vertices is the radial number. Assume that k is the radial
number and that x1, . . . , xk are the radial vertices then li will denote the length of
the path in H from xi to xi+1 for i = 1, . . . , k − 1 and lk will denote the length of
the path in H from xk to x1.

Recall that given a graph G, the number of vertices of G is called the size of G
and it is denoted by |G|. In the main theorem we will use the following lemma.

Lemma 2.1. Let C be a centered odd hole, where H is the odd hole and y is the
center. Let k be the radial number. If W is a vertex cover for C that contains y,
then the inequality |W | ≥ |C|2 + 1 holds. If W is a vertex cover for C that does not
contain y, then the equality |W | ≥ k + b l1−1

2 c + · · · + b lk−1
2 c holds. Moreover the

following inequality holds:

k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c ≥ |C|

2
+ 1.

1All the computations in this paper are carried by the algebra system Macaulay2. Moreover
Macaulay2 was used extenstensevely to find the patter that lead to the Main Theorem.
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Proof. Let VH be the vertex set of H. Assume that W contains the vertex y. The
vertex set W ∩VH has to be a vertex cover for H. Moreover, since H is an odd hole,
the cardinality of W ∩VH has to be at least |H|+1

2 , which is equal to |C|2 . Therefore
the cardinality of W is |C|2 + 1.

Assume now that W does not contain the vertex y. Let x1, . . . , xk be the radial
vertices. Since y /∈W , we obtain that all the radial vertices are in W . As W ∩ VH

is a cover of H, in the path from xi to xi+1 we need at least b li−1
2 c vertices, for

i = 1, . . . , k − 1, and we need b lk−1
2 c vertices for the path x1, . . . , xk.

To prove the last inequality consider the following chain of inequalities:

k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c ≥

k +
l1 − 1

2
+ · · ·+ lk − 1

2
≥

l1
2

+ · · ·+ lk
2

+
k

2
≥

l1 + · · ·+ lk + 1
2

+
k − 1

2
≥

|C|
2

+ 1,

where in the last inequality we used the fact that k ≥ 3. �

In the following we will make an abuse of notation: if G is a graph with vertices
x1, . . . , xn and H is a subgraph generated by the vertices xi1 , . . . , xik

, by H we also
denote the prime monomial ideal (xi1 . . . , xik

) in the polynomial ring k[x1, . . . , xn].
Here is our main theorem.

Theorem 2.2. Let G be a graph with vertex set VG = {x1, . . . , xn} and assume
that there exists a subgraph C which is a centered odd hole. Let S = k[x1, . . . , xn]
and let J be the cover ideal of G. Then the set Ass(S/J3) is not contained in the
set Ass(S/J2) and in fact C ∈ Ass(S/J3) \Ass(S/J2).

Proof. By Lemma 2.11 in [5], we may assume thatG = C is a centered odd hole. Let
H be the odd hole and y be the center of C. Let x1, x2, . . . , xk be the radial vertices.
Denote by xi1 , . . . , xilk−1 the vertices between xi and xi+1, for i = 1, . . . , k− 1 and
the vertices between xk and x1 for i = k. We will show that the ideal C =
(x1, . . . , xk, xij , . . . , y) is in Ass(S/J3) but not in Ass(S/J2). The prime ideal C is
not in Ass(S/J2) as it is not an odd hole nor an edge, see Theorem 1.1. To show
that C is in Ass(S/J3) we need to find a monomial c such that c /∈ J3 and xc ∈ J3

for each vertex x of VC . Let c be the monomial

c = y2
∏

i=1,...,k

x2
i

∏
i=1,...,k; j=1,...,li−1

xa
ij ,

where a = 1 if j is odd and a = 2 if j is even.
We now prove that c is the desired monomial, and to do so we first establish the

following claim. Let n be the size of H. For a monomial m we denote by deg(m)
the degree of m.

Claim 1: The equality deg(c) = k + 2 + n+ b l1−1
2 c+ · · ·+ b lk−1

2 c holds.
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Proof of Claim 1: In computing deg(c), the contribution from the variables y and
xi, for i = 1, . . . , k , is given by 2k + 2. For i = 1, . . . , k − 1, between xi and xi+1,
there are li − 1 vertices, and there are lk − 1 vertices between xk and x1. Given
an integer s, there are b s

2c even integers and d s
2e odd integers between 1 and s.

Therefore, in computing deg(c), the contribution from the variables xij is given by

2b l1 − 1
2
c+ · · ·+ 2b lk − 1

2
c+ d l1 − 1

2
e+ · · ·+ d lk − 1

2
e.

The degree of the monomial c is therefore equal to

2k + 2 + 2b l1 − 1

2
c+ · · ·+ 2b lk − 1

2
c+ d l1 − 1

2
e+ · · ·+ d lk − 1

2
e =

2k + 2 + (b l1 − 1

2
c+ d l1 − 1

2
e) + · · ·+ (b lk − 1

2
c+ d lk − 1

2
e) + b l1 − 1

2
c+ · · ·+ b lk − 1

2
c =

k + 2 + k + (l1 − 1) + · · ·+ (lk − 1) + b l1 − 1

2
c+ · · ·+ b lk − 1

2
c =

k + 2 + l1 + · · ·+ lk + b l1 − 1

2
c+ · · ·+ b lk − 1

2
c =

k + 2 + n + b l1 − 1

2
c+ · · ·+ b lk − 1

2
c.

The last line of the equalities establishes Claim 1.

We now prove that c does not belong to J3. For this we will show the following
strict inequality

Claim 2: deg(c) < 2( |C|2 + 1) + k + b l1−1
2 c+ · · ·+ b lk−1

2 c.

If the claim is true, then c /∈ J3. In fact if, by contradiction, we assume that
c ∈ J3 then we can write c = hm1m2m3 with mi ∈ J for i = 1, 2, 3. Since mi ∈ J ,
the variables that appear in mi correspond to a cover of the graph C. Moreover
at least one cover must not contain the center y, we assume the monomial m3

corresponds to such cover. By Lemma 2.1 the minimal cover has at least |C|2 + 1
vertices if the cover contains the center y and at least k + b l1−1

2 c+ · · ·+ b lk−1
2 c if

the cover does not contain y. Using the inequality from Lemma 2.1 to get the first
inequality below, we obtain

deg(c) = deg(h) + deg(m1) + deg(m2) + deg(m3)

≥ deg(h) + 2(
|C|
2

+ 1) + k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c

≥ 2(
|C|
2

+ 1) + k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c,

which will contradict Claim 2.

Proof of Claim 2: Assume by contradiction that

deg(c) ≥ 2(
|C|
2

+ 1) + k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c,

then by Claim 1, we obtain that

k + 2 + n+ b l1 − 1
2
c+ · · ·+ b lk − 1

2
c ≥ 2(

|C|
2

+ 1) + k + b l1 − 1
2
c+ · · ·+ b lk − 1

2
c,
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which means that

2 + n ≥ 2(
|C|)

2
+ 1).

As n is the size of H, |C| is the number of vertices of the centered odd hole, and
C = H ∪ {y} we have that |C| = n+ 1. This implies that

2 + n ≥ 2(
n+ 1

2
+ 1) = n+ 2 + 1,

which is a contradiction.
To finish the proof we need to show that for every vertex x ∈ VC we have xc ∈ J3.

We do so in the following claims.
Let x be any vertex of H and relabel the vertices of H starting from x = t1

clockwise t2, . . . , tn, where n is the size of H. We can write xc = m1m2m3 where

m1 = y
∏

i odd

ti,

m2 = yt1
∏

i even

ti, and

m3 =
∏

i=1,...,k

xi

∏
i=1...,k; j even

xij .

Note that m1 and m2 correspond to covers as they contain y and every other
vertex of the outside cycle. Also m3 corresponds to a cover as all the xi are included,
and therefore all the edges connecting y to the outside cycle are covered, and every
other vertex in the path from xi to xi+1 is included.

Finally we need to write yc = m1m2m3 with mi ∈ J for i = 1, 2, 3. For this
assume that x1 is such that the path from xk to x1 is odd. Relabel the vertices
x1 = t1 and then clockwise to tn. Let

m1 = y
∏
i odd

ti.

Note that m1 will give a cover as we are considering every other vertex in the odd
cycle and the vertex y. Now let l the least even number so that tl corresponds to
a radial vertex xg, for some g. Set

m2 = y
∏

l≤i≤n, i even

ti
∏

1≤i≤l, i odd

ti.

Because we are considering every other vertex from t1 to tl−1, every other vertex
from tl, and the center y, the monomial m2 corresponds to a cover of the centered
odd hole.

Finally

m3 = yxgxg+1 . . . xk

∏
i=g,...k,j even

xij

∏
i=1,...l−1, i even

ti.

Also m3 gives a cover as it contains every other vertex from t2 to tl = xg, every
other vertex from xi to xi+1, for i = g, . . . , k− 1, every other vertex from xk to x1,
and the center y. Notice that x1 is missing from the monomial m3 but the vertex y
is listed in the monomial as for the vertex preceding x1, because of the assumption
that the path xk, . . . , x1 in H is odd. �
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For every ideal I in a polynomial ring S (and in fact in a more general ring),
one can compute the sequence of sets Ass(S/In) for n ∈ N. It is a theorem in [1],
proved in a much larger generality, that there exists a positive integer a such that

∪aI
i=1 Ass(S/Ii) = ∪∞i=1 Ass(S/Ii).(2.1)

Very little is known about the value of the positive integer aI . In [5], the authors
give an upper bound for aI in the case that I is an edge ideal for some given graph.

The value of aJ , where J is the cover ideal of a graph G, is related to the coloring
number of G. More in detail, given a graph G, the coloring number for G is the
least number of colors that one needs to color the vertices of the graph so that two
adjacent vertices have different colors. We denote the coloring number of a graph G
by χ(G). In [5], the authors show that, in equation 2.1, aJ ≥ χ(G)− 1 for J being
the cover ideal of the graph G. In the same paper, they look at some examples for
which aJ > χ(G) − 1. Centered odd holes give an infinite family of examples for
which the inequality aJ > χ(G)− 1 is satisfied.

Corollary 2.3. Let C be a centered odd hole with cover ideal J . Assume that there
exists a vertex of C which is not radial, then aJ ≥ χ(C).

Proof. Because C contains an odd hole, one needs at least three colors for the
vertexes of C. We first show that χ(C) = 3. Let {a, b, c} be a list of three colors.
Assume that x is a vertex of C which is not radial. Color the vertex x and the
center y with c, and finally color the remaining vertices alternating a and b.

The main Theorem implies that aJ ≥ 3. �

We finish the paper with an example that illustrates the idea behind the proof
of the main theorem. Consider the centered odd hole G
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The monomial c used in the proof of the Main Theorem, is given by

c = x2
1x

2
2x

2
3x

2
4x

2
5x

2
22x

2
32x

2
52x11x21x31x41x51.

We can write the monomial yc = m1m2m3, where the monomial m1 corresponds
to the cover
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The monomial m2 corresponds to the cover
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Finally, the monomial m3 corresponds to the cover
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